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5

Abstract6

Eshelby?s solution is the analytical method that can derive the elastic field within and around7

an ellipsoidal inclusion embedded in a matrix. Since breast tumor can be regarded as an8

elastic inclusion with different elastic properties from those of surrounding matrix when the9

deformation is small, we applied Eshelby?s solution to predict the stress and strain fields in10

the breast containing a suspicious lesion. The results were used to investigate the effectiveness11

of strain ratio (SR) from elastography in representing modulus ratio (MR) that may be the12

meaningful indicator of the malignancy of the lesion. This study showed that SR significantly13

underestimates MR and is varied with the shape and the modulus of the lesion. Based on the14

results from Eshelby?s solution and finite element analysis (FEA), we proposed a surface15

regression model as a polynomial function that can predict the MR of the lesion to the matrix.16

The model has been applied to gelatin-based phantoms and clinical ultrasound images of17

human breasts containing different types of lesions. The results suggest the potential of the18

proposed method to improve the diagnostic performance of breast cancer using elastography.19

20

Index terms— eshelby?s solution, elastography, breast cancer, mechanical properties, strain ratio, modulus21
ratio.22

1 Introduction23

ecently, breast elastography has emerged as a new screening modality for breast cancers. [1][2][3] Elastography24
uses palpation principle to detect and classify pathological lesions using elastic properties of tissues. 4 Because25
pathological lesions are normally stiffer than benign tissues, the strain in the lesion is less than the surrounding26
tissue under compression. 5 Strains are calculated using the time-gradient of radiofrequency (RF) echo signals27
6 or displacement-gradient of B-mode images, 7 obtained before and after a slight compression of the tissue.28
Resulting strains are displayed as a colorcoded image, called elastogram as a map of tissue elasticity.29

Elastography can be further classified into strain (or quasi-static) elastography 6 and shear wave (or transient)30
elastography, 8,9 according to tissue compression method. In strain elastography, tissue is deformed by applying31
slight axial compression using a conventional transducer, or alternatively deformation can be produced by32
respiratory movements. The profile of tissue deformation is converted to a strain map from which elastogram33
is derived. 6 In shear wave elastography, elastograms are obtained based on the combination of a radiation34
force induced in a tissue by an ultrasonic beam and an ultrafast imaging sequence capable of catching in real35
time the propagation of the resulting shear waves. 8,9 The local shear wave velocity is recovered, enabling the36
production of a two-dimensional map of shear elasticity. 10 There have been various efforts to utilize elastography37
for the diagnosis of breast cancer. It oh et al. 11 proposed a five-point elasticity scoring system on the basis of38
overall pattern, similar to BIRADS (Breast Imaging Reporting and Data System) criteria 2 for ultrasound (US)39
and mammogram. It is also known that the size of the tumor determined by elastogram is significantly larger40
than that in sonogram, only when the tumors are carcinomas. 6 However, most commonly accepted diagnostic41
measure is strain ratio (SR), 6,12,13 which is the ratio of the compressive strain in surrounding tissue to that42
of a suspicious lesion (also called ”observed con-trast” 14 or ”strain contrast” 15 ). Thomas et al. performed a43
clinical study to evaluate the performance of SR in differentiating benign and malignant breast lesions. 12 They44
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1 INTRODUCTION

reported that SR cutoff value of 2.45 allowed significant differentiation (p < 0.001) of malignant (5.1 ± 4.2) and45
benign (1.6 ± 1.0) lesions. Zhi et al. conducted a similar study to compare the diagnostic performance of SR46
with that of five-point elasticity scoring system. 13 They concluded that SR-based elastography could provide47
a more reliable diagnostic tool, and the cutoff SR of 3.05 resulted in significant differentiation (p < 0.00001)48
between malignant (8.38 ± 7.65) and benign (1.83 ± 1.22) lesions.49

The use of SR as a diagnostic measure is based on the assumption that SR is directly related to modulus ratio50
(MR: the ratio of the elastic moduli of the inclusion and of the surrounding tissue; also called ”true contrast”51
14 or ”modulus contrast” 15 ), which is considered as a true indicator of the malignancy of lesion. However,52
only a handful of studies are found in the literature that mechanically measured the elastic moduli of breast53
tissues. Most frequently referred one was conducted by Krouskop et al. 16 which reported that elastic modulus54
of invasive carcinoma was 5 and 25 times higher than that of normal tissue at the compression levels of 5% and55
20%, respectively. Sarvazyan et al. 17 also reported that fibroadenomas are typically four times stiffer than56
normal tissue, whereas cancers can be as much as seven times stiffer. More recently, Samani et al. 18 measured57
the elasticity of breast normal tissues and tumors and reported that breast cancers exhibited 6 to 13 fold increased58
stiffness compared with normal tissue.59

