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7 Abstract

s In the last two decades, a dramatic shift in the paradigm of management of type 2 diabetes

o has been settled. Reduction of diabetic complications became the primary target instead of

10 focusing on the mere glycemic control. The tight blood sugar control among type 1 (T1DM)
u and type 2 (T2DM) diabetes mellitus patients aimed at avoidance of long-term complications
12 of diabetes. In spite of the significant impact of this approach on the incidence of these

13 complications, the outcome is still not satisfactory. The frequent failure to achieve tight blood
14 sugar control and the lack of hypoglycemic agents that are capable to combat the underlying
15 pathogenic mechanisms of diabetic complications underlie this unsatisfactory outcome. These
16 drawbacks are overcome in the newly introduced hypoglycemic agents.In this review, we are

17 going to discuss these mechanisms and highlight the therapeutic value of the early use of these
18 agents instead of the long-standing traditional approach.

19

20 Index terms— type 1 diabetes; type 2 diabetes; micro-vascular complications; macrovascular complications;
21 DPP4ls, SGLT2Is; nrf2 agonists.

» 1 Introduction

23 iabetes mellitus is a pandemic disease that has exponentially increasing prevalence. In 1980, 108-million persons
24 had diabetes worldwide while in 2014, 430-million persons were affected [1]. In spite of the increased awareness
25 about this disease and the worldwide efforts to give optimum care, 3.7 million diabetic patients lost their lives
26 in 2012 because of diabetes and its complication [2]. This figure exceeded 5 million deaths annually in the last
27 few years [3]. The hazard of cardiovascular mortality among diabetic patients is 2.3 folds that in non-diabetic
28 personnel [4]. The average life span of the diabetic patients is 10-15-years shorter than non-diabetic subjects [5].
29 Besides, diabetes is the cause of many disabling Besides, diabetes is the cause of many disabling morbidities. In
30 spite of the optimal management of the established cases of diabetic retinopathy that reduces the risk of visual loss
31 by 60%, diabetes remains D the leading cause of blindness among working-age adults worldwide [6]. Diabetes is the
32 leading cause of non-traumatic lower-extremity amputation [7]. Diabetic peripheral neuropathy (PN) is the most
33 frequent cause of sensory neuropathy [8]. Diabetic kidney disease (DKD) is the most common cause of end-stage
34 renal disease (ESRD). One-third of T1DM develop ESRD, while only 10-20% of type 2 diabetes mellitus (T2DM)
35 patients progress to ESRD [9,10]. The prevalence of congestive heart failure (CHF) among diabetic patients
36 aged 55 to 64 years is 5.5 folds the prevalence among nondiabetic personnel of the same age [11]. Diabetes is an
37 independent risk factor for the development of ischemic heart disease (IHD). CHF and IHD are the commonest
38 causes of death in T1DM and T2DM patients [12]. Diabetes mellitus confers a high risk of cerebrovascular
39 stroke [13]. Endothelial dysfunction is a common pathology underlying the etiopathogenic mechanism of all
40 these complications [14]. This endothelial dysfunction is a sequel to many metabolic changes encountered in
41 hyperglycemic personnel. These metabolic changes include increased oxidative stress [15], hyperuricemia [16],
a2 stimulation of sodium hydrogen exchangers (NHE) [14], and stimulation of renal sodium glucose transporters
a3 (SGLT) [17].
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3 B) SODIUM HYDROGEN EXCHANGERS

