

1 Vascular Aging Factors in Individuals with Different 2 Cardiovascular Risk

3 Kolesnikova Olena

4 Received: 8 December 2018 Accepted: 1 January 2019 Published: 15 January 2019

5

6 Abstract

7 Objective: Study of vascular aging markers in conjunction with metabolic parameters and the
8 degree of cardiovascular risk (CVR). Materials and methods: The study included 298 patients
9 aged 40 to 69 years old. Parameters of lipid metabolism, immune inflammation, endothelial
10 dysfunction, telomere length, insulin resistance, biological age (BA), and CVR were
11 determined. Differences were deemed statistically significant at $p < 0.05$. Results: Significant
12 changes occur in lipid and carbohydrate metabolism parameters, as well as markers of immune
13 and endothelial inflammation, the degree of intensity of which depends on the CVR degree.
14 During this process, significant changes occur in the length of telomeres, which have a relation
15 with hyperinsulinemia. Telomeres are shorter in more than 50

16

17 **Index terms**— vascular aging, calendar age, biological age, cardiovascular risk, lipid profile, carbohydrate
18 profile

19 1 Introduction

20 every year, cardiovascular diseases (CVD) are becoming more prevalent among people of both working age and
21 old age, which leads to a significant increase in the cost of treatment of these diseases and complications, and also
22 generally reduces the quality of life of the population. In some high-income ESC member countries, the decline
23 in mortality from CVD has led to cancer becoming the more common cause of death, but in the middle-and low-
24 income countries, CVDs remain the predominant cause of death (European Society of Cardiology: cardiovascular
25 disease statistics 2017) [1]. Vascular aging has a major impact not only on the morbidity and mortality rates in
26 people of the older age group as a whole but is also a primary risk factor for CVD. At the same time, an increase
27 in blood pressure itself contributes to the accelerated aging of blood vessels, which predisposes to complications
28 from the target organs through a variety of mechanisms [2]. The combination of epigenetic and genetic factors, as
29 well as activation of the renin-angiotensin-aldosterone system, inflammation, oxidative stress, lifestyle, leads to
30 structural and functional changes that are characterized by endothelial dysfunction, thickening, excessive fibrosis
31 of the arterial wall, reduced elongation and arterial stiffness.

32 According to research data, activation of proinflammatory cytokines in the arterial wall increases with age.
33 Also, the presence of arterial hypertension increases the synthesis of fibronectin, collagen and plasminogen-
34 1 activator inhibitor (PAI-1), with a decrease in collagenase production, stimulation of tissue inhibitors of
35 metalloproteinases (TIMPs), which affects the process of vascular fibrosis [3].

36 The leading factor in age-related diseases is oxidative stress, which aggravates vascular inflammation, supported
37 by cardiovascular risk factors, including obesity, type 2 diabetes mellitus, metabolic disorders, etc. Increased
38 oxidative DNA damage and increased expression of multiple biomarkers of doublestranded DNA breaks are
39 present in atherosclerotic plaques. A violation of the mechanisms responsible for maintaining the appropriate
40 length and functionality of telomeres plays a role in the aging of vessels and arterial hypertension, causing cellular
41 aging [4]. Critically short telomeres can lead to cellular aging and apoptosis, which contribute to the development
42 of atherosclerosis and predispose people to plaque instability. But telomere length is a consequence of the action
43 of not only genetic but also environmental factors, which requires studying them in complex with other CVD
44 risk factors and aging [5,6,7]. According to other studies, the measurement of telomeres length and telomerase

4 THE NON-INCLUSION CRITERIA FOR THE STUDY WERE

45 activity reflects their useful rather than harmful effect, and, thus, can serve as a surrogate marker of the vascular
46 system [8].

47 Rankinen, Tuomo, et al. provide evidence of genomic sequence variants and positional genes that have a
48 pleiotropic effect on CVD risk factors, especially the lipid profile [9].

