

# 1 Predictors of Systemic Inflammatory Response Syndrome 2 Following Percutaneous Nephrolithotomy

3 Ch. Ram Reddy

4 Received: 15 December 2018 Accepted: 5 January 2019 Published: 15 January 2019

5

---

## 6 **Abstract**

7 Introduction and Objectives: Sepsis remains one of the dreaded complications of percutaneous  
8 nephrolithotomy (PCNL). To analyze prospectively the preoperative and intraoperative  
9 factors that predict the occurrence of systemic inflammatory response syndrome (SIRS) in  
10 patients undergoing PCNL so that we can aggressively manage those patients from the  
11 preoperative period itself and avert the dangerous complications. Materials and Methods: A  
12 prospective study was carried out between September 2016 and April 2018 including all  
13 patients who underwent PCNL. Patients with infected collecting system, synchronous ureteric  
14 stones, stents, or percutaneous nephrostomy drainage were excluded from the study. Patients  
15 were evaluated with physical examination, urine analysis, urine culture and sensitivity,  
16 complete blood count, renal function test, X-ray kidney, ureter, and bladder (KUB), and plain  
17 and contrast-enhanced computerized tomography KUB. Patients who developed any two or  
18 above of the following in the postoperative period were considered to have developed SIRS. (1)  
19 Temperature  $>100.4^{\circ}\text{F}$  ( $38^{\circ}\text{C}$ ) or  $<96.8^{\circ}\text{F}$  ( $36^{\circ}\text{C}$ ). (2) Pulse rate  $>90/\text{min}$ . (3) Respiratory  
20 rate  $>20/\text{min}$ . (4) White blood cell count  $>12,000/\text{ml}$  or  $<4000/\text{ml}$ . Materials and  
21 Methods: A prospective study was carried out between September 2016 and April 2018  
22 including all patients who underwent PCNL. Patients with infected collecting system,  
23 synchronous ureteric stones, stents, or percutaneous nephrostomy drainage were excluded  
24 from the study. Patients were evaluated with physical examination, urine analysis, urine  
25 culture and sensitivity, complete blood count, renal function test, X-ray kidney, ureter, and  
26 bladder (KUB), and plain and contrast-enhanced computerized tomography KUB. Patients  
27 who developed any two or above of the following in the postoperative period were considered  
28 to have developed SIRS.

---

29

---

30 **Index terms**— percutaneous nephrolithotomy, post PCNL complications, systemic inflammatory response  
31 syndrome.

## 32 **1 Introduction**

33 Percutaneous nephrolithotomy (PCNL) is considered the standard of care in the management of renal calculous  
34 disease. In the early days, the procedure had considerable morbidity and at times mortality.

35 With advances in technology and improved surgical technique, the mortality is very low and morbidity has  
36 come down. Sepsis remains one of the dreaded complications of the procedure. We need factors to predict who  
37 all are more likely to develop sepsis so that we can aggressively manage those patients from the preoperative  
38 period itself and avert the dangerous complications from occurring.

39 In this endeavor, analysis of both preoperative and intraoperative factors is essential to identify the risk factors  
40 since both can play a role in the development of sepsis. [1,7]

41 **2 a) Aim and objective**

42 To analyze prospectively the preoperative and intraoperative factors that predict the occurrence of systemic  
43 inflammatory response syndrome (SIRS) in patients undergoing PCNL for renal calculus disease.

44 **3 II.**

45 **4 Materials and Methods**

46 **5 E. Exclusion criteria:**

47 ? Patients with infected collecting system.  
48 ? Patients with synchronous ureteric stones.  
49 ? Patients with stents or percutaneous nephrostomy drainage.

50 **6 a) Method of study**

51 All patients who presented to our department with renal stone disease were evaluated with physical examination,  
52 urine analysis, urine culture and sensitivity, complete blood count, renal function test, X-ray KUB, and plain  
53 and contrast-enhanced computerized tomography.

54 All patients were subjected to percutaneous nephrolithotomy after obtaining anesthetic fitness.

55 All patients were administered 1 g of ceftriaxone and 500 mg of amikacin as a standard antibiotic P prophylaxis  
56 for a period of 3 days including one preoperative dose. Patients with preoperative serum creatinine <1.4 were  
57 not administered amikacin.