There also have been attempts to infer MR from the measured SR, using either a simplified or continuum60
mechanical model, via inverse reconstruction schemes. Raghavan and Yagle 19 proposed a direct inversion scheme61
for recovering shear modulus by deriving a linear system of elasticity equations for the plane-strain condition. The62
weakness of their approach is that hydrostatic pressure on the boundary must be known to solve the equations.63
Skovoroda et al. 20 used an analytical method to eliminate the pressure term from the equations. Later on,64
Skovoroda et al. 5 regarded the inverse problem as an integral rather than a differential form to make the65
technique less susceptible to measurement noise. Sumi et al. 21,22 proposed a direct inversion scheme by solving66
the inverse problem for the plane-stress case, and Le Floc’h et al. 23 extended the concept to the plane-strain67
case. Barbone and Oberai 24 derived the reconstruction formulae for some special elastic inverse problems,68
including 2D and 3D, and compressible and incompressible materials. There also have been attempts to view the69
inverse problem as a parameter optimization problem, where the goal is to find the shear modulus that minimizes70
the error between measured strain field and those computed by solving the direct problem. 25 For this iterative71
inversion approach, Hessian-based optimization method, [26][27][28] gradient-based optimization method, 25,2972
and gradientfree optimization method [30][31][32] were used.73

As one of the efforts to relate MR and SR, Kallel et al. 14 used a classical analytic solution of the elasticity74
equations for an infinite medium subjected to a uniaxial compression to derive a closed form relationship between75
SR and MR. For incompressible materials (? = 0.5), they derived the following relationship:MR =2 SR -1. (1)76

Biligen and Insana 33 also derived an approximate expression for extremely hard inclusion and incompressible77
materials:MR = 2.5 SR.78

(2)79
Note that the above derivations are limited to 2D with simple inclusion shapes such as sphere or cylinder,80

although malignant tumors are known to have irregular or ellipsoidal shapes. 34 Therefore, it is essential to81
derive more general solutions that can relate SR and MR for 3D shapes of inclusions.82

Finite element models were also used to estimate the elastic behavior in various types of lesions and surrounding83
tissues. Kallel et al. 14 investigated the effect of lesion boundary conditions, depth, and modulus contrast on axial84
strain field by finite element analysis (FEA), assuming planestrain condition and linear elastic materials. Biligen85
and Insana 33 performed the FEA on an axisymmetric model with a spherical inclusion and concluded that the86
size of the compressor, location of an inclusion relative to the compressor, and type of compression (uniform87
stress vs. uniform displacement) alter the strain and stress distributions. Recently, Celi et al. 15 performed the88
FEA study using simple axisymmetric and more realistic anthropomorphic models. They concluded that simple89
axisymmetric model has many similarities with the anthropomorphic one and is suitable for elastosonography90
simulations.91

From the point of solid mechanics, breast tumor can be regarded as an elastic inclusion that has different elastic92
properties from those of the surrounding matrix. Although human tissues show highly nonlinear stress-strain93
behavior, 35 they can be regarded as linear elastic in the small strain region. 7 In particular, the practice for94
elastography applies only a small amount of axial compression (typically on the order of 2% strain 36 ) to avoid95
decorrelation errors 4 ; therefore, the assumptions of linear elastic inclusion and matrix are reasonable. Based on96
linear elasticity, Eshelby 37 derived the elastic field inside the elliptic inclusion using the biharmonic potential97
and Green’s tensor. His solution yielded a surprising result that the stress (and strain) within an ellipsoidal98
inclusion embedded within a matrix subjected to a remote load is homogeneous. In the subsequent paper, 38 he99
derived that the elastic field outside an ellipsoidal inclusion is given in a form that involves only the harmonic100
potential of an ellipsoid and can be reduced to a form suitable for numerical calculation of the stress.101

We applied Eshelby’s solution to the elastic medium containing an ellipsoidal inclusion to determine the elastic102
fields within and outside the inclusion. Although similar analyses can be pursued by FEA, Eshelby’s solution103
requires much less time and effort than FEA, once the method is established. Also, in general, well-posed104
analytical approach can yield exact solutions without the issues of meshing effect and/or convergence problem,105
compared with the approximate solutions from numerical approaches. Compared to inverse methods, Eshelby’s106
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solution is much less susceptible to measurement noises and mathematically simpler, and hence requires much107
less computation. However, current solution is still limited to relatively simple 3D shapes (spheroids).108

The results from Eshelby’s solution were verified with FEA simulations using axisymmetric models. Based on109
the results, the relationship between SR and the shape of the inclusion and MR was derived as a simple analytical110
relationship by using a surface regression111

