

1 Carcass Characteristics, Hematology, Serum Chemistry, and
2 Enzymes in Broiler Chickens Fed Maggot Meal as a Protein
3 Substitute for Fishmeal

4 Mbiba Hassanu Fanadzenyuy¹, Etchu K. A.² and Ndamukong 3 K³

5 ¹ Institute of Agricultural Research for Development

6 *Received: 14 December 2018 Accepted: 2 January 2019 Published: 15 January 2019*

7

8 **Abstract**

9 Conventional protein sources used in poultry farming are extensively competed for, by
10 livestock and humans leading to high prices and reduced returns. Focus on better utilization
11 of available alternative feed resources with little or no negative impacts on the health of
12 broilers and consumers is useful. The objective of this research was to assess the performance
13 of carcass characteristics, hematology, serum chemistry, and enzymes in broiler chickens fed
14 maggot meal as a protein substitute for fishmeal. 225 Tropical Broc day old chicks brooded
15 for two weeks and fed the control diet, were distributed in a completely randomized block
16 design with five treatments and three replicates each consisting of the starter and finisher
17 phases and the experiment conducted for eight weeks. Diets were compounded with maggot
18 meal (MM) replacing FM at 0

19

20 **Index terms**— maggot meal, hematology, serum chemistry, enzymes, carcass characteristics.

21 **1 Introduction**

22 Broiler production is one of the main areas in animal farming that involves quite a large section of the population
23 either skilled or unskilled. One important advantage in this is the fact that poultry meat is very rich in unsaturated
24 fatty acids as against saturated fatty acids. Both turkey and chicken have about 30% saturated fatty acids, 43%
25 monounsaturated fatty acids, and 22% polyunsaturated fatty acids. The ratio is a clear indication that poultry
26 meat may stand a better position as a more healthful alternative for red meat (Encyclopaedia Britannica, 2014).
27 Notwithstanding there are some challenges in areas of nutrition, health, and management (Awonyi, 2004).
28 Feeding alone accounts for 60-70% of the total production cost in modern poultry production systems ??Smith,
29 1990; Church, 1991; ??ilson and Beyer, 2000). Conventional protein sources used are extensively competed for,
30 by other livestock and humans (Gadzirayi et al., 2012), thereby leading to very high prices and reduced returns.
31 Any attempt to improve commercial poultry production and increase its efficiency, therefore needs to focus on
32 better utilization of alternative but available feed resources. Knowledge of nutritional characteristics of these
33 feeds and optimal levels of inclusion in rations and optimum combination of ingredients is useful (Kamalzadeh
34 et al., 2008). Competition for conventional protein sources has prompted researchers to embark on research for
35 alternatives like MM that are cheaply available and comparable to FM. The crude protein content of maggots is
36 high (39-63%) (Aniebo and Owen, 2010) and akin to that of fish meal ??Veldkamp et al., 2012).

37 Even though MM may reduce competition between man and other livestock, there is very high need to
38 investigate its health implications in broiler and humans as well the effects on performance of broilers (Awonyi,
39 2004). A study of the carcass characteristics, blood indices and enzymes should correlate the benefits of MM as
40 a protein source in poultry feed vis-à-vis the physiological status of the birds. The study of these B physiological
41 parameters will serve to bridge the gap as work done in Cameroon on this aspect is scanty.

42 **2 II.**

43 **3 Materials and Methods**

44 **4 a) Study area**

45 The study was carried out at Muyuka Agro-Industrial Farm situated between latitudes 4°16' and 4°23'N and
46 longitudes 9°21' and 9°28'E in the fourth agro-ecological zone of Cameroon (AEZ IV). Muyuka on the windward
47 side of mount Cameroon, experiences very high temperatures ranging from 25°C during the rainy season (March
48 to September) to about 30°C in the dry season (October to March). The climate is typical of the equatorial type.
49 The monthly rainfall ranges between 9.2mm to 374.1mm, the lowest realized in January while the heaviest is in
50 August.

51 **5 b) Birds**

52 Two hundred and twenty-five Tropical Broc day-old broilers used for the experiment fed on the control diet
53 (Table 1) during the brooding period of two weeks. Coal pots provided heat supplementation and prophylactic
54 measures employed. Daylight served as the main lighting source during the day and electric current at night;
55 lanterns served as the illuminating source in cases of power outage.

56 **6 c) Experimental design**

57 The trial used a completely randomized block design (CRBD) in which two weeks old chicks were randomly
58 allocated to 5 treatments, each containing 45 birds; and each treatment had three replicates with 15 birds each.
59 Diets formulated using maggot meal (MM) substituted fishmeal (FM) at graded levels; 0%, 25%, 50%, 75% and
60 100% at both the starter and finisher phases. Mineral and vitamin premixes customary to poultry production,
61 oyster shell, salt, and bone served as complements (Tables 1 and 2).