58 All patients underwent PCNL under general anesthesia. Patients were placed in lithotomy position, and a  
59 5 Fr ureteric catheter was introduced. Contrast was used to identify the collecting system and to select the  
60 calyx for puncture. After prone positioning with adequate padding, the posterior calyceal puncture was done  
61 under fluoroscopic guidance. The level of puncture was decided as per the location of stone to ensure complete  
62 clearance.

63 Puncture was done using 18 G three part needle, and a guide wire was placed within the system. Guide rod  
64 was introduced and serial coaxial dilatation of tract was done with co-axial metal dilators. Access sheath was  
65 placed. Using 26 Fr nephroscope and pneumatic lithotriptor stone fragmentation was done.

66 After fragments were evacuated, antegrade 4 Fr ureteric stent is placed. A 20 Fr nephrostomy tube is also  
67 placed.

68 Intraoperative parameters such as operative time, no of access tracts used, and need for blood transfusion  
69 were recorded. Pelvic urine collected on puncture and stone were sent for culture and sensitivity.

70 Patients were followed up in postoperative period with daily complete blood count including white blood cell  
71 (WBC) count, serial pulse rate, temperature, and respiratory rate monitoring.

72 Postprocedure check X-ray KUB was taken before removing the nephrostomy tube in the 1 st postoperative  
73 day. Ureteric stent was removed after 14 days.

74 Patients who developed any two or above of the following in the postoperative period were considered to have  
75 developed SIRS.

76 1. Temperature >100.4°F (38°C) or <96.8°F (36°C). 2. Pulse rate >90/min. 3. Respiratory rate >20/min.  
77 4. WBC count >12,000/ml or <4000/ml.

78 **7 b) Statistical analysis of the study**

79 For discrete data, proportion is computed, and the mean and standard deviation are computed for the continuous  
80 data. The Chi-square test was applied to compare the proportions between the groups. To examine the association  
81 between the outcome (SIRS) and several variables, logistic regression analysis was done. All analyses were two-  
82 tailed, and P < 0.05 was considered statistically significant.

83 **8 III.**

84 **9 Observation and Results**

85 **10 a) Descriptive statistics**

86 A total of 250 patients underwent PCNL in our institute during the study period. All the patients were evaluated  
87 both preoperatively and postoperatively as described above. Of these 250 patients, 51 (20.4%) of them developed  
88 features of SIRS in the postoperative period.

89 The patient characteristics are as shown in Tables 1, 2 and Figure ??.

90 Univariate analysis showed a significant association between age of the patient, blood transfusion, stone size,  
91 number of access tracts, operative time, pelvic urine culture [2] showing growth, and stone culture showing growth  
92 as predictors of SIRS [Table 3].

93 On multivariate regression analysis, stone size, no of access tracts, operative time, and stone culture were  
94 found to be statistically significant [Table 4] with regard to the occurrence of SIRS.

---

## 95 11 Discussion

96 Renal stone disease is a common urological problem. Medical management may not be possible in all situations.  
97 In certain situations like increasing stone burden or in specific type of stones like infective stones, surgical  
98 management is warranted. Moreover, medical management is more useful to prevent recurrences following surgical  
99 removal rather than as primary therapy.

100 Surgical management as described includes both open and endourological procedures. In the modern era of  
101 minimally invasive surgery, renal calculous surgery is no exception.

102 The procedure of PCNL has gained widespread acceptance and is the standard of care to treat renal calculous  
103 disease.

104 The procedure when attempted initially was time-consuming, tedious for both patient and treating surgeon,  
105 and with considerable morbidity and some mortality.

106 With advances in imaging, optics, and improved understanding of the pathology behind the considerable  
107 morbidity, the procedure has been standardized.

108 Initially obtaining an access was considered a vital step in the success of the procedure.

109 With good preoperative imaging particularly reconstructed computerized tomography, it paved the way for  
110 better localization and defining the extent of calculi. Moreover, better delineation of pelvicalyceal anatomy has  
111 helped us in obtaining an access to the pelvicalyceal system with ease. Further understanding of the way of  
112 obtaining an access with both fluoroscopic and ultrasonographic guidance has helped us in successfully creating  
113 a tract into the pelvicalyceal system.

114 Even though both antegrade and retrograde techniques of access are available, the most commonly practiced  
115 access is through the antegrade access.

116 Developments in creating a tract sufficient for the procedure have also lend a helping hand in the success of the  
117 procedure. Various methods of tract dilatation such as coaxial Alken dilators, Amplatz Advances in optics and  
118 miniaturization of endo instruments have also reduced the morbidity and improved the success rate. Introduction  
119 of flexible instruments has also greatly improved access to all the parts of collecting system without a need for  
120 additional tracts.