Twenty-five years ago, the Diabetes Control and Complications Trial (DCCT) research group announced 50%
reduction of microvascular complications among T1DM patients in the tight blood sugar control group compared
to poorly controlled cases [18]. Five years later, the United Kingdom Prospective Diabetes Study (UKPDS) group
announced similar findings among T2DM patients [19]. However, tight blood sugar control only had a marginal
impact on cardiovascular disease and all-cause mortality among diabetic patients [20]. Additionally, blood sugar
control using sulphonylurea compounds and insulin carries increased risk of severe hypoglycemia and weight gain
[18,19]. IN UKPDS study, T2DM patients allocated to metformin had 32% reduction for any diabetes-related
endpoint, 42% for diabetes-related death, and 36% for all-cause mortality when compared with those prescribed
sulphonylurea or insulin [21]. These favorable effects of metformin were attributed to body weight reduction
and the almost absence of hypoglycemic attacks. According to these results and others, the American College
of Endocrinology (ACE), and the American Association of Clinical Endocrinology (AACE) recommend that
the choice of anti-diabetic therapies must depend on many attributes that include antihyperglycemic efficacy;
risk of inducing hypoglycemia; and risk of weight gain [22]. The last 15 years have witnessed the introduction
of three new hypoglycemic agents, namely, glucagon-like peptide-1 receptor agonists (GLP-1RA), dipeptidyl
peptidase 4 inhibitors (DPP4Is), and sodium glucose cotransporter-2 inhibitors (SGLT2Is). These three agents
carry unique features, namely, the minimal incidence of hypoglycemic events and the favorable impact on body
weight. GLP-1RA and SGLT2Is are associated with body weight reduction, while DPP4Is are weight neutral
[23,24]. Compared to older hypoglycemic agents, these newer groups carry potential favorable protective effects
on endothelium, and can significantly reduce adverse cardiovascular events of diabetes in case of SGLT2Is and
GLP-1RA, and are reno-protective. SGLT2Is mayalso prevent or withhold diabetic retinal complications [25].
This review will highlight the possible new strategy to prevent the development and progression of diabetic
complications, the main target of this disease management.

2 a) The Endothelium in Diabetes

The first report on the role of the endothelium as an important regulator of local vascular tone was in 1980
[26]. The vascular endothelium is an important component of diabetic complications. Endothelial dysfunction
is eminent not only in diabetic patients but also in patients suffering obesity or metabolic syndrome. Decreased
synthesis of nitric oxide (NO), a potent vasodilator, is the salient feature of endothelial dysfunction. Decreased
NO underlies insulin resistance by reducing insulin access to target cells [27]. Insulin has also to cross endothelial
cells to reach target tissues [28,29]. Hyperglycemia can lead to endothelial mitochondrial fragmentation and
increased production of reactive oxygen species (ROS) [30]. Increased endothelial ROS is associated with increased
breakdown of NO [31]

3 b) Sodium Hydrogen Exchangers

The sodium hydrogen exchangers (NHE) are trans-membrane ion channels that are responsible for intracellular
pH regulation through the extrusion of hydrogen in exchange with sodium influx [Fig. 1]. NHE exist in nine
isoforms 7?41, 772]. NHEL is present on the surface of endothelium, vascular smooth muscle cells (VSMCs),
cardiomyocytes and platelets, while in case of renal tubular and intestinal epithelium NHE3 is encountered.
Activation of the NHE1 within endothelium, VSMCs, and cardiomyocytes may underlie microvascular and macro-
vascular complications of diabetes. It can also have a role in insulin resistance and systemic hypertension.
These exchangers cause increased sodium influx that stimulates sodium-calcium exchanger with consequent
increase of intracellular calcium. Within endothelium, increased cytoplasmic calcium inhibits eNOS and thus
decreases NO synthesis (Fig. 2). Increased intracellular calcium isalso associated with increased intracellular and
mitochondrial activity of calpain, the cysteine protease, that can damage the inner mitochondrial membrane, a
process that ends with cell apoptosis ?743]. Activation of NHE1 in diabetic patients is a consequence of high
blood glucose, insulin, angiotensin, or adipokines ??744]. Endothelial NHE1 activation increasesthe influx of
calcium into the cytoplasm and mitochondria associated with increased calpain enzyme activity. These changes
lead to endothelial dysfunction and senescence. The development of systemic hypertension, increased insulin
resistance, diabetic retinopathy, nephropathy, and neuropathy are consequences of decreased eNOS activity
and accelerated endothelial senescence. It can also explain the increased frequency of vascular calcification,
peripheral vascular disease, and diabetic cerebrovascular dysfunction ??745]. Mitochondrial injury is associated
with impaired antioxidant defense ?746]. Inhibition of NHE1 using cariporide was associated with increased NO
release; eNOS activity simultaneously decreased ROS production, decreased nuclear factor-?B (NF-?B) activation
and decreased the production of tumor necrosis factor-? and intercellular adhesion molecule-1 ??47]. Increased
intracellular calcium induced by NHE1 isoform on the surface of cardiomyocytes leads to cardiac hypertrophy.
Peripheral coronary ischemia secondary to endothelial dysfunction can further activate cardiac NHE1.Active
NHEL1 increases intracellular and intra-mitochondrial calpain that contributes to degeneration, apoptosis, and
fibrosis of myocardium [44] [Fig. 3]. Activation of renal NHE3 within PCT and ascending loop of Henle causes
sodium retention and can thus contribute to the development of systemic hypertension in diabetic patients 7744,
?7?8] [Fig. 4]. Activation of NHE1 on the surface of platelets plays a significant role in platelet activation. This
effect is mediated through increased intracellular calcium and can contribute to the pro-coagulant state in diabetes
[49]. Accordingly, activation of NHE1 on the surface of endothelial cells, VSMCs, platelets, and cardiomyocytes
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Increased oxidative stress is one of the metabolic disorders encountered in diabetes. Diabetic patients have
overproduction of free oxygen radicals and decreased wash out of these radicals. Increased production of free
oxygen radicals is the sequel to increased activity of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase [50,51], cyclo-oxygenase [52], and lipoxygenase [53] enzymes. Hyperglycemia stimulatesall these enzymes.
Sodium-glucose cotransporter 2 (SGLT2) within the brush border of the proximal convoluted tubular epithelium
(PCT) is another pathway of free oxygen radicals’ overproduction. Increased intracellular uric acid (UA) induces
NADPH oxidase [54]. Mitochondrial damage results in impaired antioxidant defense ?746]. Increased free oxygen
radicals activate NF-?B [55]. When NF-7B is free from its inhibitor, it translocates from the cytoplasm to the
nucleus where it triggers the genes encoding transforming growth factor-?1 (TGF-71), and monocyte chemo
attractant protein-1 (MCP-1) and Intercellular Adhesion Molecule 1 (ICAM1) [56][57][58]. Reactive oxygen
species (ROS) stimulate overproduction of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase
within mesangial cells (MCs) and pericytes. All these factors stimulate overproduction of extracellular matrix
proteins [59].