62 Birds lived on deep litter while enjoying natural ventilation, Feed, and water ad libitum. Broiler starter, 23%
63 crude protein, sustained for four weeks followed by broiler finisher, 19% crude protein from the end of the 4 th
64 week till slaughter (8 th week).

65 **7 d) Ration formulation for experimental diets**

66 The feed ingredients used in this study included: Yellow maize, fishmeal, maggot meal, groundnut cake, kernel
67 cake, soybean cake, wheat bran, and premixes. Proximate analysis gave crude protein and ME values for maggot
68 meal while the nutrient master plan (livestock feeds) provided those for other ingredients. Levels of inclusion
69 of protein (maggot meal and fishmeal) and energy sources to meet the protein and energy requirements were
70 manipulated using Pearson's Square method and the various percentages calculated as indicated in Tables 1 and
71 2 with the help of a nutrient master plan which gave the protein and energy contents of each ingredient.

72 After all the ingredients were measured and put together at the same spot on the cardboard paper, they
73 were mixed with the hand, making at least three complete turns to ensure proper mixing, and then put into
74 bags with treatment labels. Determination of carcass characteristics took place on the last day of the 8th week.
75 After recording live weights of 30 randomly selected birds, two from each replicate, we slaughtered each bird and
76 allowed to bleed for about two minutes before putting in hot water for almost a minute to soften the skin for
77 easy plucking. Dressed weight represented the bulk after removal of the shanks, crop, entrails and other organs.
78 The carcass parts consisted of head, neck, wings, breast, back, thigh and drumstick.

79 We discarded entrails and weighed eviscerated birds, livers, gizzards, and carcass parts. Then averages from
80 each replicate statistically analyzed for any significant differences between treatments.

81 **8 f) Studies of hematological parameters, serum chemistry, and
82 enzymes**

83 Studies of hematological parameters (hemoglobin, white and red blood cells), serum chemistry (total protein,
84 albumin, and globulin), and enzymes (aspartate amino-transaminase and alanine amino-transaminase) were
85 carried out at the end of the experiment. Blood was collected at the time of slaughter for carcass analysis into
86 30 tubes from 15 birds; fifteen tubes had the anticoagulant ethylene diamine tetraacetate (EDTA) to prevent
87 clotting, and the rest of the cylinders had no anticoagulant. Two hoses (one with EDTA and the other without
88 the anticoagulant) were used to collect blood from one bird per replicate.

89 **9 g) Method of data processing and analysis**

90 Data were organized in Microsoft Office Excel Version 2010 and analyzed using SPSS 17.0 (SPSS Inc, 2008).
91 Data screened for exploration using Kolmogorov Smirnov and Shapiro Wilk tests revealed that the data departed
92 from the normal distribution. The non-parametric test, notably Kruskal Wallis test, was then used to compare
93 groups for significant differences (Nana, 2012) and the Dunnett T 3 test used for paired comparisons. We took
94 measurements of central tendencies and dispersion, presented the data using statistical tables and charts, and
95 discussed at the 95% CL (Alpha=0.05).

96 **10 III.**

97 **11 Results and Discussion**

98 **12 a) The chemical composition of experimental diets**

99 Table 3 reveals a drop in the CP value of analyzed components for all the treatments, except for the 100% MM.
100 There was a reasonable increase in ME values, especially in 75% and 100% MM.

101 Table ?? shows a drop in the crude protein content of the control and 25% MM and a slight increase in the rest
102 of the analyzed feed composition compared to the calculated feed composition. There was a considerable increase
103 in ME values of the evaluated components compared to the premeditated constituents across the treatments.

104 The differences observed in the calculated and the analyzed compositions for both the starter and finisher diets
105 may have been due to variations between the tabulated nutrient content values used in the calculations and the
106 actual nutrient contents of the ingredients used in the experiment. Doing proximate analysis for all components
107 before formulating and compounding the various feeds for the trial keeps this situation in check. Increase in ME
108 with increasing maggot meal in the diets may be explained by the high fats in the maggots which release a lot of
109 energy when oxidized (Adeniji, 2007).