49 Eaton et al. have established that the concentration of vascular endothelial growth factor A (VEGF-A) had
50 a moderate relationship with C-reactive protein (CRP), age, lipid profile parameters, systolic blood pressure,
51 BMI, and physical activity. In the course of a large number of studies, an association exists between VEGF and
52 glycemic profile in both healthy individuals and patients with diabetes mellitus [10]. ??autero O. et al. show
53 that the level of circulating VEGF is significantly higher, the severer ischemia manifestations are [11].

54 There is an assumption that biological age (BA), in contrast to the calendar age (CA), can serve as an indicator
55 of vascular aging. Establishment of BA by anthropometric parameters according to the method by A. H. Horelkin
56 and B. B. Pinkhasov is convenient to use since it does not require any specialized laboratory equipment [12].

57 When developing new and effective therapeutic strategies for improvement and prevention of "vascular aging"
58 processes in cardiovascular disorders, it is essential to understand the cellular and functional changes that occur
59 in the bloodstream during aging. The proposed factors that take into account the formation of cardiovascular
60 risk (CVR) do not always allow classifying patients into risk groups of CVD development, which is why the search
61 for cardiometabolic predictors that could influence the more reliable identification of patients at risk continues.
62 In this connection, the objective of our study was an investigation of vascular aging markers in conjunction with
63 metabolic parameters and CVR degree.

64 2 II.

65 3 Materials and Methods

66 This study included 298 patients. The age of the subjects was 40-69 years, median 44.9 years. Medical
67 documentation (outpatient and inpatient patient histories) was analyzed to assess the presence of risk factors
68 and calculate the total CVR on the SCORE scale. This became the basis for the distribution of patients into
69 CVR groups: low and moderate (0-4% on the SCORE scale), high (5-9% on the SCORE scale) and very high
70 (?10% on the SCORE scale) without clinical manifestations of CVD. According to the study protocol, patients
71 were divided into groups according to the level of total cardiovascular risk according to SCORE: group I included
72 patients (n = 101) with low CVR -33.9%; group (II) included patients (n = 125) with moderate risk -41.9%;
73 group (III) included patients (n = 72) with high/very high risk -24.2%. Table 1 shows the distribution of patients
74 according to the calculation of the total CVR on the SCORE scale. a) The inclusion criteria for the study were
75 as follows 1) Age of men and women -40 to 69 years;

76 2) The presence of one or more of the following risk factors: essential hypertension of 1-2 degree, smoking,
77 dyslipidemia, dysglycaemia, overweight or obesity; 3) The presence of signed informed patient consent to
78 participate in the study.

79 4 The non-inclusion criteria for the study were

80 1) The presence of heart disease (clinically pronounced coronary artery disease, history of MI, coronary
81 revascularization, chronic cardiac failure of blood circulation above functional class 2 according to NYHA),
82 cerebral circulation disorders, atherosclerotic lesion of peripheral arteries; 2) Decompensated liver and kidney
83 diseases with impaired function; 3) Oncological diseases; 4) Rheumatic diseases; 5) Allergic and autoimmune
84 diseases; 6) Diabetes mellitus; 7) Pregnancy; 8) Use of lipid-lowering drugs; 9) Use of medicinal products affecting
85 the state of the hemostas is system and blood rheology within 6 months prior to the inclusion in the study; 10)
86 Essential hypertension of the third degree according to the criteria recommended by the European Society of
87 Hypertension (ESH, 2016) [13].

88 Study protocol and materials pertinent to the study were reviewed and approved by the ethics committee of
89 the Sociological Association of Ukraine and after obtaining informed verbal consent from the patients according
90 to the Helsinki Declaration II.

91 Determination of lipid and carbohydrate metabolism parameters was carried out according to the generally
92 accepted procedure, CRP concentration was measured using a test system (Best Diagnostics, Ukraine). Tumor
93 necrosis factor-? (TNF-?) was measured using a test system (Vector-Best JSC, Russia), serum insulin was
94 measured using a test system (DRG Instruments GmbH, Germany) under fasting conditions via enzyme-linked
95 immunoassay (ELISA) on a semi-automatic micro plate analyzer Immuno Chem -2100 (High Technology, Inc.,
96 USA). Biochemical marker of endothelial dysfunction, VEGF-A, was tested by enzyme-linked immunoassay on
97 photometer-analyzer Huma Reader using a set of reagents from IBL International GmbH, Germany.