4 d) Uric acid

Serum uric acid (UA) is a strong predictor for the development of proteinuria in T1DM patients. The risk for
proteinuria increases by 80% with every 1mg/dL rise in serum UA [60]. The risk of decline of glomerular filtration
rate (GFR) is significantly higher (2.4 folds) in T1DM patients with serum UA>6.6 mg/dL when compared with
candidates with lower level [61]. In T1DM patients followed-up for more than 18 years, serum UA was an
independent predictor of overt proteinuria [62]. In T2DM patients, 68% of the hyperuricemic versus 41.5% with
normal serum UA had diabetic nephropathy (DN) [63]. Further prospective studies confirmed the increased risk
of development of proteinuria and accelerated decline of GFR among hyperuricemic T2DM [64,65]. Serum UA >
7mg/dL in males and > 6mg/dL in females were associated with a higher rate of DN progression, and overall
mortality among T2DM patients that have the disease for fifteen years or more ?766]. Treatment of T2DM
patients suffering DN and high serum UA with allopurinol was associated with a significant decrease of urine
albumin excretion (UAE) and serum creatinine and a significant increase of GFR over three years of follow-up
?7?767]. A recent metaanalysis of 19 randomized controlled trials has confirmed the significant favorable effect of
uratelowering therapy on the rate of GFR decline. These 19 trials enrolled 992 patients ?768].

Increased level of Serum UA is associated with endothelial dysfunction. High mobility group box chromosomal
protein 1 (HMGBI1) is a pro-inflammatory mediator synthesized and secreted by activated phagocytes or
monocytes. When secreted extracellular, HMGB1 can interact with the receptor for advanced glycation end
products (RAGE), inducing the production of multiple cytokines, and the induction of vascular adhesion molecules
?7?769]. In a recent in vitro study, high UA concentration inhibited eNOS expression and NO production in
human umbilical vein endothelial cells (HUVECSs), increased extracellular HMGBI1 secretion, up-regulated RAGE
expression, activated NF-?B, and increased the level of inflammatory cytokines. Blocking RAGE significantly
suppressed the DNA binding activity of NF-?B and the levels of inflammatory cytokines ??70]. HighserumUA is
also a significant predictor of systemic hypertension ?771].

