

1 Pulmonary Venous Connection (Sarmast-Takriti Shunt)

2 Dr. Ahmad Takriti

3 *Received: 7 December 2018 Accepted: 1 January 2019 Published: 15 January 2019*

4

5 **Abstract**

6 Objectives: Total Anomalous Pulmonary Venous Connection (TAPVC) is a rare
7 heterogeneous condition. That accounting for 1.5-3

8

9 **Index terms**— total pulmonary venous connection, low birth weight, sarmast-takriti shunt (STS), pulmonary
10 venous obstruction,

11 **1 Introduction**

12 Total anomalous pulmonary venous connection is a rare heterogeneous anomaly, accounts for 1.5-3% of congenital
13 heart diseases (1). It is characterized by abnormal return of whole pulmonary venous blood flow to the right
14 atrium or systemic venous tributaries due to its persistent splanchnic connection (2). A concomitant right to left
15 shunt, commonly via an Interatrial communication, is required for survival after birth. ??arling

16 **2 classified it in four**

17 Author ?: MD, Resident of Cardiovascular Surgery in Cardiac Surgery Hospital of Damascus University, Mouasat
18 Square, Omar ben Abdulaziz Street, Damascus, Syria. e-mail: abcmoghim@gmail.com Author ?: MD, Full
19 Professor and Chief of Cardiac Surgery Department in Cardiac Surgery Hospital of Damascus University. e-mail:
20 takritiahmad@gmail.com categories: Supra-cardiac 45%, cardiac 25%, Infracardiac 25% and mixed type 5-10%
21 (3). At one end of the spectrum, there are completely unobstructed circulation, these neonates present with a
22 large left to right shunt manifestations. At the other end there are severe PVO. Neonates born with TAPVC have
23 poor prognosis with approximately 80% mortality in the first year of life. Both obstructed and nonobstructed
24 types of TAPV pose an absolute indication for surgical repair (4). In PVO type without intervention the median
25 survival is two months, with the shortest survival being 1 day. Despite greatly improved neonatal care and
26 surgical techniques over the last decade, TAPVC operation is still associated with high hospital mortality, up to
27 20% (5)(6).

28 **3 II.**

29 **4 Case Presentation**

30 A 4 -day old, low birth weight boy (w = 1950 gr) was presented to our department with discrete but increasing
31 cyanosis, tachypnea, respiratory distress, hepatomegaly, hypoxia (SaO 2 =70%), gasping, poor feeding and severe
32 metabolic acidosis. The prenatal course was uneventful and he was born by normal vaginal delivery on gestational
33 age=38.5 w.

34 The patient didn't carry any congenital heart disease (CHD) history in his genetically close relatives (first,
35 second and third degree). Immediate and brief work up was carried out. Chest X Ray (CXR) showed normal
36 heart size with ground glass appearance in all the lung fields (fig. 1. a). Color Doppler and 2D-echocardiography
37 revealed the total anomalous pulmonary venous connection (TAPVC -supra cardiac type), accompanied by
38 significant gradient between the drainage point of vertical vein to the left brachiocephalic vein and the pulmonary
39 veins with flow acceleration > 3.0 m/sec (pulmonary venous obstruction). It was also uncovered presence of the
40 ASD secundum, as the natural last resort for being alive. The vertical vein was noted to be compressed as
41 it coursed posterior the left pulmonary artery and anterior the left main bronchus (fig. ??b). According to
42 the aforementioned findings, the boy had almost met most of incremental risk factors leading to mortality after
43 conventional operations.