98 DNA for measurement of the relative length of telomeres was isolated from buccal epithelium and peripheral
99 blood leukocytes using DNA-sorb-AM and DNA-sorb-B reagents (Amplisense, Russia), respectively. A
100 fluorometric method was applied to measure DNA concentration in the samples using via Qubit 3.0 fluorometer
101 (Life Technologies, USA) and the Qubit dsDNA HS Assay Kits (Life Technologies, USA). DNA samples were
102 diluted at a concentration of 2-4 ng/?l and stored until amplification at -20 ° C.

103 PCR with real-time detection of fluorescence was used to measure the relative length of telomeres according
104 to the protocol described by Cawthon R. M., 2002 [14]. The following primers produced by Invitrogen (Thermo

105 Fisher Scientific) were used to amplify telomeric sequences: Tel1 GGTTTTGAGGGTGAGGGTGAGGGT-
106 GAGGGTGA GGGT; Tel2 TCCCGACTATCCCTATCCCTATCCCTATCCCTATC CCTA.

107 The following primers produced by Invitrogen (Thermo Fisher Scientific) served for amplification of the
108 reference single-copy gene 36B4 (ribosomal phosphor protein):? 36B4u CAGCAAGTGGGAAGGTGTAATCC;
109 ? 36B4d CCCATTCTATCATCAACGGGTACAA.

For each of the primer systems, we prepared two reaction mixtures per the required number of samples using the iQ SYBR Green Supermix master mix (BioRad Laboratories, USA). We made the reaction mixture immediately before use. $11\mu\text{l}$ of the reaction mixture and four μl of DNA were added to strip PCR tubes. Series of dilutions of the reference DNA sample (dilution range from 0.28 to $7.5\text{ ng}/\mu\text{l}$) were performed separately for telomeric sequences and a single-copy gene to plot the calibration curves for estimation of the average telomere length. We examined each sample in 3 technical replicates.

116 Amplifications were performed using the CFX96 Touch detection system (BioRad Laboratories, USA)
 117 according to separate protocols for the target and reference gene. PCR protocol for telomeric sequences: DNA
 118 pre-denaturation -95 °C, 5 minutes, followed by 35 cycles at 95 °C, 20 s., 54 °C, 2 minutes; for singlecopy gene
 119 36B: DNA pre-denaturation -95 °C, 5 min., and then 35 cycles at 95 °C, 20 s., 58 °C, 1 min.

The obtained results were processed using CFX96 Touch Software V.3 (BioRad Laboratories, USA) to generate telomeric signal curves (T) or a single-copy reference gene signal (S), evaluate the amplification reaction efficacy and determine Ct (the number of cycles required to achieve the threshold level of fluorescence). To estimate the relative length of telomeres (T/S), the difference of threshold cycles for telomeric (Ct tel) and reference (Ct ref) sequences was calculated using the formula $\Delta Ct = Ct_{tel} - Ct_{ref}$. Besides, we calculated the average \bar{Ct} for all reference and blank samples. We carried out normalization of the T/S value for each of the analyzed samples relative to the average \bar{Ct} value using the formula: $T/S = 2^{-(Ct - \bar{Ct})}$.

127 Biological age was determined according to the procedure by A. H. Horelkin and B. B. Pinkhasov [12]. First,
 128 we calculated the aging rate factor, and then the biological age was calculated based on it. The formula for
 129 estimating the aging rate factor (ARF): ;?????? ?? = ??? \times ??? ???? \times ?? 2 \times (

130 where ARF m and ARF f are aging rate factors for men and women, respectively, WC -waist circumference,
131 BWbody weight, HC-hip circumference, H-body height, AD m and AD f -the difference between the calendar
132 age and the age according to ontogenetic standard for men and women, respectively. The ontogenetic standard
133 is the age by which development and formation of the structure and functions of all systems of the human body
134 are completed in the process of ontogenesis (individual human development). This age is 21 years old for men
135 and 18 years old for women.