5 e) Role of glucagon like peptide-1 receptor agonists (GLP-
1RA)

Glucagon-like peptide-1 (GLP-1), is a peptide hormone secreted by the neuro-endocrine cells within the mucosa
of the small intestine [72]. In healthy individuals, GLP-1 activates insulin secretion, inhibits glucagon secretion
and slows gastric emptying and controls apetite ??72]. The susceptibility of this peptide hormone to enzyme
breakdown by the dipeptidyl peptidase-4 enzyme (DPP-4) is responsible for the very short plasma half-life
of GLP-1. It cannot be used therapeutically except as continuous intravenous infusion ??73]. GLP-1RA are
exogenous GLP-1 analogues with variable sequence similarity to the human GLP-1 [74]. The variability involved
mainly two sites in the GLP-1 molecule susceptible to cleavage by DPP4; namely, alanine and lysine at positions
8 and 34 respectively. These changes, beside other modifycations, have helped to find out many peptides that
simulate GLP-1 action but with longer half-life ??73]. GLP-1RAs were found to decrease body weight, and
some cardiovascular morbidity, without increasing the risk of hypoglycemia ??75]. Robust indications for GLP-
1RAs in T2DM patients not responding to metformin monotherapy, dual therapy, or insulin include overweight,
inability to control appetite, high risk of cardiovascular disease, and the need of high doses of insulin ??773].
The use of GLP-1 RAs can also lower systolic, and to a minor degree, diastolic blood pressure ??76]. However,
long term use of GLP-1 RAs was frequently reported to be associated with increased heart rate 7776, ?777).
The current evidence does not support any beneficial effect of GLP-1RAs in patients with heart failure and/or
impaired ventricular function ??78, ??9]. The Evaluation of Lixisenatide in Acute Coronary Syndrome (ELIXA)
trial was the first cardiovascular outcome trial (CVOT) of GLP-1RAs in T2DM. Based on this trial, treatment
with lixisenatide in addition to conventional therapy had no impact on the cardiovascular risk in patients with
T2DM and recent acute coronary syndrome [80]. In the Liraglutide Effect and Action in Diabetes: Evaluation of
Cardiovascular Outcome Results (LEADER) trial, that appeared in 2016, liraglutide use significantly decreased
mortality from any cause and cardiovascular events in patients with T2DM at high risk for cardiovascular events.
The benefit of liraglutide treatment is more prounced patients with eGFR <60 mL/min/1.73 m 2 and patients
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7 G) SODIUM GLUCOSE CO-TRANSPORTERS INHIBITORS

aged 50 years or more. In spite of these benefits, hospitalization rate for heart failure was not different between
liraglutide and placebo groups ?781]. Although the incidence of

6 f) Dipeptidyl peptidase 4 inhibitors

The discovery of non-enzymatic functions for DPP4 within the kidney has attracted the attention for the reno-
protective action of this hypoglycemic agent especially after disclosure of the antiproteinuric effect of saxagliptin
in T2DM patients during ”Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes
Mellitus -Thrombolysis in Myocardial Infarction 53” (SAVOR-TIMI 53) trial ?787] ?788] ??89] ?790][91].
Experimental pharmacologic and genetic inhibition of DPP4 had also proven efficacy in preventing progressive
renal damage in animal models of acute and chronic kidney disease [92,93].

The glucose-lowering action of DPP4lIs is through inhibition of breakdown of endogenous GLP and glucose-
dependent insulinotropic peptide (GIP). These incretins improve the sensitivity of pancreatic 7 cells to glucose
[94]. DPP4 exists in 2 forms; membrane-bound and soluble forms [95]. Membranebound DPP4 is present on
the cell membrane of epithelial cells in the kidneys, lungs, and small intestine. It also exists on endothelial, and
immune cells [96][97][98]. DPP4 on the surface of immune cells is also known as cluster of differentiation 26
(CD26) [97,98]. The soluble form (sDPP4) is the consequence of shedding of the membrane-bound form. sDPP4
level increases in obese subjects and T2DM patients and may participate in increased insulin resistance in these
cases [99]. Membrane-bound DPP4 expression is triggered in case of hypoxia as well as its’ shedding [100,101].