2 a) Eshelby’s Solution112

Eshelby 37,38 proposed a general method to derive the local strain and stress fields which can be induced113
by remote loading applied to an elastic infinite matrix V 0 (phase 0) containing an ellipsoidal inhomogeneous114
inclusion V 1 (phase 1; Figure 1a). Remote loading implies that stress is uniformly distributed over the matrix115
without causing local distortions or strain concentrations. He solved this problem elegantly by the superposition116
principle and the Green’s function, through the four steps of a virtual experiment:117

Steps 1 to 4 can be mathematically derived in terms of the Green’s function of the elastic body. The strain118
and stress inside the inclusion can be expressed as:(3) (4) (5)119

Eshelby S tensor is a function solely of the ellipsoid dimensions and the Poisson’s ratio of the matrix. 40120
Explicit expressions for the components of S for various shapes of ellipsoid have been given by Mura, 40 and in121
more general form by Ju and Sun. 39,41 In Equations ( ??) and (4), the eigenstrain ?** can be derived as: (6)122
where ? t is the prescribed eigenstrain, and the fourthorder mismatch tensors A and B are defined as: D © 2019123
Global Journals ? ? ? ? ? ? = + * * 0 S : , ? ? ? ? ? ? = + ? ? [ ] * * 0 0 C S I : , ? ? ? ? 0 0 C = : . 0 ? ?124
? ? ? ? * * ? = + ( ) ? ( ) S A : B : 1 t 0 , A C C C B C C C 1 0 1 0 1 0 1 1 = ? ? ? ? ? ? = ? ? ? ? ? ? ? ?125

, .126
? Step 1: Remove the inclusion from the matrix (Figure 1b). Then the inclusion is strained due to loss of127

constraint from the matrix (eigenstrain ? ** ). ? Step 2: Apply the surface traction T to S 0 in order to make128
the inclusion return to its original shape (Figure 1c). The elastic strain of the inclusion should exactly cancel the129
eigenstrain. ? Step 3: Put the inclusion back to the matrix. The same force T is applied to the inclusion surface130
S 0 (Figure 1d). There is no change in the strain fields in either the inclusion or the matrix from Step 2. ?131

3 Volume XIX Issue I Version I132

where ? 0 is the remote strain, ?** the eigenstrain, ? 0 the remote stress, C 0 the stiffness tensor of the matrix,133
and I the identity tensor. 39 If the entire medium is loaded by the specified remote stress tensor ? 0 , then the134
corresponding strain ? 0 is derived by Hooke’s law: For the external field, that is, points outside of the inclusion,135
stress and strain varies with position as follows:136

(8) (9) where x is a position vector, G(x) another fourth-order tensor which is a function of the ellipsoid137
geometry, Poisson’s ratio of the matrix and the coordinate position. 38,40 The explicit expressions for all138
components of G(x) are provided by Ju and Sun. 39,41 These mathematical solutions were coded into MATLAB139
functions (see the appendix) to calculate the elastic fields inside the inclusion and in the matrix. Key inputs of140
the code are elastic modulus E, Poisson’s ratio ?, remote stress ? 0 , and the size of the inclusion. Prescribed141
eigenstrain ? t is also an input, but merely 0 for the current applications. From those inputs, the code calculates142
eigenstrain ?**, Eshelby tensor S to finally produce the strain ?(x) and stress ?(x) fields, in the matrix and143
inclusion, respectively, as key outputs.144

4 II.145

5 Materials and Method a) FEA Simulation146

FEA simulations were performed to verify the results from Eshelby’s solution using a commercial FEA code147
(Abaqus 6.10). Assuming inclusions in spheroidal shapes (ellipsoid of revolution), simulations were performed148
using axisymmetric models as depicted in Figure 2. Note that for axisymmetric models, axisymmetric FEA149
simulation is identical to 3D FEA.150

The size and shape of the spheroidal inclusion is defined by the axes a, b, and c in x-, y-, and zdirections,151
respectively, as shown in Figure 2(a). The shape of the matrix is described by a cylindrical volume with height152
2Z and diameter 2W. The matrix and inclusion are each homogeneous with isotropic elastic properties that are153
described by the elastic modulus E 0 and E 1 , and Poisson’s ratio ? 0 and ? 1 , respectively. The interface between154
matrix and inclusion is assumed to be perfectly bonded. An 8-node quadratic axisymmetric quadrilateral element155
with reduced integration (CAX8R in Abaqus 6.10) was used, and the linear elastic deformation was assumed. In156
the elastography simulation, a static compressive force (remote stress ? 0 in Figure 2b) was applied to the top157
surface of the cylinder, while left and bottom edges are constrained in the x-and z-directions, respectively.158