110 **13 b) Carcass analysis**

111 Table ?? indicates the effects of graded level inclusion of MM in broiler diets on carcass characteristics. Live
112 weight, dressed weight, eviscerated weight, carcass characteristics and organs were all significantly different
113 ($P<0.001$) between treatments except for the liver which was not significantly different ($P>0.05$). Generally, the
114 weight of carcass parts increased from T0 to T4. This increase in weight agrees with the findings of Hwangbo et
115 al. (2009). The general increase in bulk of the carcass parts with increase inclusion of MM in the diets may have
116 been due to the live weight which also increased with increased levels of maggot inclusion. Agbede and Aletor
117 (2003) found no significant change in all carcass characteristics and organs except for the relative weights of the
118 neck and heart which were significantly higher in diets containing 7.24% of gliricidia leaf protein concentrate in
119 place of FM. Awonyi et al. (2003) The weight of the liver was not significantly different between the control and
120 experimental diets, although higher ($P>0.05$) in treatment groups than in non-experimental diet. Hwangbo et
121 al. (2009) and Okah and Onwujiariri (2012) also found no significance ($P>0.05$) in weight of the liver amongst
122 treatments. This indifference in bulk of the liver may have been an indication that there was no infection in
123 the maggot meal that could cause undesirable effects on the nutrition of broilers as indicated by Hwangbo et al.
124 (2009) and Okah and Onwujiariri (2012). These results differed from those of Teguia et al. ??2002 who obtained
125 proportional increases in weights of the liver and gizzard from the control through treatment groups and linked it
126 to toxicity. Live and dressed weights were significantly higher ($P<0.001$) in treatment groups than in control. T
127 4 was, in turn, higher ($P<0.001$) than the rest of the treatment groups which didn't differ significantly ($P>0.05$)
128 between themselves in live and dressed weights. Eviscerated weight in T 4 was significantly ($P<0.001$) higher
129 than in the rest of the treatments which were, in turn, greater than the control though not significantly ($P>0.05$)
130 Gadzirayi et al., (2012) using mature Moringa oleifera leaf meal as a protein supplement to soybean meal but
131 goes contrary to the outcome of Yisa et al., (2013) who stated that complete withdrawal of FM implied poorer
132 development of the meat yielding parts.

133 **14 Table 5: Comparison of carcass parts between treatments**

134 a, b, c, d, e, f, g, h, I, j Dunnett T 3 : Paired comparison between treatments and within weeks; pairs with the
135 same letter are not significantly different at the 0.05 Level.

136 **15 c) Hematology, serum chemistry, and enzyme studies**

137 The results presented in Table 6 reveal that there was a significant difference ($P<0.001$) between treatments in
138 the hematological parameters, serum chemistry, and enzymes studied, except for albumin which was the same
139 throughout the control and treatment groups. T 2 recorded the lowest total protein and globulin and T 3 the
140 highest. ALT was significantly lower ($P<0.001$) in control compared to the rest of the treatment groups and
141 topmost in T 2 , but not significantly different ($P>0.05$) from the rest of the treatment groups.

142 **16 Conclusion**

143 Conclusions derived from this study follows thus: Better carcass characteristics in treatments with maggot meal
144 is an indication that maggot meal is not inferior to fishmeal. Lower amounts of white blood cells in the treatment
145 groups with maggot meal than in control indicate the absence of any infection in the system attributable to MM.
146 The stable values of RBCs and Hb were an indication that the birds were not suffering from anemia, thereby
147 indicating that MM did not upset the physiological status of the birds. The values of total protein, globulin,
148 and enzymes studied did not show any defined trend in their variations between the various treatments. Given
149 that broilers with the best carcass characteristics performance were those with 100% maggot meal inclusion and
150 that physiological parameters were not deviated from normal values in birds fed experimental diets, it can be

16 CONCLUSION

151 concluded from this study that maggot meal can entirely replace fish meal at 5% in broiler feed for better carcass characteristics, and a stable physiological profile. ^{1 2}

1

Year

2019

8

Volume

XIX

Issue I

Version

I

D D D

D) G

(

inclusion levels and chemical composition of experimental diets for broiler

Medical Ingredients Soya bean starter (weeks 1-4) Treatment Composition Control (T 0, 0%) T 1 (

Re- cake(SBC) Maize

search

Global Journal of	Fishmeal (FM) meal (MM) cake (GNC) cake (PKC) (WB) (BM)	Maggot Groundnut Palm kernel Wheat bran Premix Bone meal Salt	5.00 5.00 0.50 0.25 0.50 0.25 0.50 0.50 0.25	0.00 10.50 0.25 0.25 0.25 0.25 0.25 0.25	17.00 17.00 5.00 10.50 0.75 0.75 0.50 0.50	3.75 17.00 5.00 10.50 2.50 0.75 0.50 0.25	2.50 17.00 5.00 10.50 2.50 0.75 0.50 0.25
	Oyster shell		0.50		0.50	0.50	0.50
	Total		100.00		100.00	100.00	100.00
	Crude Protein (%CP)		23.20	2882.72	22.99	22.79	
	Metabolizable energy (ME) Kcal/Kg				2888.25	2893.78	