140 where BA_m and BA_f is biological age for males and females, respectively.

141 All statistical analyses were performed using SPSS software (statistical package for social science), version
142 19.0. Analysis of the parameters studied by the normality of distribution was carried out using the Shapiro-Wilk
143 test. We presented quantitative variables in the form of $M \pm m$ (M is the average value, m is its standard
144 error), and described qualitative characters as the frequency of events (% of the normal number of observations).
145 We used Student's t-test to determine the differences between dependent and independent samples. The rate
146 of characters in the groups was compared using the χ^2 test. We carried out a correlation analysis using the
147 Pearson test (r) and the Chad dock scale to determine the presence and nature of the F pathogenetic factors
148 of different processes. Analysis of variance was used to establish the role of individual factors, and a logistic
149 regression method was used to determine the likelihood of development of a cardiovascular event. Differences
150 were deemed to be statistically significant at $p < 0.05$.

5 Results and Discussion

Comparison of the calendar and biological age showed that BA of the subjects was lower than the calendar age (CA) by 3.02 ± 0.01 years in the low CVR group, by 1.14 ± 0.02 years in the moderate CVR group, and was higher by 2.23 ± 0.01 years in the high/very high CVR group, which is evidence of the increasing rate of aging with increasing CVR.

When analyzing the comparative characteristics of parameters in the group of patients with low and moderate CVR, statistically significant differences were found in carbohydrate metabolism: glucose level 4.20 ± 0.01 mmol/l vs 6.23 ± 0.17 mmol/l ($p = 0.049$), insulin 14.23 ± 0.65 mU/l vs 16.42 ± 1.16 mU/l ($p = 0.018$), immune inflammation parameters: CRP 6.71 ± 1.02 mg/l vs 9.46 ± 0.41 mg/l ($p = 0.026$), TNF- α 6.90 ± 0.36 pg/ml vs 8.9 ± 0.47 pg/ml ($p = 0.048$) (Table 2). Significant differences between moderate and high/very high CVR groups in lipid metabolism parameters are noted: total cholesterol (TC) is 5.86 ± 0.13 mmol/l vs 7.24 ± 0.22 mmol/l ($p = 0.000$), triglycerides (TG) 2.25 ± 0.08 mmol/l vs 2.75 ± 0.11 mmol/l ($p = 0.000$), low-density lipoprotein cholesterol (LDL cholesterol) 3.62 ± 0.17 mmol/l vs 4.31 ± 0.27 mmol/l ($p = 0.040$) and very low density cholesterol (VLDL cholesterol) 0.87 ± 0.01 mmol/l vs 1.03 ± 0.05 mmol/l ($p = 0.008$); carbohydrate metabolism: blood glucose 6.25 ± 0.17 mmol/l vs 7.09 ± 0.27 mmol/l ($p = 0.012$), insulin 16.42 ± 1.16 mU/l vs

7 TABLE 9:

167 23.59 ± 2.62 mU/l ($p = 0.018$); immune inflammation: CRP 9.46 ± 0.41 mg/l vs 11.43 ± 0.59 mg/l ($p = 0.027$),
168 TNF- α 8.90 ± 0.37 pg/ml vs 11.96 ± 0.95 pg/ml ($p = 0.001$) and endothelial dysfunction: VEGF-A1 $422.82 \pm$
169 10.01 pg/ml vs 646.44 ± 58.11 pg/ml ($p = 0.001$) (Table ??). Significant differences depending on CVR degree
170 were found in telomere length among the groups of patients with moderate and high/very high CVR: 0.94 ± 0.03
171 vs 0.76 ± 0.05 ($p = 0.027$) in blood cells; 1.21 ± 0.05 vs 0.83 ± 0.07 ($p = 0.045$) in buccal epithelium (Table ??).