Within the kidney, DPP4 in S1-S3 segments of the proximal convoluted tubules (PCT) are linked to NHE3
and plays a role in salt and water retention through stimulation of this exchanger, NHE3 activity decreases on
inhibition of angiotensin IT synthesis by captopril [102], or inhibition of DPP4 [103]. Angiotensin II inhibits
megalin receptor endocytosis protein expression. This process is reversed by DPP4Is [104]. Treatment with
DPP4 inhibitors may reverse reduced uptake of albumin and other low molecular weight proteins by PCT [105].
DPP4 was also discovered on the glomerular endothelium and the base of the foot processes of podocytes [106].
DPP4 is expressed on Tcells, B-cells, macrophages, and dendritic cells in the kidney [98]. Stimulation of DPP4 on
the surface of different immune and inflammatory cells may mediate inflammation within the kidney in diabetic
patients. DPP4ls decrease inflammation in diabetes. This finding suggests inflammation as an eminent player in
DPP4mediated kidney injury [107].

However, in spite of the reduction in urine albumin excretion observed in 3 randomized controlled studies
(RCT) in T2DM patients treated with DPP4Is [108][109][110], the only study that specifically looked for the
anti-proteinuric effect of linagliptin failed to find a significant impact [111]. Moreover, DPP4Is failed to have a
significant impact on doubling of serum creatinine, change in GFR, or ESRD [108][109][110]. On the other hand,
administration of linagliptin to T2DM patients that had renal dysfunction and were prescribed ACE inhibitors
or ARBs has led to additive significant reduction in albuminuria [112].

In normoglycemic milieu, microRNA-29 (miR29) suppresses DPP4 gene. In hyperglycemic state, this
suppression is lost. As a consequence, cell surface DPP4 activity increases [113]. In diabetic mice, activated
endothelial DPP4 induces phosphorylation of adjacent integrin 71 on the surface of the endothelium. The
activated DPP4, together with the phosphorylated integrin 71 form a complex that up-regulates TGF 7 receptor
and activates the surface vascular endothelial growth factor receptor type 1(VEGFR1). Up-regulated TGF
? receptor and VEGFR1 stimulate endothelialmesenchymal transition (EndMT) that increases transition to
fibroblasts with subsequent increased fibrogenesis [114] [Fig. 6]. However, the lack of significant impact of
DPP4Is on GFR in human studies would cast doubts on their favorable effect on renal fibrosis in humans.

The effect of DPP4Is treatment on the retina is debatable. While some investigators reported an increase
in retinal endothelial leakage and vascularity [115], others have reported a significant reduction in the risk of
diabetic retinopathy progression [116].

The lack of the expected favorable effect of DDP4Is on diabetic microvascular and macrovascular complications
of diabetes in spite of the proven molecular and experimental mechanisms can be attributed to potentiation of
the stem cell chemokine, stromal cell-derived factor-1 (SDF-1), which promotes inflammation, proliferation and
neovascularization ??7117]. SDF-1 enhances atheromatous plaque growth and instability, cardiac inflammation,
and fibrosis [118]. The renal effects of DPP4Is are mainly through potentiation of SDF-1leading to podocyte
injury and glomerulosclerosis. SDF-1 also induces natriuresis in the distal tubules, contrary to SGLT2Is and
NHES inhibitors that act on PCT. Hence, SDF-1 cannot utilize tubuloglomerular feedback to modulate the
glomerular hyperfiltration ?7117,119] [Fig. 7]. SDF-1 may also aggravate both retinopathy and neuropathy
?7?7117,120].

7 g) Sodium glucose co-transporters inhibitors

SGLT2Is constitute a recently introduced group that has insulin independent hypoglycemic effect. Three members
of this group, namely empagliflozin, canagliflozin, and dapaglifiozin are FDA approved and are now used
worldwide. By inhibiting the upregulated SGLT2 co-transporters in the brush border of the S1 segment of
the PCT, SGLT2Is can reduce the renal threshold for plasma glucose from 196 to 22 mg/dL, thereby enhancing
urinary excretion of glucose [121]. They also increase distal sodium delivery and hence distal tubular sodium
absorption. Increased adenosine triphosphate (ATP) consumption during sodium absorption with a consequent
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increase of adenosine production, causes afferent arteriolar vasoconstriction and fall in renal blood flow, reverses
hyperfiltration, and accordingly reduces renal injury [Fig. ?77?]. In addition, SGLT2Is exert other beneficial effects,
including reductions in body weight, serum UA, and blood pressure ??7122]. Excess glucose within the tubular
lumen triggers the uric acid transporter GLUT9 within the S3 segment of the PCT and in the collecting duct to
excrete UA in exchange with glucose [123]. The antihypertensive effect of SGLT2Is is related to volume depletion,
loss of body weight, inhibition of endothelial NHE1 and renal NHE3, and reduction in serum UA ??71]. DPP-4=
dipeptidyl peptidase; TGF= transforming growth factor; EndMT= endothelial mesenchymal transition.