Figure 1: Table 1 :

152

2

Ingredients	Control (T 0 0%)	Treatment Composition	T 1 (25%)	T 2 (50%)	T (75%)	T (100%)
Maize	48.00	48.00	48.00		48.00	48.00
Soya bean cake(SBC)	9.00	9.00	9.00		9.00	9.00
Fishmeal (FM)	5.00	3.75	2.50		1.25	0.00
Maggot meal (MM)	0.00	1.25	2.50		3.75	5.00
Groundnut cake (GNC)	10.00	10.00	10.00		10.00	10.00
Palm kernel cake (PKC)	15.00	15.00	15.00		15.00	15.00
Wheat bran (WB)	10.00	10.00	10.00		10.00	10.00
Premix	0.75	0.75	0.75		0.75	0.75
Bone meal (BM)	1.00	1.00	1.00		1.00	1.00
Salt	0.25	0.25	0.25		0.25	0.25
Oyster shell	1.00	1.00	1.00		1.00	1.00
Total	100.00	100.00	100.00		100.00	100.00
Crude Protein (%CP)	19.53	19.36	19.12		18.91	18.7
Metabolizable energy (ME) Kcal/Kg	2811.57	2817.10	2822.63		2828.16	283
e) Carcass characteristics						

Figure 2: Table 2 :

3

Ingredients	Control (T 0 0%)	T (25%)	T (50%)	T (75%)	T (100%)
Maize	48.00	48.00	48.00	48.00	48.00
Soya beans cake (SBC)	12.50	12.50	12.50	12.50	12.50
Fishmeal (FM)	5.00	3.75	2.50	1.25	0.00
Maggot meal (MM)	0.00	1.25	2.50	3.75	5.00
Groundnut cake (GNC)	17.00	17.00	17.00	17.00	17.00
Palm kernel cake (PKC)	5.00	5.00	5.00	5.00	5.00
Wheat bran (WB)	10.50	10.50	10.50	10.50	10.50
Premix	0.75	0.75	0.75	0.75	0.75
Bone meal (BM)	0.50	0.50	0.50	0.50	0.50
Salt	0.25	0.25	0.25	0.25	0.25
Oyster shell	0.50	0.50	0.50	0.50	0.50
Total	100.00	100.00	100.00	100.00	100.00
Calculated composition					
Crude Protein (%CP)	23.20	22.99	22.79	23.58	22.37
Metabolizable energy (ME) Kcal/Kg	2882.72	2888.25	2893.78	2899.31	2904.85
Analyzed composition					
Crude Protein (%CP)	20.4	18.9	20.4	20.7	22.4
Metabolizable energy (ME) Kcal/Kg	3114.9	3121.7	3121.5	3359.8	3205.5

Figure 3: Table 3 :

4

Ingredients	Control (T 1 0%)	T (25%)	2 (50%)	T (75%)	3	T (100%)	4	T (100%)	5
Maize	48.00	48.00	48.00	48.00		48.00		48.00	
Soya beans cake (SBC)	9.00	9.00	9.00	9.00		9.00		9.00	
Fishmeal (FM)	5.00	3.75	2.50	1.25		0.00			
Maggot meal (MM)	0.00	1.25	2.50	3.75		5.00			
Groundnut cake (GNC)	10.00	10.00	10.00	10.00		10.00		10.00	
Palm kernel cake (PKC)	15.00	15.00	15.00	15.00		15.00		15.00	
Wheat bran (WB)	10.00	10.00	10.00	10.00		10.00		10.00	
Premix	0.75	0.75	0.75	0.75		0.75		0.75	
Bone meal (BM)	0.50	0.50	0.50	0.50		0.50		0.50	
Salt	0.25	0.25	0.25	0.25		0.25		0.25	
Oyster shell	0.50	0.50	0.50	0.50		0.50		0.50	
Total	100.00	100.00	100.00	100.00		100.00		100.00	
Calculated composition									
Crude Protein (%CP)	19.53	19.36	19.12	18.91		18.70			
Metabolizable energy (ME) Kcal/Kg	2811.57	2817.10	2822.63	2828.16		2833.70			
Analyzed composition									
Crude Protein (%CP)	17.1	16.0	20.4	19.0		20.0			
Metabolizable energy (ME) Kcal/Kg	3253.4	3166.6	3015.7	3418.1		3296.6			

Figure 4: Table 4 :

no significant effect on the relative length, breadth or weight of muscles of key economic importance in chickens. His report is similar to that of Quinton (2011). Amal et al., (2013), Meseret et al., (2012) and Bello et al., (2012) found no significant ($p>0.05$) differences between all treatments groups in Live weight, eviscerated weight of carcass cuts, dressing percentage, edible inner organs (liver, gizzard, and heart).