6 b) Displacement-Gradient Elastography (DGE)159

Digital image cross-correlation method was applied to B-mode US images to determine the displacement field160
developed by the compression. 42 To suppress the decorrelation errors in large deformation, dynamic referencing161
scheme 43,44 was used. Strains were calculated using displace-ment gradients as: (10) and the roughness of strain162
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12 B) FEA SIMULATION

field was reduced by applying smoothing algorithm. 45 Graphical representation of the resulting strain map is163
called DGE elastogram.164

7 c) Gelatin Phantoms165

? ? ? ? ? ? x G x : x 0 ( ) = + ( ) ? * * , , V 0 ? ? ? ? ? ? x C G x : x 0 0 ( ) = + ? ( ) ? * * , , V 0 ? ? x x166
y y u x u y = ? ? = ? ? , ,167

Gelatin-based phantoms were designed to contain an inclusion with higher stiffness than the surrounding168
matrix, mimicking a carcinoma in a normal breast tissue. 46 Inclusions and matrixes were made with the same169
constituents to have the similar echogenicity, that is, 1 wt% agarose (J.T. Baker), 2 wt% glutaraldehyde (Sigma-170
Aldrich), 5 wt% n-propanol (Fisher-Scientific), gela-tin (Fluka; 20 wt% for inclusion and 5 wt% for matrices),171
and distilled water (the remaining wt%). The procedure to fabricate the phantoms is illustrated in Figure 3.172
42 Fabricated gelatin phantoms were US imaged using a commercial US scanner (Accuvix XQ, Medison, South173
Korea), while it was being compressed up to 10% strain at the loading rate of 100 µm/s. During compression,174
US images were taken with the US probe (L6-12IS, 6-12MHz) placed in the direction perpendicular to the axis175
of cylindrical inclusion (Figure 3d).176

Stress-strain relationships of gelatin inclusion and matrix were determined by conducting separate compression177
tests on cylindrical samples with aspect ratio of 1 (height and diameter 4 cm each) that were additionally made178
at each formula. Each sample was loaded up to the engineering strain of 10% at 100 µm/s loading rate using TA179
material testing machine (Stable Micro Systems, England) with a 50 N load cell.180

8 d) Clinical Applications181

Small-scale clinical study was performed on 45 volunteer patients with different BIRADS lesions in their breasts.182
Patients underwent breast US imaging with Philips IU22 XMTRAIX US system in the Grand River Hospital183
(Kitchener, Ontario, Canada). US images were taken by a US technologist by applying a slight compression to184
the breast with a US probe (L17-5). DGE elastograms were produced by applying DGE method to US images.185
After imaging, all of the lesions were examined histologically with biopsy, but results had been kept until the end186
of analyses for nonbiased assessment.187

9 III.188

10 Results and Discussion189

11 a) Spherical Inclusion190

Eshelby’s solution was applied to a numerical phantom where a spherical inclusion (E 1 = 50 kPa) was embedded191
in the matrix (E 0 = 10 kPa) (MR = 5) and remote stress (? 0 = 1 kPa) was applied in z (axial) direction. Remote192
strain in the matrix was 0.1 (? 0 = ? 0 /E 0 ). Poisson’s ratios of both inclusion and matrix were assumed to193
be 0.45. Figure 4(a) and (b) show the 3D plots of axial stress (? z ) and strain (? z ) fields, and Figure 4(c) and194
(d) present axial stress and strain distributions in the x-z quarter-plane, respectively. As predicted by Eshelby,195
4 stress and strain within the inclusion are uniform at 1.605 kPa and 0.0366, respectively. However, stress and196
strain varies significantly across the matrix. Highly concentrated stress and strain zones are formed right above197
the inclusion in the axial (z) direction, whereas significantly low stress and strain are observed right beside the198
inclusion in the lateral (x) direction. In the matrix far from the inclusion, stress field can be divided into two199
regions by the borderline inclined at about 45° (Figure 4c). Above the line, the stress is higher (1010~1250 Pa)200
than the applied stress, while lower (940~995 Pa) below the line. Meanwhile, strain field in the matrix (Figure201
4d) can be divided into three regions: upper region with the strain higher than the remote strain (0.13~0.11),202
upper-right region with lower strain (0.092~0.099), and lateral region with the strain almost the same as the203
remote strain (0.1~0.103).204

The effects of MR on strain fields were investigated by varying the modulus of spherical inclusion.205

12 b) FEA Simulation206

The results from Eshelby’s solution were compared with those from FEA simulations using the same materials207
properties and boundary conditions. Axial stress and strain fields from FEA (Figure ??a and b) show excellent208
agreements with those from Eshelby’s solution (Figure 4c and d). Results from FEA also confirm that the stress209
and strain levels inside the inclusion are almost uniform at 1.605 kPa and 0.0363, consistent with Eshelby’s210
solution.211