SGLT2Is not only decrease serum UA but they can decrease intracellular fructose metabolism and UA synthesis
in the PCT epithelium [124]. Intracellular UA is pro-oxidant. It stimulates NADPH oxidase enzyme activity with
consequent increase in production of ROS. This leads to premature senescence of these cells, activation of the
renin-angiotensin system, epithelialmesenchymal transition, and activation of the inflammatory cascade through
activation of NF-?B [125][126][127] [Fig. 5]. Cyclin-dependent kinase (CDK) inhibits cell senescence. P21 is an
inhibitor of CDK and thus promote cell senescence. Hyperglycemia induces P21 while SGLT2Is inhibit this factor
within PCT cells [128,129] [Fig. ??]. SGLT2Is also dampen the expression of Toll-like receptor-4, the binding of
nuclear DNA for activator protein 1, the increased collagen IV expression as well as the increase in interleukin-6
secretion and interstitial macrophage infiltration induced by hyperglycemia within the renal parenchyma [130].
Moreover, fibrotic and inflammatory genes are suppressed within the diabetic kidney by SGLT2Is [131,132].
Through suppression of intracellular UA production, SGLT2Is inhibits renal gluconeogenesis. Intracellular UA
stimulates adenosine monophosphate dehydrogenase (AMPD) enzyme and inhibits adenosine monophosphate
kinase (AMPK) enzyme activities. Intracellular AMPD stimulates while AMPK inhibits gluconeogenesis [133].
In healthy personnel, the kidneys participate in endogenous glucose production.

In the fasting state, 20%-25% of endogenous glucose production takes place through renal gluconeogenesis. In
T2DM, renal gluconeogenesis increases three fold [134].

Empagliflozin in EMPA-REG trial achieved 55% reduction of the chance of ESRD in T2DM patients with
established cardiovascular disease, and an eGFR >30 mL/min/1.73m 2 . The median observation time in EMPA-
REG trial was 3.1 years [135]. In comparison, losartan treatment of similar population having DN has led toa
28% delay in the onset of ESRD during a mean follow-up of 3.4 years [136]. Empagliflozin treatment resulted
in a 39% reduction of incident or worsening nephropathy, a 38% reduction in progression to overt albuminuria
and a 44% reduction in doubling of serum creatinine [137]. The favorable outcome of SGLT2Is is attributable
to their effect on glomerular hyperfiltration, blood pressure, body weight, and serum UA in diabetic patients
[137][138][139]. SGLT2Is also inhibit NHEs on the surface of cardiomyocytes, endothelial cells,and renal tubular
epithelial cells. NHE inhibition can explain the distinguished cardioprotective and renoprotective actions of
SGLT2Is [140][141][142]. Decreased renal blood flow induced by SGLT2Is is related to tubuloglomerular feedback
and not related to the renin-angiotensin system (RAS) blockade. Empagliflozin and dapagliflozin increase plasma
aldosterone and angiotensin IT [143,144], together with increased activity of urinary angiotensin converting enzyme
and angiotensin converting enzyme2 [145].