172 **6 Table 4: The presence of a relationship between the vascular
173 aging markers and metabolic parameters in the group of low
174 CVR patients**

175 The correlation analysis showed a strong inverse correlation between HDL cholesterol and CRP in group I ($r =$
176 -0.97 ; $p = 0.002$) and a moderate inverse correlation in group II ($r = -0.33$; $p = 0.029$) (Tables 4, 5). Zangana
177 S.N. reported similar results, where CRP concentration positively correlated with cholesterol, TG and LDL levels,
178 but inversely correlated with HDL level, and CRP level showed increase in individuals with arterial hypertension
179 versus the healthy population [18]. During the study, we found a strong inverse correlation between HDL
180 cholesterol and the length of telomeres in blood in the low CVR group ($r = -0.90$; $p = 0.014$), which indicates
181 the effect of this parameter on the rate of biological aging. This correlation corresponds to the data by Mazidi,
182 Mohsen, et al., where the mean HDL cholesterol concentrations increased significantly with increasing telomere
183 length ($p = 0.013$), and the level of C-reactive protein significantly decreased with increasing telomere length
184 ($p < 0.001$) [15]. Strong inverse correlation in the low CVR group was observed between HDL cholesterol and
185 insulin ($r = -0.87$; $p = 0.024$), HDL cholesterol and TG ($r = -0.95$; $p = 0.004$) (Table ??). This is reflected in
186 the studies by Sneha, S. et al., where HOMA-IR was higher among individuals with low HDL level (compared
187 to normal HDL level), and the positive correlation of HOMA-IR and TG/HDL suggested that the TG/HDL
188 ratio can be used as a marker of insulin resistance, as was also confirmed by Young, Kendra A., et al. [16,17]
189 A reliable moderate direct correlation was found in group III between CRP and total cholesterol ($r = 0.49$; p
190 $= 0.022$), VLDL cholesterol ($r = 0.43$; $p = 0.048$) (Table 6). Rathore, Vedika, et al. also found significant
191 changes in the lipid profile levels and inflammatory markers in patients with acute myocardial infarction; they
192 have established a strong positive correlation between CRP and total cholesterol, TG, LDL cholesterol and VLDL
193 cholesterol, and significant negative correlation with HDL cholesterol, which can be a confirmation of preceding
194 development of immune inflammation and lipid profile disorders [19]. The data of studies by McGarrah R. W., et
195 al., also emphasize the interrelation between systemic inflammation and HDL cholesterol with clinical outcomes,
196 consideration of which allows to improve the accuracy of clinical risk assessment [20]. VEGF-A1 as an indicator
197 of immune inflammation is a factor associated with a subsequent increase in the CVR degree, as evidenced by a
198 significant relationship between VEGF-A1 and VLDL cholesterol ($r = 0.59$; $p = 0.004$), as well as VEGF-A1 and
199 shortening of telomere lengths (buccal epithelium) ($r = 0.43$; $p = 0.044$) in the high/very high CVR group (Table
200 6). Considering that 68% ($n = 203$) of the patients included in the study were immune resistant, we evaluated
201 the telomere length depending on the serum insulin concentration. In patients with hyperinsulinemia > 30 mU/l,
202 their length in the blood was 0.82 ± 0.13 vs 0.95 ± 0.03 at insulin levels < 30 mU/l ($p = 0.016$). Similar changes
203 occurred in the buccal epithelium: 0.80 ± 0.03 vs 1.10 ± 0.04 ($p = 0.004$) (Table 7). We determined the lower
204 and upper margins of the confidence interval (CI) for interval estimates of the median. The sequence numbers
205 of the sample values, which represented the lower (L) and the upper (U) margins, were determined using the
206 formulas: $?? = ?? 2 ? ??? 1??? \times ??? 2 ?, ?? = 1 + ?? 2 + ??? 1??? \times ??? 2 ?,$

207 where n is the sample size, $z 1 - \alpha$ is the value of the normal distribution for the selected confidence probability.