The variations of axial stress and strain from Eshelby’s solution and FEA are plotted together along axial212
(z) and lateral (x) directions in Figure ??(c) and (d), respectively. It is notable that influences of the inclusion213
on both stress and strain persist much farther along axial direction than along lateral direction. Particularly214
the strain level converges on remote strain at a distance of about 1.5a (a: inclusion radius) in lateral direction,215
whereas it is still varying even at a distance of 3a in axial direction (Figure ??d).216

In estimating the SR from elastogram, ideally matrix strain should be measured at an infinite distance from217
the inclusion. However, due to limited field of view of elastogram, measurements at the distance farther than218
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twice the size of inclusion are usually unavailable. Among the three remote regions in the matrix (Figure 4d219
the strain in the lateral region is relatively uniform (less than 3% deviation) and almost equal to remote strain220
(Figure ??d); thus, this region can be regarded as the best domain to measure the matrix strain. The strain plots221
in Figure ??(d) also indicate that the measurement should be made farther than a half-radius distance away from222
the inclusion to avoid the effect of inclusion.223

13 c) MR versus SR-Spherical Inclusion224

Results from Eshelby’s solution and FEA clearly indicate that the stress inside the inclusion is more than 50%225
higher than the remote stress (1.605 kPa vs. 1 kPa in Figure ??c); furthermore, the strain is almost 80% higher226
than that directly obtained from Hooke’s law (0.0366 vs. 0.02 in Figure ??d). As a result, SR value estimated227
from elastogram is much lower than the actual MR value (2.78 vs. 5.0). This type of discrepancy has been228
identified as the fundamental limitation of elastography 31 ; thus, it was further investigated with Eshelby’s229
solution to better understand the transfer characteristic of SR with respect to MR.230

Figure ??: FEA simulation results: axial stress (a) and axial strain (b) distributions in the numerical phantom231
containing a spherical inclusion. The plots of axial stress (c) and axial strain (d) along axial (y) and lateral (x)232
directions from the inclusion center (inclusion radius = 1). Inclusion is five times stiffer than the matrix (E 1233
/E 0 = 5). Solid lines and triangles are predicted by Eshelby’s solution and FEA, respectively. FEA = finite234
element analysis.235

For the wide range of MR from ?20 dB to 20 dB, SR was predicted with Eshelby’s solution, as presented in236
Figure 7(a). It is notable that the SR curve is highly dependent on the MR that is proportional to inclusion237
modulus when matrix modulus is unchanged. For hard inclusions (MR > 0 dB), the curve follows the ideal curve238
with a relatively constant gap; however, for soft inclusions (MR < 0 dB), it shows significant deviation from the239
ideal curve.240

Contrast-transfer efficiency (CTE) is sometimes expressed using the ratio of the observed contrast (SR) from241
the elastogram to the true contrast (MR) of the materials in decibels as 31 :242

(11) CTE was predicted with Eshelby’s solution, as plotted in Figure 7(b). CTE reaches the maximum when243
MR = 0 dB, that is, the inclusion and the matrix have the same modulus. The efficiency degrades rapidly as the244
inclusion becomes harder or softer.245

In the medical practice using elastography, critical MR range for the diagnosis of the malignancy of the lesion246
is usually less than 2016; thus, the variation of SR for the MR range from 0.1 to 20 is plotted on a linear scale247
in Figure 7(c). The relationship between SR and MR is perfectly linear in this range, similar to the firstorder248
relationship proposed by Kallel et al.14 SR (solid line) is less than a half of MR (dotted line) in most of the tested249
region, except for small MR (<1.28). The relationship is expressed as a first-order linear equation in Figure 7(c).250
Note that this relationship is valid only for spherical inclusion.251