2-years treatment of T2DM patients (total of 1450 cases) already kept on metformin with either once-daily
canagliflozin 100 mg, canagliflozin 300 mg, or glimepiride titrated to 6-8 mg resulted in eGFR decline by 0.5,
0.9, and 3.3mL/min/1.73m 2 /year respectively (P<0.01 for each canagliflozin group versus glimepiride) in spite
of comparable reductions in HbAlc. UAE declined more with canaglifiozin 100 mg or canagliflozin 300 mg than
with glimepiride. These results further support that the renoprotective effect of SGLT2Is is independent of their
glycemic effect [146]. Contrary to DPP4Is and sulfonylurea as that are significantly associated with increased
risk of diabetic retinopathy, SGLT2Is were not associated with a higher risk of diabetic retinopathy than placebo
among 100 928 patients with T2DM included in 37 independent randomized controlled trials with 1806 diabetic
retinopathy events [147]. In the Canagliflozin Cardiovascular Assessment Study (CANVAS), 10 142 T2DM
patients were assigned to canagliflozin or placebo. 34% of the patients had 72 risk factors for cardiovascular
events but had no history of previous cardiovascular event (primary prevention cohort), while the remaining
66% had a positive history of cardiovascular event (secondary prevention cohort). The patients were randomly
assigned in a ratio of 1:1:1 to either canaglifiozin 100 mg, canagliflozin 300 mg or matching placebo. After
treatment for a mean of 3.6 years, the primary endpoint (cardiovascular death, nonfatal myocardial infarction,
or nonfatal stroke) has occurred less frequently with canagliflozin compared with placebo (26.9 versus 31.5/1000
patient-years; P=0.02). There was no statistical evidence of heterogeneity between the primary and secondary
prevention cohorts. Renal outcomes were reduced by 40% and heart failure hospitalization was reduced by 33%
in patients treated with canagliflozin [148,149]. 17,160 T2DM patients, including 6,974 with atherosclerotic
cardiovascular disease, were assigned for 10 mg Dapagliflozin or placeboin 1:1 ratio and were followed for a
median of 4.2 years. Dapagliflozin decreased the composite of cardiovascular death or hospitalizations for heart
failure in those with established atherosclerotic cardiovascular disease (ASCVD) and those with only multiple
risk factors. The renal composite endpoint (740% decrease in estimated glomerular filtration rate to <60 mL
per minute per 1.73 m 2 of body-surface area, new end-stage renal disease, or death from renal or cardiovascular
causes) decreased by 24% in the Dapagliflozin group [150]. When patients with previous myocardial infarction (n
= 3,584) were specifically looked for, adverse cardiovascular events were 16% less in the dapagliflozin arm [151].
According to these studies, SGLT2Isshould be prescribed aiming at cardiovascular protection in patients with
T2DM and ASCVD [152].
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8 H) FREE OXYGEN RADICALS SCAVENGERS

T2DM patients suffering CKD and albuminuria (4400 patients) were randomly assigned to receive
canagliflozin100 mg daily or placebo in 1:1 ratio. All the patients had an eGFR of 30 to <90 mL/minute/1.73 m
2 and albuminuria (urine albumin/creatinine ratio>300 to 5000 mg/gm) that were receiving RAS blockers. The
primary outcome was a composite of ESRD (dialysis, transplantation, or a sustained eGFR of <15 mL/min/
1.73 m 2 ), a doubling of the serum creatinine, ordeath from renal or cardio-vascular causes. The projected
duration of the study was 5.5 years. Investigators of this study prematurely terminated the trial after a planned
interim analysis on the recommendation of the data and safety monitoring committee. This analysis has shown
a highly significant reduction of the primary composite endpoint by 34% in patients treated with canagliflozin
after 2.6 years of treatment. Patients in the canagliflozin group also had a lower risk of ESRD, hospitalization for
HF, and the composite of CV death, myocardial infarction, or stroke. These results indicate that canagliflozin
may be an effective treatment for renal and cardiovascular protection in T2DM patients suffering CKD [153].
The observed benefits were obtained mainly in patients whose basal eGFR was between 30 mL/min/1.73 m 2
. In addition, these findings were observed despite very modest differences in blood sugar, weight, and blood
pressure between the placebo and the active treatment groups. This suggests that the mechanism of benefit is
independent of glycemic control and is likely related to the reduction in single nephron hyperfiltration related to
NHES3 inhibition.