208 After calculating the sequence numbers of the lower and the upper CI margins, we determined their value in
209 the sample. We used the L-th value of the formed variational series as the lower CI margin, and the U-th value
210 as the upper CI margin.

211 Since the control group included 20 subjects, $L = 6$ is obtained for a confidence probability 95% $z (1 - \alpha) = 1.96$.
212 That is why the 95% CI for the parameter "telomere length of blood cells" was [1.38; 2.09]. By the obtained
213 CI, an analysis of the frequency of occurrence of the normal and shortened telomeres of blood cells depending
214 on CVR was carried out ($z 2 = 3.076$, $p = 0.215$) (Table 8). F 95% CI for the parameter "telomere length
215 of buccal epithelium cells" was [2.145; 2.18]. Analysis of the frequency of occurrence of normal and shortened
216 telomeres of the buccal epithelium cells depending on the CVR was carried out ($z 2 = 0.547$, $p = 0.761$) (Table
217 ??). According to the results of frequency analysis, we have revealed that the vast majority of the study patients
218 who had shortened telomeres were the patients with moderate CVR ($48.4 \pm 4.4\%$ in blood and $50.0 \pm 4.4\%$ in
219 buccal epithelium) (Table 8, 9). Probably, already in the presence of moderate CVR in this patient category,
220 timely diagnosis of the onset of vascular aging is necessary to prevent the development of CVR of higher degrees.

221 **7 Table 9:**

222 The frequency of occurrence of normal and shortened telomeres of buccal epithelium cells depending on CVR
223 Due to the increase in CRP and insulin levels and the degree of CVR, according to our study, patients experience
224 a significant shortening of telomere length. Shortening can be associated with the destruction of the structure of

225 telomere T-loop, which leads to cellular aging, increased oxidative stress and inflammation in the tissues (Morgan,
226 R. G. et al.) [21].

227 Considering the results obtained, it can be assumed that the quality of control of the lipid spectrum and
228 carbohydrate spectrum decreases in the high/very high CVR group, which leads to acceleration of immune
229 inflammation and increase in the rate of vascular aging, which in turn leads to an increase in the number of
230 cardiovascular complications, increased vascular aging rate.

231 IV.

232 8 Conclusion

233 1. Patients with cardiovascular risk (CVR) of high degrees compared with low and moderate CVR show a more
234 pronounced impairment in the lipid and carbohydrate profile. This can be the cause of acceleration of vascular
235 aging processes and require more stringent control of the lipid profile and glucose parameters to improve secondary
236 prevention. 2. The relationship between CRP and shortening of telomere length in the buccal epithelium in the
237 high/very high CVR group, as well as between CRP and lipid profile parameters in all CVR groups indicates
238 the development of premature aging processes. For timely secondary prevention, it is advisable to measure CRP
239 and TNF-? in individuals with high CVR degrees. 3. For reduction of the activity of vascular aging and primary
240 prevention of cardiovascular diseases (CVDs), it is essential to consider markers of systemic inflammation (CRP,
241 TNF-?) and to ensure good glycemic control not only via screening of fasting glucose but also using HOMA
242 index as a more reliable indicator.

243 4. To identify groups of patients at increased risk of complications and accelerated biological aging, it is
244 advisable to determine the biological age of individuals with high/very high CVR at a stage even preceding
245 laboratory examinations. 5. Patients from a risk group in the presence of even moderate CVR show a significant
246 decrease in telomere length, which can serve as an essential factor that indicates the onset of premature vascular
aging in this patient category and requires early preventive interventions. ¹

1

Age, years	CVR on the SCORE scale					
	Low/moderate, n=101		High, n=125		Very high, n=72	
	Abs.	%	Abs.	%	Abs.	%
40-49	38	38.4±3.5%	44	35.2±4.3%	14	19.8±1.7%
50-59	51	49.5±5.0%	38	30.2±4.1%	17	23.5±5.0%
60-69	12	12.1±3.2%	43	34.6±4.2%	41	56.7±5.8%

Figure 1: Table 1 :