14 d) Ellipsoidal Inclusion252

It is known that benign and malignant lesions could differ significantly in shape. An adenoma (benign glandular253
lesion) has a more regular (close to spherical) shape whereas an adenocarcenoma (malignant glandular tumor) has254
an irregular or ellipsoidal shape. 17 The effect of ellipticity of an inclusion on SR was investigated by Eshelby’s255
solution using the phantoms containing prolate (a = b = 0.2, c = 1, where a, b, and c are the x, y, and z axis,256
respectively; Figure 8a) and oblate (a = b = 1, c = 0.2; Figure 8c) spheroids. Although strain fields within257
the matrix can be divided into three regions and the strain level in each region is close to that around spherical258
inclusion (Figure 8b and d), the strains within the spheroidal inclusions are significantly different from those in259
the spherical inclusion. For example, the strain inside the prolate inclusion (0.0683 in Figure 8b) is much higher260
than that inside the oblate inclusion (0.0396 in Figure 8d). As a result, SR value varies significantly depending on261
the ellipticity of the inclusion. The variation of SR with respect to the axial ratio (a/c) is predicted by Eshelby’s262
solution and plotted (circle) in Figure 8(e). For verification purpose, some data points were also determined by263
FEA and plotted on the same graph (triangle). Figure 8(e) indicates that SR reaches the maxi-mum (2.92) when264
a/c is 2, and decreases with the change of a/c in both directions, more rapidly in prolate direction. Note that265
the maximum SR value of 2.92 is still much lower than the actual MR (5.0, dotted horizontal line). SRs for266
various combinations of a/c and MR are summarized in Table 1. Because SR varies non-linearly against a/c,267
linear regression models such as Equation (1) 14 or Equation (2) 33 cannot be adopted for ellipsoidal inclusions.268
Instead, we considered a surface regression model with two predictor data (SR and a/c) and one response data269
(MR). This was achieved by applying a surface-fitting tool in Matlab (R2012b), cftool, to the data in Table 1.270
Using a polynomial regression model, MR could be formulated as a coupled polynomial equation of the order271
4 × 2 as follows: (12) where x = a/c, y = SR, and the coefficients are listed in Table 2. Good agreement was272
obtained between the model and the data in Table 1 (R 2 = 0.992). Figure 9(a) shows the fitted surface from273
the model to the data in 3D and Figure 9(b) illustrates the 2D contour plot of the same surface.274

The polynomial function in Equation ( ??2) was applied to gelatin phantoms containing a spherical inclusion.275
MRwas estimated first by performing the compression tests on 20% (inclusion) and 5% (matrix) gelatin cylindrical276
samples. Representative engineering stress-strain curves from the compression tests are shown in Figure 10.277
Loading curves were regarded as linear with R 2 value 0.9971 and 0.9849, for 20% and 5% gelatin content278
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18 CASE 3: BIRADS 4 LESION-BENIGN

samples, respectively. Loading modulus was determined to be 51 ± 2 kPa and 10 ± 1 kPa for each content,279
respectively. + .280

15 e) Surface Regression Model f) Gelatin-Based Phantoms281

To estimate the SR, gelatin phantoms were US imaged from the side while compressive loading was applied to282
the top (arrows in Figure 11a) and the DGE elastograms were generated from the US images. Figure 11(b) is283
the elastogram of a phantom compressed at 10% strain. Consistent with Eshelby’s solution, strain field within284
the inclusion is almost uniform at 0.036, while the strain significantly varies in the matrix. As discussed in the285
previous section, the measurement of matrix strain should be made in the lateral region (circled region A) which286
is distant from the inclusion center by more than 1.5 times of the inclusion radius in the lateral direction. Region287
B is also a candidate, but the region closer to the probe is generally preferable. Measured strain is 0.1 at A; thus,288
SR is calculated to be 2.78. By substituting the SR into Equation ( ??2), MR is estimated to be 5.60. These289
results are close to the predictions from Eshelby’s solution (SR = 2.73) and actual MR (5.1). Figure 11(c) is290
the elastogram of a phantom where a part of the inclusion is dissolved into the matrix, mimicking a carcinoma291
infiltrating into the surrounding tissue. In this image, the strain in the right side of the inclusion cannot be292
measured due to the infiltrated domain, thus the strain in the left side of inclusion (circled region) is measured293
as a matrix strain (0.11). The strain level inside the inclusion is 0.035 and the SR is calculated to be 3.05, which294
are slightly higher than that of spherical inclusion. Assuming the axial ratio of 1.5, MR is estimated to be 5.46295
that are consistent with the actual MR value.296

Strain field in the matrix can be distorted or localized due to inhomogeneous lesions or local loadings. Figure297
11(d) shows highly concentrated compressive deformation above the inclusion, which is caused by the locally298
concentrated loading on top of the phantom. Although strain field varies significantly along the loading direction,299
strain along the lateral direction is relatively consistent, and the measured strain value is almost the same as the300
applied strain (0.1). Inclusion strain is also uniform at 0.035, thus the SR (2.86) is almost the same as the other301
cases, and the MR is estimated to be 5.8 for circular inclusion.302

The above results indicate that elastic fields in the elastograms of gelatin-based phantoms are well predicted303
by Eshelby’s solution. Furthermore, the surface regression model proposed in Equation ( ??2) can successfully304
predict the actual MRs of gelatin phantoms. Therefore, the pro-posed method has the potential to improve305
the diagnostic performance of elastography in breast cancer screening practice, as described in the subsequent306
sections.307

Human breasts are made up of fatty tissue with epithelial and stromal tissues and a number of masses inside,308
each of which has different echographic properties. Naturally, US and elastogram images commonly contain309
complex and noisy patterns, which require particular attention for the understanding and the utilization of them.310
This is particularly true for BIRADS 3 and 4 lesions that are occasionally misdiagnosed even by experienced311
radiologists. Several case studies are presented here for the lesions in different BIRADS categories.312