6 RESULTS AND DISCUSSION

44 Therefore the decision was made to a new palliative surgical procedure for the first time. In order to
45 preoperative medical stabilizing we administered 100% O₂ with the aim of promoting respiratory alkalosis as
46 well as nitric oxide as a pulmonary vascular dilator, since the patient had severe metabolic acidosis besides
47 Pulmonary hypertension (PHT). Under general anesthesia, median sternotomy and partial thymectomy were
48 carried out. The pericardium was opened in vertical fashion then prudent purse-string sutures as standby were
49 placed on ascending aorta and right atrial appendage (without using CPB). After intravenous heparinization (100
50 U/kg), at first some dissections were done from left lateral side between heart and pulmonary venous confluence
51 then the dome of the left atrium was exposed. The posterior pericardium just superior the dome of LA was
52 incised and PVC was appeared (fig. 2). Using a side -biting clamp on the PVC, a longitudinal incision was made.
53 The proximal head of a Gore-Tex (ePTFE) with appropriate size (diameter= 6 mm) that had been prepared and
54 beveled, was anastomosed to PVC using continuous 6-0 polypropylene suture. Under topical cooling of heart
55 and using a side-biting clamp on left atrial appendage (LAA), the distal end of Gore-Tex was anastomosed to
56 LAA. After deairing with heparinized saline as routine, the clamp was removed. The Sarmast-Takriti Shunt
57 (STS) between PVC and LA was established (fig. 3). Immediately after completion of the procedure, cyanosis
58 began to decrease. We performed the main operation 7-months later with excellent outcome when he had already
59 sustained satisfactory weight (w= 7030 gr), as follows: After the establishment of CPB, the shunt was removed.
60 To reduce the risk of residual obstruction of PVC due to pocket-like contraction our team preferred modified
61 septosuperior approach (komarakshi technique). A direct anastomosis between PVC and L. A, ligation of the
62 VV and closure of ASD with autopericardial patch were achieved in one stage repair.

63 5 III.

64 6 Results and Discussion

65 Evaluation of pressures before intervention in the operation room and after correction are illustrated in the
66 (table ??). Immediately after completion of surgery (STS), the pressure of PVC decreased to the point where its
67 pressure gradient became zero. Blood oxygenation improved up to 84% (preoperative SaO₂ was 70% on 100%
68 oxygen) and cyanosis, agitation, feeding Problem subsided. Three days later, when he was discharged, arterial
69 oxygen saturation had reached as high as 91%. Despite good advances in treating of TAPVC in recent decades,
70 this severe malformation in its various anatomical forms remains a challengeable entity during early infancy.
71 Significant obstruction to pulmonary venous drainage results in pulmonary edema in the presence of a normal
72 size and shape of the heart and cardiogenic shock which is rapidly lethal if untreated. Almost all reports have
73 declared that perioperative high mortality associates with PVO, low weight (W<2.5-3 kg), early age (A<2m),
74 severe preoperative acidosis, long time of Aortic Cross Clamp (ACC) and cardiac arrest. The second frontier in
75 the treatment of TAPVC is represented by postoperative PVO. In such a difficult situations, if patients survive
76 from operation, most of them will require multiple postoperative surgical interventions due to recurrent PVO
77 with an increasingly poor outcome at each representation (7). Medical efforts are minimally effective in managing
78 the ensuing hemodynamic and metabolic problems so their use is limited to provide some short lived conservative
79 therapy until definitive surgical treatment is carried out. PVO is usually lethal, even with reoperation and
80 extensive attempts at revision or repair (8). This lack of success has led to alternative treatments such as balloon
81 dilatation and stenting. The Rashkind Operation or Balloon Atrial Septostomy (BAS) has been used with some
82 success to decompress the pulmonary venous pressure and improve C/O in the restricted ASD, but these don't
83 appear to provide additional benefit. Moreover several reports have proposed the use of percutaneous angioplasty
84 and stenting of the obstructed vein to palliate shock and improve preoperative metabolic state. Research showed
85 during the median cross -sectional follow up of 3.1 years estimated mortality was 38+/-8% at 1 year and 50+/-8%
86 at 5-years after stent implantation.

87 Necessity for reintervention (owing to occlusion of stent), was 58+/-7% at 1-year. In 1996 sutureless repair
88 technique was described, using *in situ* autologous pericardium for recurrent pulmonary vein stenosis following
89 main TAPVC surgery (9). Subsequent reports emphasize the utility of this technique in selected patients as main
90 procedure. Despite interest in the sutureless technique, there is little firm evidence that it provides a benefit
91 over conventional techniques used a retrospective analysis to compare the outcomes of death and restenosis
92 after conventional and sutureless techniques. By multivariable analysis, there was no statistically significant
93 difference between the conventional and sutureless techniques. We encountered with a patient, who had almost
94 encompassed all critical risk factors that were sufficient to make the operative prognosis very poor. We believed
95 that Sarmast-Takriti Shunt (STS) would ensure adequate postoperative hemodynamics for symptomatic neonate
96 and prompt left cardiac side rehabilitation. The STS with confined heparin (100U/kg), was carried out without
97 using CPB with an intention to reduce the morbidity associated with extra corporeal circulation. Eliminating
98 CPB reduced the cost of the procedure substantially and saved the patient from its inherent complications. (10)
99 After procedure the enough time was prepared on behalf of the heart to compensate its chambers especially
100 the right ventricle and left atrium and ensure endurable state for the main surgery. Although our experience
101 was limited to STS in supracardiac type, we are optimistic and hopeful to its feasibility and usefulness in other
102 types of TAPVC. Now, we are so satisfied owing to be able to help such a complicated neonate. Table ??:
103 Preoperation and postoperative cardiac pressures of 4-days old male with total anomalous pulmonary venous
104 connection accompanied by pulmonary venous obstruction.