247

8 CONCLUSION

2

Parameter	Low group	CVR	Moderate group	CVR	p-criterion
Lipid metabolism parameters					
Total cholesterol,mmol/l	5.68±0.10		5.86±0.13		0.931
Triglycerides,mmol/l	2.10±0.04		2.25±0.08		0.834
LDL cholesterol,mmol/l	3.19±0.013		3.62±0.17		0.854
VLDLcholesterol,mmol/l	0.76±0.02		0.87±0.01		0.784
HDL cholesterol,mmol/l	1.03±0.035		0.92±0.04		0.831
Carbohydrate metabolism parameters					
Glucose,mmol/l	4.20±0.013		6.23±0.17		0.049
Insulin,mU/l	14.23±0.65		16.42±1.16		0.018
Immune inflammation parameters					
CRP,mg/l	6.71±1.02		9.46±0.41		0.026
TNF-?,pg/ml	6.90±0.36		8.9±0.47		0.048
Endothelial dysfunction parameter					
VEGF-A1,pg/ml	319.94±66.47		422.82±10.01		0.461
Telomere length					
Blood	1.14±0.08		0.94±0.03		0.326
Buccal epithelium	1.30±0.02		1.21±0.05		0.235

Figure 2: Table 2 :

5

Insulin p-value

Figure 3: Table 5 :

	TG	p-value
Insulin	0.84	0.035
	HDL cholesterol	
CRP	-0.97	0.002
Telomere length (blood)	-0.90	0.014
Telomere length(buccal epithelium)	-0.79	0.065
TG	-0.95	0.004
Insulin	-0.87	0.024

Figure 4:

6

	Total cholesterol	p-value
CRP	0.49	0.022
VLDL cholesterol	0.47	0.028
	VLDL cholesterol	
CRP	0.51	0.015
VEGF-A1	0.59	0.004
CRP	Telomere length (buccal epithelium)	
?RP	0.51	0.016
VEGF-A1	0.43	0.044

Figure 5: Table 6 :

7

Parameter	Insulin<30 mU/l, n=119	Insulin> 30 mU/l, n=179	p-value
Telomere length (blood)	0.95±0.03	0.82±0.13	p=0.016
Telomere length (buccal epithelium)	1.10±0.04	0.80±0.03	p=0.004

Figure 6: Table 7 :

8

© 2019 Global Journals 1

Figure 7: Table 8 :

248 .1 Abbreviations

249 [Mcgarrah et al. ()] 'A novel protein glycan-derived inflammation biomarker independently predicts cardiovascular disease and modifies the association of HDL subclasses with mortality'. R W Mcgarrah , J P Kelly , D M Craig , C Haynes , R C Jessee , K M Huffman , . . . Shah , SH . *Clinical chemistry* 2017. 63 (1) p. .

250 [Rankinen et al. ()] 'Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors'. T Rankinen , M A Sarzynski , S Ghosh , C Bouchard . *Circulation research* 2015. 116 (5) p. .

251 [Hautero et al. ()] 'Circulating Levels of VEGF-Associated Growth Factors in End-Stage Peripheral Arterial Disease'. O Hautero , J Jalkanen , M Maksimow , S Jalkanen , H Hakovirta . *European Journal of Vascular and Endovascular Surgery* 2016. 52 (3) p. .

252 [Sneha et al. ()] 'Correlation between HDL Level with Clinical and Biochemical Markers of Atherogenesis'. S Sneha , M S Rao , S Vidyasagar , S Seshadri . *Journal of Clinical & Diagnostic Research* 2019. 13 (1) .

253 [Bautista-Niño et al. ()] 'DNA damage: a main determinant of vascular aging'. P K Bautista-Niño , E Portilla-Fernandez , D E Vaughan , A H Danser , A J Roks . *International journal of molecular sciences* 2016. 17 (5) p. 748.

254 [Timmis et al. ()] 'European Society of Cardiology: cardiovascular disease statistics'. A Timmis , N Townsend , C Gale , R Grobbee , N Maniadakis , . . . Bax , J . *European heart journal* 2017. 39 (7) p. . Atlas Writing Group

255 [Stellos and Spyridopoulos ()] 'Exercise, telomerase activity, and cardiovascular disease prevention'. K Stellos , I Spyridopoulos . *European heart journal* 2018.