16 Case 1: BIRADS 4 Lesion-Malignant313

Figure 12(a) are the US image of a BIRADS 4 lesion where compressive load was applied to the top side of314
the image, and the elastogram produced from the dotted rectangular region in the US image. The elastogram315
shows that there is a stiff oblate lesion in the center deformed at about ?0.008 strain. Matrix strain is hard to316
be estimated, as the lateral strains are not consistent along lateral direction, that is, the strain in the right side317
of the inclusion is much higher (?0.06) than that in the left side (?0.042). However, another stiff lesion can be318
seen in the right-bottom corner, and the tissue between two stiff lesions might be under higher local deformation.319
Therefore, the strain in the left side of the inclusion is regarded as the matrix strain, and the SR is estimated320
to be 5.25. Taking the a/c of 2.5, MR is estimated to 9.79 from Equation (12). As the estimated MR is in the321
range of cancerous lesions, 16 this lesion is deemed malignant. Biopsy confirmed that it is an invasive mammary322
carcinoma.323

17 Case 2: BIRADS 4 Lesion-Malignant324

Figure 12(b) is the US image and the elastogram of a BIRADS 4 lesion. The shape of the lesion is not identifiable325
on the US image, but the elastogram clearly shows the existence of a large stiff lesion in the middle of the image.326
Highly compressed tissue is also observed above the lesion. The inclusion strain is about ?0.01, whereas the327
matrix strain is about ?0.05 in the left and ?0.03 in the right sides of the lesion, respectively. As the lesion looks328
connected further to the right-side direction in the US image, the strain in the left side (?0.05) is taken as a329
matrix strain. By substituting the a/c of 1.6 and SR of 5, MR is estimated to be 9.37. Because this value is330
higher than the reported MR for cancer (~7), 17 this lesion is diagnosed as a malignant tumor. Biopsy indicated331
that this is an invasive ductal carcinoma.332

18 Case 3: BIRADS 4 Lesion-Benign333

The lesion in Figure 12(c) is highly noticeable in US image and was classified as a BIRADS 4 lesion by a334
radiologist, which is usually regarded as malignant. In the elastogram, it shows a diagonally spread shape over335
a wide area, and is regarded as an oblate ellipsoid with the a/c of 2.2. Inclusion strain is not uniform, ranging336
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from ?0.052 to ?0.03, whereas tissue strain is at about ?0.05. Therefore, the maximum SR is up to 2.5 and the337
corresponding MR is estimated to be 3.86 from Equation (12). As this value is much lower than the reported338
range of MR for cancer, it may not be malignant. According to biopsy result, this is a benign fibroadenoma.339
A small lower strain region can be found in the left bottom corner. Although not histologically examined, this340
region may be another lesion.341

19 Volume XIX Issue I Version I342

20 Case 4: BIRADS 5 Lesion-Benign343

The lesion in Figure 12(d) was clearly visible in the US image and was classified as BIRADS 5 by a radiologist.344
In the elastogram, inclusion strain is ?0.025, while the matrix strain is between ?0.05 and ?0.055. Assuming a345
circular inclusion and adopting the higher SR of 2.2 for sensitivity, the MR is estimated to be 4.13. Usually346
BIRADS 5 lesion is regarded as highly likely malignant; however, the low MR value suggests that this lesion347
should not be malignant. Biopsy confirmed that this lesion is a benign fibrosis with a necrotic hemorrhage.348

21 IV.349

22 Data Analysis and Discussion350

Among the 44 lesions examined, biopsy results indicated that 21 were benign and 23 were malignant, as351
summarized in Table 3. The most common malignant tumors were invasive mammary carcinoma and invasive352
ductal carcinoma (n = 9 for both), and the most common benign tumor was fibroadenoma (n = 7). As shown353
in Figure 13, the mean SR of malignant tumors was 6.26 ± 2.06, and that for benign entities was 1.39 ± 0.80.354
However, the mean MR of malignant tumors and benign lesions was 12.71 ± 4.33 and 1.88 ± 1.82, respectively.355

The significances of the differences in SR and MR were tested by applying Tukey’s post hoc test using q score356
determined by the following formula: where M 1 and M 2 are the mean value of each group, MSw is mean square357
within, and n is the number per each group. The relevant variables are listed in Table 4.358

From the Tukey’s significance/probability table, 47 critical Tukey’s score (qcrit) corresponding to 95%359
confidence is 2.86. The q score determined for SR and MR are 14.01 and 15.39, respectively, thus it can be360
concluded that unequal variances exist within the groups, and the differences are significant. This can be further361
verified with unpaired twosample t test. 48 For SR, t statistic is calculated to be 2.35. For the degree of freedom362
(df) of 43, t value for 95% confidence level was 2.0181; thus the SRs between malignant tumors and benign lesion363
were significantly different (p < 0.05) with a small margin. However, t statistic for MR was 11.09; thus, the364
difference of MRs between malignant tumors and benign entities were statistically significant with a much higher365
confidence level (p < 0.00001).366