121 Advances in intracorporeal lithotripters have also improved the success rate of PCNL. Smaller size lithotripter  
122 probes and efficient retrieval of stone fragments have improved the outcome of the procedure.

123 In spite of all the advances and resultant improvements, certain morbidities of the procedure continue to  
124 affect the patients. Even though the procedure is being done under standard antibiotic prophylaxis, still patients  
125 develop a postoperative fever. [4][5][6] The procedure is usually done after sterilizing the urine in patients with  
126 preoperative urine culture showing growth. Still 15-30% of patients develop postoperative SIRS of which 1-2%  
127 of patients develop sepsis. The likelihood of patients developing sepsis cannot be predicted as of now.

128 However, the likelihood of developing SIRS in patients undergoing PCNL can be determined by identifying  
129 certain preoperative and intraoperative factors associated with the patients.

130 Our study comprising of 250 patients who underwent PCNL showed that 51 (20.4%) of them developed SIRS  
131 postoperatively. A study by Korets et al. [3] showed SIRS incidence of 9.8%. Another study by ??hen et al. [9]  
132 showed SIRS incidence of 23.4%.

133 On analysis of data collected before, during, and after surgery, it showed certain factors associated significantly  
134 in developing SIRS.

135 Univariate analysis showed a significant association between age of the patient (>42 years), need for blood  
136 transfusion, stone size (>2.893 cm), number of access tracts (1 or >1), operative time (>70 min), pelvic urine  
137 culture showing growth, and stone culture [8] showing growth.

138 With regard to gender distribution, diabetes mellitus, bladder urine culture showing growth, and raised serum  
139 creatinine, the association was found to be statistically insignificant.

140 On multivariate analysis, only stone size, number of access tracts, operative time, and stone culture were found  
141 to be statistically significant in predicting the occurrence of SIRS postoperatively.

## 142 12 V.

## 143 13 Conclusion

144 In patients undergoing PCNL, the following factors were found on analysis to be significantly associated with  
145 developing SIRS and thereby helping to identify those likely to develop sepsis.

146 ? Univariate analysis showed a significant association between, blood transfusion, stone size, number of access  
147 tracts, operative time. ? Multivariate analysis showed stone size, number of access tracts, operative time, and  
148 stone culture as statistically significant in predicting the occurrence of SIRS postoperatively. In this study, no  
149 statistically significant association was found between gender, diabetes mellitus, bladder urine culture, and stone  
150 culture and pelvic urine culture raised serum creatinine in developing SIRS postoperatively.

**151 14 Financial support and sponsorship**

**152 15 Nil.**

**153 16 Conflicts of interest**

There are no conflicts of interest. <sup>1</sup>

**1**

|         | Age<br>(years) | Serum<br>creatinine<br>(mg/ml) | Stone<br>size<br>(cm) | Operative<br>time<br>(min) | Number of<br>tracts |
|---------|----------------|--------------------------------|-----------------------|----------------------------|---------------------|
| Mean    | 42.18          | 1.196                          | 2.893                 | 70.32                      | 1.10                |
| Minimum | 18             | 0.6                            | 2.2                   | 40                         | 1                   |
| Maximum | 65             | 3.4                            | 5.1                   | 125                        | 2                   |

Figure 1: Table 1 :

**2**

Year 2019

2

Volume XIX Issue I Version I

D D D D )

(

Medical Research

Global Journal of

Sex

No  
SIRS

SIRS Total

Male

121

27

148

Female

78

24

102

Total

91

29

250

SIRS: Systemic inflammatory response syndrome

Figure 2: Table 2 :

154

---

<sup>1</sup>© 2019 Global JournalsPredictors of Systemic Inflammatory Response Syndrome Following Percutaneous Nephrolithotomy

---

3

| Parameter               | P     | Statistical significance |
|-------------------------|-------|--------------------------|
| Gender                  | 0.829 | Not significant          |
| Diabetes mellitus       | 0.062 | Not significant          |
| BloodurineC/S           | 0.200 | Not significant          |
| Bloodtransfusion        | 0.009 | significant              |
| Number of accesstracts  | 0.001 | significant              |
| Pelvicurineculture      | 0.3   | Not significant          |
| Stoneculture            | 0.4   | Not significant          |
| Serumcreatinine         | 0.340 | Not significant          |
| Stone size              | 0.004 | significant              |
| Pre op pyelocaliectasis | 0.005 | significant              |
| Operative time          | 0.829 | significant              |