256 [Gabb et al. ()] 'Guideline for the diagnosis and management of hypertension in adults-2016'. G M Gabb , A A Mangoni , C S Anderson , D Cowley , J S Dowden , J Golledge , . . . Schlaich , M . *Medical Journal of Australia* 2016. 205 (2) p. .

257 [hypertension: molecular mechanisms and clinical implications Canadian Journal of Cardiology] 'hypertension: molecular mechanisms and clinical implications'. *Canadian Journal of Cardiology* 32 (5) p. .

258 [Rathore et al. ()] 'Lipid profile and its correlation with C-reactive protein in patients of acute myocardial infarction'. V Rathore , N Singh , P Rastogi , R K Mahat , M K Mishra , R Shrivastava . *International Journal of Research in Medical Sciences* 2017. 5 (5) p. .

259 [Ungvari et al. ()] 'Mechanisms of vascular aging'. Z Ungvari , S Tarantini , A J Donato , V Galvan , A Csiszar . *Circulation research* 2018. 123 (7) p. .

260 [Camici et al. ()] 'Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease'. G G Camici , G Savarese , A Akhmedov , T F Lüscher . *European heart journal* 2015. 36 (48) p. .

261 [Guzik and Touyz ()] 'Oxidative stress, inflammation, and vascular aging in hypertension'. T J Guzik , R M Touyz . *Hypertension* 2017. 70 (4) p. .

262 [Gorelkin and Pinhasov] *Sposob opredelenija biologicheskogo vozrasta cheloveka i skorosti starenija*, A G Gorelkin , B Pinhasov . (Patent RF. 2010 (2387374))

263 [Mazidi et al. ()] 'Telomere length is associated with cardiometabolic factors in US adults'. M Mazidi , A P Kengne , A Sahebkar , M Banach . *Angiology* 2018. 69 (2) p. .

264 [Cawthon ()] 'Telomere measurement by quantitative PCR'. R M Cawthon . *Nucleic acids research* 2002. 30 (10) p. .

265 [Morgan et al. ()] 'Telomere uncapping and vascular aging'. R G Morgan , A J Donato , A E Walker . *American Journal of Physiology-Heart and Circulatory Physiology* 2018.

266 [Yeh and Wang ()] 'Telomeres and telomerase in cardiovascular diseases'. J K Yeh , C Y Wang . *Genes* 2016. 7 (9) p. 58.

267 [Zangana ()] 'The Relation of Serum highsensitive C-reactive protein to serum lipid profile, Vitamin D and other variables in a group of hypertensive patients in Erbil-Iraq'. S N Zangana . *Global Journal of Medical Research* 2016.

268 [Young et al. ()] 'The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance, β -cell function, and diabetes in Hispanics and African Americans'. K A Young , A Maturu , C Lorenzo , C D Langefeld , L E Wagenknecht , Y D I Chen , . . . Rasouli , N . *Journal of Diabetes and its Complications* 2019. 33 (2) p. .

269 [Harvey et al. ()] 'Vascular fibrosis in aging and F Length of buccal epithelium telomeres In total'. A Harvey , A C Montezano , R A Lopes , F Rios , R M Touyz . *Shortened Normal CVR Low* 2016. 20. ($15.6 \pm 3.2\%$) 2 (1.5±1.1%) 22(17.1±3.3%) Moderate 64 ($50.0 \pm 4.4\%$) 10 ($7.8 \pm 2.4\%$) 74 ($57.8 \pm 4.4\%$)

270 [Mazidi et al. ()] 'VEGF, the underlying factor for metabolic syndrome; fact or fiction?'. M Mazidi , P Rezaie , A P Kengne , M G Stathopoulou , M Azimi-Nezhad , S Siest . *Diabetes & Metabolic Syndrome* 2017. 11 p. . (Clinical Research & Reviews)