Using the receiver-operating characteristic (ROC) curve of SR, the area under the curve (AUC) was 0.9341,367
and the best cutoff SR value of 3.1 was obtained at the maximum Youden’s index of 0.86957. With this cutoff368
SR, the sensitivity, specificity, and accuracy were 91.3%, 90.5%, and 90.9%, respectively. For ROC curve of MR,369
AUC was 0.94824, and the best cutoff MR was 5.67 at the maximum Youden’s index of 0.95238. The sensitivity,370
specificity, and accuracy were 100%, 95.2%, and 97.7%, respectively.371

23 Variables372

24 SR MR373

The proposed surface regression model considers only two input parameters, a/c and SR, to predict MR.374
Nevertheless the adoption of MR in breast cancer screening could significantly improve both confidence level375
and the diagnostic performance, compared with SR. In statistical analysis, the mean of SR was different by376
4.87 between benign and malignant lesions, whereas the difference of the mean of MR increased up to 10.83.377
Considering the standard deviation (2.06 and 0.80 for SR and 4.33 and 1.82 for MR), the difference between378
benign and malignant SR can be even smaller, increasing the ratio of gray cases that require further invasive379
testing. However, the means of MR for benign and malignant lesions are different enough to differentiate between380
benign and malignant lesions, thus benign biopsy could be reduced by using MR.381

The proposed approach has an artifact that a/c ratio can be varied depending on the application angle of382
US probe, but by manipulating the probe angle with imaging the lesion, maximum a/c for oblate lesion or383
minimum a/c for prolate lesion can be obtained for conservative assessment of MR. Also, the proposed approach384
is still limited to relatively simple ellipsoidal shapes and the protocols for irregular shapes of lesion have been yet385
established, which may be the next milestone of the future research.386

V.387

25 Conclusion388

We investigated the transfer characteristic of observed contrast, SR, from elastography in predicting the true389
contrast, MR, by using the Eshelby’s solution. It was found that SR not only significantly underestimates MR,390
but also varies with the shape and the modulus of the lesion. A surface regression model to predict MR from axial391
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ratio and SR was proposed and verified through the application to gelatin phantoms. The model was further392
applied to human breast elastograms containing different types of lesions, and statistical analysis indicated that393
significant improvement in both confidence level and diagnostic performance could be achieved by adopting MR394
predicted by the model. The model can be utilized for the screening of breast cancer by comparing the correlated395
MR from elastography with actual modulus data of various tissues from mechanical testing.396
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Figure 13:

1

a/c

Figure 14: Table 1 :

2

p 00 p 10 p 01 p 20 p 11 p 02
?2.439 ?0.4783 4.827 0.747 ?1.887 ?0.2935
p 30 p 21 p 12 p 40 p 31 p 22
?0.1538 0.3153 0.166 0.00832 ?0.0136 ?0.0135

Figure 15: Table 2 :

3

Benign Lesions (21) Malignant Lesions (23)
Diagnosis n Diagnosis n
Fibroadenoma 7 Mammary carcinoma (invasive, infiltrat-

ing)
9

Cyst 5
Fibrocyst 1 Ductal carcinoma (invasive, infiltrating) 9
Fibro fatty tissue 2
Fibrosis 1 Ductal carcinoma in situ (DCIS) 3
Benign fibro-epithelial tissue 2 Neuroendocrine carcinoma 1
Benign lactating adenoma 1 Metaplastic carcinoma 1
Other benign tissue 2

Figure 16: Table 3 :
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4

Year 2019
D D D D )
(
M 1 (Mean, Malignant) 6.261 ±

2.063
12.712 ±
4.329

M 2 (Mean, Benign) 1.390 ±
0.804

1.882 ±
1.817

n (Number of samples) 21 23
k (Number of groups) 2
df Among groups 1
df Within groups 42
SS within (Sum of squares within groups) 106.566 478.341
MS within (Mean squares within groups) 2.537 11.389
q (Tukey’s score) 14.014 15.389
q crit (Critical q score, 95% confidence) 2.86
SR = strain ratio; MR = modulus ratio.

[Note: Application of Eshelby’s Solution to Elastography for Diagnosis of Breast Cancer Volume XIX Issue I
Version I D © 2019 Global Journals 1]

Figure 17: Table 4 :
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.1 Appendix Supplementary Materials399

Matlab codes for Eshelby’s solution associated with this article can be found in the online version. Please run400
Eshelby_GUI.m, which can be found from Eshelby.rar.401
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