Year 2019

10

Volume XIX Issue I Version I

D D D D) G

(

Medical Research
Global Journal of

Figure 5:

6

Year 2019
11

Figure 6: Table 6 :

153 .1 Acknowledgment

154 We acknowledge the great support from Mr. ZHU LYING who granted us free access to his poultry farm (Muyuka
155 Agro-Industrial Farm) and materials to carry out this research from the beginning till the end, and the moral
156 support from his staffs.

157 [Pakistan Journal of Nutrition] , *Pakistan Journal of Nutrition* 9 (5) p. .

158 [Revista Lusófona de Ciência e Medicina Veterinária] , *Revista Lusófona de Ciência e Medicina Veterinária* 5
159 p. .

160 [Awoniyi and Adetuyi ()] , T A M Awoniyi , Adetuyi . 2004.

161 [Martinho ()] *Blood transfusion in birds*, F Martinho . 2012.

162 [Church ()] D C Church . *Livestock Feeds and Feeding*, (New Jersey. USA) 1991. Prentice Hall. Incorporation
163 cliffs. 465 p. pp.

164 [Adeniji ()] 'Effect of replacing groundnut cake with maggot meal in the diet of broilers'. A A Adeniji .
165 *International Journal of Poultry Science* 2007. 6 (11) p. .

166 [Aniebo and Owen ()] *Effects of age and method of drying on the proximate composition of housefly larvae*
167 (*Muscaedomestica*) meal (HFLM), A O Aniebo , O J Owen . 2010.

168 [Meseret et al. ()] *Effects of Replacing Peanut Seed Cake with Brewery Dried Yeast on Laying Performance*, G
169 Meseret , T Berhan , D Tadelle . 2012. Egg Quality.

170 [Agbede and Aletor ()] 'Evaluation of fish meal replaced with leaf protein concentrate from glycricidia in diets
171 for broiler-chicks: effect on performance, muscle growth, haematology and serum metabolites'. J O Agbede ,
172 V A Aletor . *International Journal of Poultry Science* 2003. 2 (4) p. .

173 [Kamalzadeh et al. ()] 'Livestock production systems and trends in livestock industry in Iran'. A Kamalzadeh ,
174 M Rajabeygi , A Kiasat . *Journal of Agricultural and Social Science* 2008. 4 p. .

175 [Microbiological investigation of maggot meal, stored for use as livestock feed component Agriculture and Environment]
176 'Microbiological investigation of maggot meal, stored for use as livestock feed component'. *Agriculture and*
177 *Environment* 2 p. . (Journal of Food)

178 [Awoniyi et al. ()] 'Performance of broiler -chickens fed on maggot meal in place of fishmeal'. T A M Awoniyi ,
179 V A Aletor , J M Aina . *International Journal of Poultry Science* 2003. 2 (4) p. .

180 [Gadzirayi et al. ()] 'Performance of broiler chickens fed on mature Moringaoleifera leaf meal as a protein
181 supplement to soybean meal'. C T Gadzirayi , B Masamha , J Mupangwa , S Washaya . *International*
182 *Journal of Poultry Science* 2012. 11 (1) p. .

183 [Bello et al. ()] 'Performance, carcass characteristics and blood composition of broilers fed varying levels of palm
184 kernel meal (elaiseguinensis) supplemented with different levels of fishmeal'. M K Bello , O E Oyawoye , E S
185 Bogoro . *International Journal of Poultry Science* 2012. 11 (1) p. .

186 [Britannica ()] *Poultry processing*, Encyclopaedia Britannica . 2014.

187 [Amal et al. ()] 'Use of Halfa Bar Essential Oil (HBO) as a Natural Growth Promoter in Broiler Nutrition'. O A
188 Amal , A M Mukhtar , K A Mohamed , A H Ahlam . *International Journal of Poultry Science* 2013. 12 (1)
189 p. .

190 [Hwangbo et al. ()] 'Utilization of housefly maggots, a feed supplement in the production of broiler chickens'. J
191 Hwangbo , E C Hong , A Jang , H K Kang , J S Oh , B W Kim , B S Park . *Journal of Environmental*
192 *Biology* 2009. 30 (4) p. .