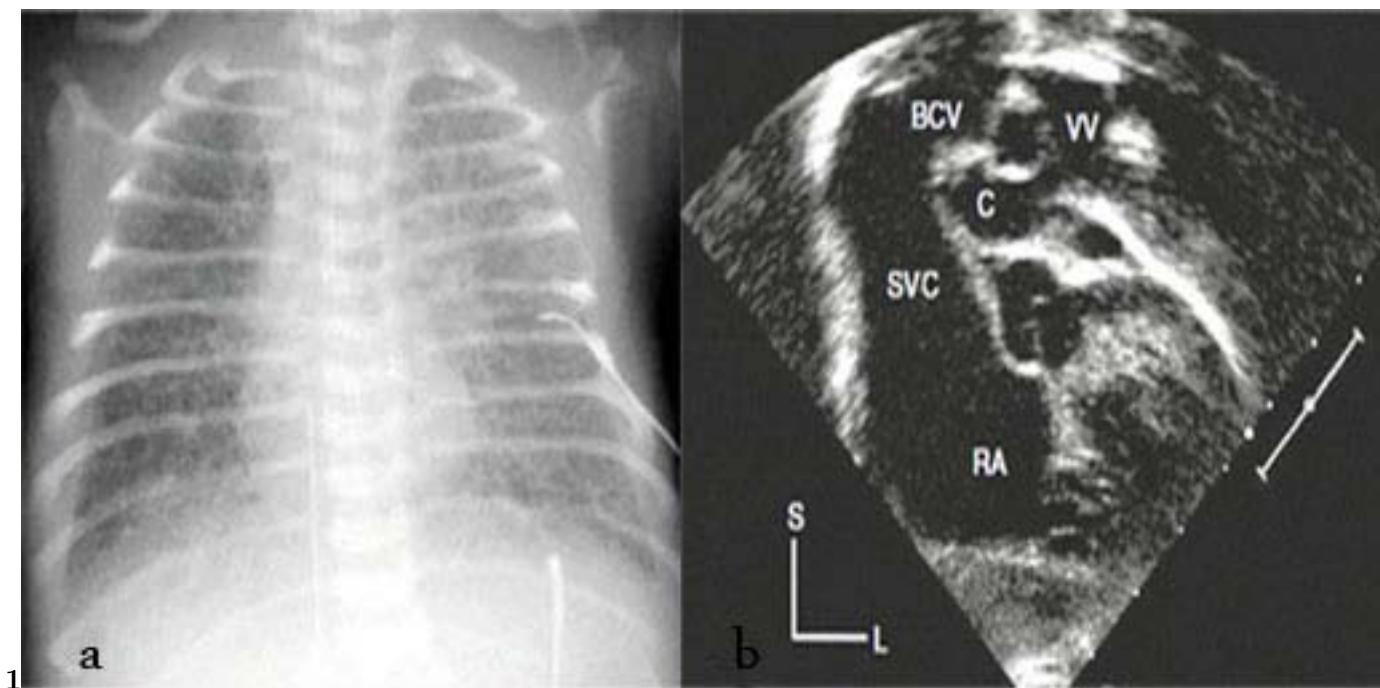


Figure 1: Figure 1 :