SIRS: Systemic inflammatory response syndrome, C/S: Culture and sensitivity

Figure 3: Table 3 :

4

|                   | B      | SE    | Wald   | df | Significant | Exp (B) | 95.0% CI for Exp (B) |        |
|-------------------|--------|-------|--------|----|-------------|---------|----------------------|--------|
|                   |        |       |        |    |             |         | Lower                | Upper  |
| Diabetes mellitus | 0.481  | 0.598 | 0.647  | 1  | 0.421       | 1.618   | 0.501                | 5.229  |
| Bladder urine C/S | 0.364  | 0.531 | 0.469  | 1  | 0.493       | 1.439   | 0.508                | 4.077  |
| Blood transfusion | 1.368  | 0.764 | 3.202  | 1  | 0.074       | 3.927   | 0.878                | 17.564 |
| Pelvic urine C/S  | ?0.086 | 0.561 | 0.024  | 1  | 0.878       | 0.917   | 0.305                | 2.756  |
| Stone C/S         | ?0.958 | 0.658 | 2.120  | 1  | 0.345       | 0.384   | 0.106                | 1.393  |
| Serum creatinine  | 0.385  | 0.756 | 0.259  | 1  | 0.611       | 1.470   | 0.334                | 6.471  |
| Age distribution  | 0.842  | 0.604 | 1.944  | 1  | 0.163       | 2.321   | 0.711                | 7.582  |
| Stone size        | 1.498  | 0.509 | 8.672  | 1  | 0.003       | 4.473   | 1.650                | 12.124 |
| Operative time    | 1.268  | 0.542 | 5.475  | 1  | 0.019       | 3.552   | 1.228                | 10.271 |
| Number of tracts  | 3.238  | 0.650 | 24.828 | 1  | 0.000       | 0.039   | 1.332                | 11.112 |

[Note: SE: Standard error, C/S: Culture and sensitivity, CI: Confidence interval IV.]

Figure 4: Table 4 :



---

155 [Gabay and Kushner ()] 'Acute-phase proteins and other systemic responses to inflammation'. C Gabay , I  
156 Kushner . *N Engl J Med* 1999. 340 p. .

157 [Margel et al. ()] 'Clinical implication of routine stone culture in percutaneous nephrolithotomy-A prospective  
158 study'. D Margel , Y Ehrlich , N Brown , D Lask , P M Livne , D Lifshitz . *Urology* 2006. 67 p. .

159 [Gonen et al. ()] 'Factors affecting fever following percutaneous nephrolithotomy: A prospective clinical study'.  
160 M Gonen , H Turan , B Ozturk , H Ozkardes . *J Endourol* 2008. 22 p. .

161 [Sharifi Aghdas et al. ()] 'Fever after percutaneous nephrolithotomy: Contributing factors'. F Sharifi Aghdas , H  
162 Akhavizadegan , A Aryanpoor , H Inanloo , M Karbakhsh . *Surg Infect (Larchmt)* 2006. 7 p. .

163 [Draga et al. ()] 'Percutaneous nephrolithotomy: Factors associated with fever after the first postoperative day  
164 and systemic inflammatory response syndrome'. R O Draga , E T Kok , M R Sorel , R J Bosch , T M Lock .  
165 *J Endourol* 2009. 23 p. .

166 [Korets et al. ()] 'Post-percutaneous nephrolithotomy systemic inflammatory response: A prospective analysis  
167 of preoperative urine, renal pelvic urine and stone cultures'. R Korets , J A Graversen , M Kates , A C Mues  
168 , M Gupta . *J Urol* 2011. 186 p. .

169 [Mariappan et al. ()] 'Stone and pelvic urine culture and sensitivity are better than bladder urine as predictors  
170 of urosepsis following percutaneous nephrolithotomy: A prospective clinical study'. P Mariappan , G Smith  
171 , S V Bariol , S A Moussa , D Tolley . *J Urol* 2005. 173 p. .

172 [Chen et al. ()] 'Systemic inflammatory response syndrome after percutaneous nephrolithotomy: An assessment  
173 of risk factors'. L Chen , Q Q Xu , J X Li , L L Xiong , X F Wang , X Huang . *Int J Urol* 2008. 15 p. .