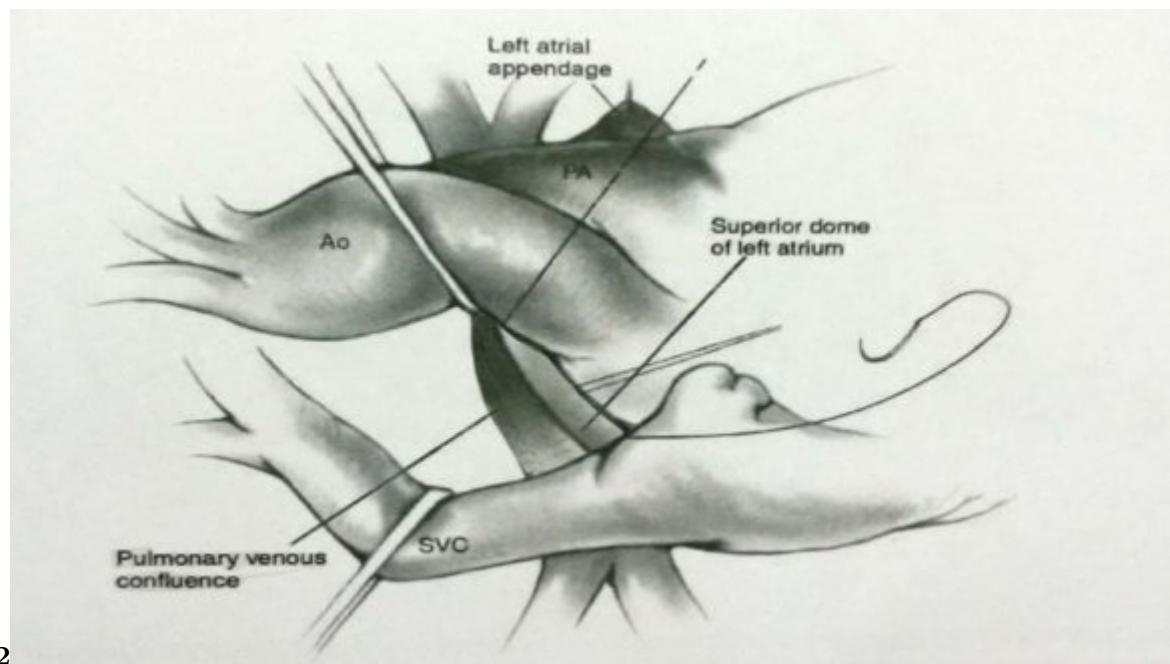


Figure 2: Figure 2 :

6 RESULTS AND DISCUSSION

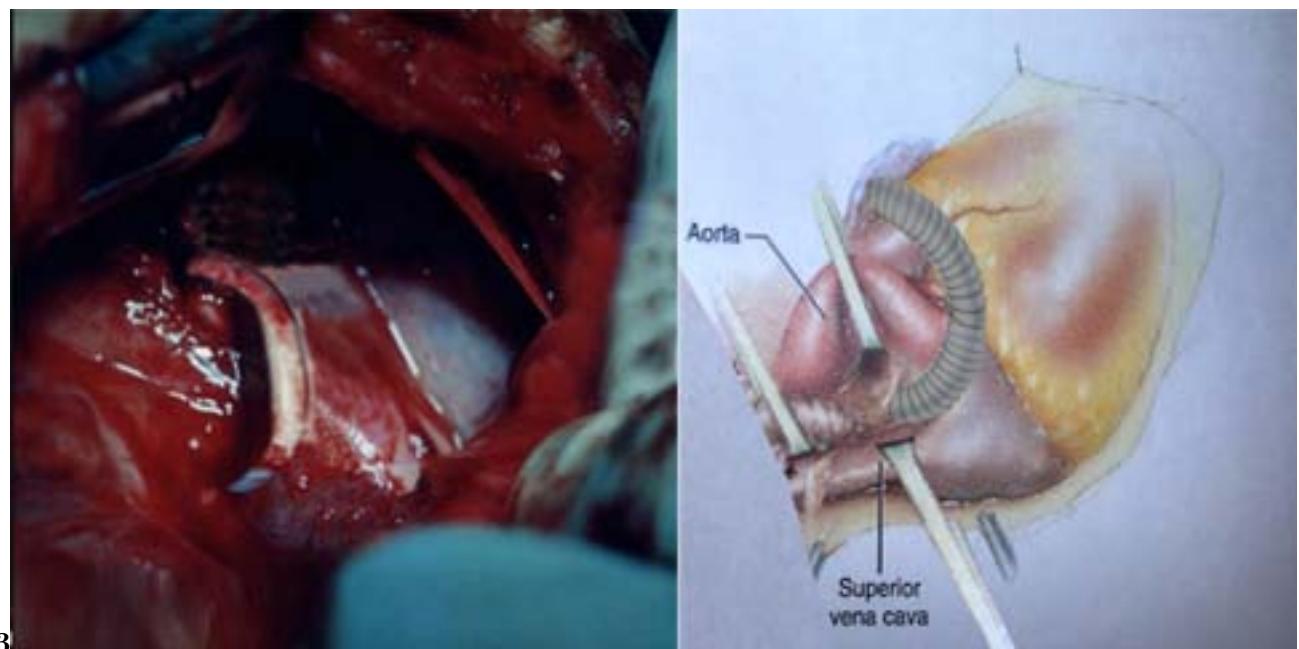


Figure 3: Figure 3 :

105 .1 Acknowledgements

106 The author wish to thank: Professor Zahra Sepehrmanesh, Dr. Soroush Sarmast & Dr. Behina Sarmast for their
107 assistance in this study. Also Dr. Kevin Brady & Dr. Fariba Brady from the USA state of New Jersey; For their
108 editorial assistance.

109 .2 Funding statement

110 As we are from lower income country, the processing charge has been waived.

111 .3 Conflict of interest statement

112 [Gao et al. ()] 'Comparison between two surgical techniques to repair total anomalous pulmonary venous
113 connection using propensity score analysis'. X M Gao , Z Q Nie , Y Q Ou , B C He , H Y Yuan , Y J
114 Qu . *Sun Yat-Sen Univ* 2017. 38 (1) p. .

115 [Sakamoto ()] 'Current status of brain protection during surgery for congenital cardiac defect'. T Sakamoto .
116 *Gen Thorac Cardiovasc Surg* 2016. 64 p. .

117 [Kouchoukos et al. ()] *Kirklin/BarratBoyes Cardiac Surgery. 4 th edn*, N T Kouchoukos , E H Blackstone , F L
118 Hanley , J K Kirklin . 2013. Philadelphia: Elsevier Saunders. p. .

119 [Duff et al. ()] 'Neurocognitive outcomes at kindergarten entry after surgical repair of total anomalous pulmonary
120 venous connection in early infancy'. J P Duff , A R Joffe , S Vatanpour , D M Muddemann , C M Robertson
121 , AltonG . *Pediatr Cardiol* 2015. 36 p. .

122 [Kato et al. ()] 'Pulmonary vein stenosis and the pathophysiology of "upstream" pulmonary veins'. H Kato , Y
123 Y Fu , J Zhu , L Wang , S Aafaqi , O Rahkonen , C Slorach , A Traister , C H Leung , D Chiasson , L
124 Mertens , L Benson , R D Weisel , B Hinz , J T Maynes , J G Coles , C A Caldarone . doi: 10.1016/j.jtcvs.2013.08.046. *J Thorac Cardiovasc Surg* 2014. 148 p. .

126 [Louis et al. ()] 'Repair of "simple" total anomalous pulmonary venous connection: a review from the Pediatric
127 Cardiac Care nConsortium'. St Louis , J D Harvey , B A Menk , J S Raghubeer , G O'brien , J E Jr , Bryant
128 R 3 Rd , L Kochilas . 10.1016/j.athoracsur.2012.03.006. *Ann Thorac Surg* 2012. 94 p. .

129 [Cui et al. ()] 'Surgical treatment of total anomalous pulmonary venous connection under 6 months of age'. H J
130 Cui , X X Chen , L Ma , Y S Xia , S C Yang , M H Zou . *Chin J Surg* 2016. 54 (4) p. .

131 [Masuda et al. ()] 'Thoracic and cardiovascular surgery in Japan during 2014: annual report by The Japanese
132 Association for Thoracic Surgery'. M Masuda , M Okumura , Y Doki , S Endo , Y Hirata , J Kobayashi .
133 *Gen Thorac Cardiovasc Surg* 2016. 64 p. .

134 [Shi et al. ()] 'Total anomalous pulmonary venous connection: the current management strategies in a pediatric
135 cohort of 768 patients'. G Shi , Z Zhu , J Chen , Y Ou , H Hong , Z Nie . *Circulation* 2017. 135 p. .

136 [Darling et al. ()] 'Total pulmonary venous drainage into the right side of the heart; report of 17 autopsied cases
137 not associated with other major cardiovascular anomalies'. R C Darling , W B Rothney , J Craig . *Lab Invest*
138 1957. 6 p. .