The more recent results of the DECLARE -TIMI 58 have supported the favorable effects of SGLT2Is. In this
last mentioned trial, 17160 type 2 DM patients were studied using dapagliflozin 10 mg versus placebo in 1:1 ratio
for 4.2 years. 47.6% of these patients had GFR >90, 45.1% had GFR between 60 and 90, while only 7.4% of the
patients had GFR < 60 ml/min/1.73m 2 . In addition, more than two thirds of the patients had normal urine
albumin excretion. Contrary to CREDENCE trial patients where all patients were prescribed RAS blockers, only
81.3% of DECLARE study patients were on RAS blockers. The pre specified composite cardio-Renal end points
(sustained decline of at least 40% in eGFR to less than 60 mL/min/1773m?, end-stage renal disease (defined as
dialysis for at least 90 days, kidney transplantation, or confirmed sustained eGFR <15mL/min per 1773 m?),
or death from renal or cardiovascular causes were significantly reduced by 24% in the dapagliflozin group while
the prespecified composite renal end points (excluding the cardiovascular causes of death from the cardio-renal
composite endpoints) decreased by 47%,and the chance to develop ESRD decreased by 56% in the dapagliflozin
group. The significant impact of dapagliflozin was encountered in patients having baseline GFR >90, between
60 and 90, in normoalbuminuric patients, in patients with microalbuminuria and in those with overt proteinuria.
We would like to emphasize that these favorable effects were only encountered in patients already maintained on
either ACE inhibitors or ARBs [154].

8 h) Free oxygen radicals scavengers

Many preclinical studies have overwhelmed the role of reactive oxygen species (ROS) in the pathogenesis of
diabetic complications. However, the less favorable outcomes of different antioxidants to prohibit the development
or progression of diabetic complications in large clinical trials have dampened the enthusiasm for the use of
antioxidant agents in diabetes [155]. Clinical studies using vitamin A, C, and E as antioxidant agents in
pre-diabetic and T2DM patients were disappointing. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
transcription factor that protects and restores cell homeostasis upon activation. Although Nrf2 is activated in
response to hyperglycemia, this activation does not reach the sufficient level capable to combat the oxidative
stress fueled by hyperglycemia [156]. Insufficient Nrf2 activity is often associated with the pathogenesis of
diabetes and its complications [157]. Natural products can activate Nrf2, as a potential therapeutic target to
control diabetic complications [157,158]. Cruciferous vegetables, grapes, buckwheat, black tea, citrus fruits, apple
peels, cinnamon, turmeric, Berberis Mahonia plant, kiwi fruits, the climbing plant Sinomenium acutum, garlic,
and Bitter Melon are rich sources of different natural Nrf2 activators [159][160][161][162].

Consumption of 10 gms of broccoli sprouts powder, a rich source of sulforaphane, daily for four weeks was
associated with significant improvement in insulin resistance in sixty-three T2DM patients [163]. In a double-
blind trial in T2DM patients, the study candidates consumed oral 2x5 mg resveratrol (resveratrol group) or a
placebo (control group) for four weeks. Resveratrol significantly decreased insulin resistance, and urine ortho-
tyrosine/creatinine ratio as an index of ROS production [164]. A more recent study of ten T2DM subjects,
daily consumption of 3 grams of resveratrol for 12 week has increased skeletal muscle Sirtuinl and adenosine
monophosphate kinase enzymes expression. These findings can further support the insulin sensitizing effect of
resveratrol [165]. On the other hand, resveratrol supplementation over five weeks in fourteen T2DM patients
already kept on diet control did not have a significant effect on glycemic control [166].

In seventy-five patients undergoing primary cardiovascular disease prevention, resveratrol-rich grape supple-
ment significantly decreased highsensitivity C-reactive protein, tumor necrosis factor-?, plasminogen activator
inhibitor type 1, and increased anti-inflammatory interleukin-10. The authors concluded that 1-year consumption
of a resveratrol-rich grape supplement improved the inflammatory and fibrinolytic activities in high cardiovascular
risk and diabetic patients [167]. The beneficial anti-inflammatory effect of resveratrol-rich grape supplement was
further supported in a later study of 35 T2DM male patients. One-year consumption of resveratrol-rich grape
supplement down-regulated the expression of pro-inflammatory cytokines in circulating mononuclear cells [168].
However, a more recent and larger study failed to prove a significant impact of low (40 mg/day) and high
doses (500 mg/day) used for 6 months on fasting blood sugar, glycated hemoglobin or c-reactive protein [169].
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When 36 dementia-free, T2DM 49-78 years old patients consumed single doses of synthetic trans-resveratrol (75,
150 and 300 mg) at weekly intervals, trans-cranial Doppler ultrasound both before and 45 min after treatment
had shown that only the 75 mg dose was efficacious to improve the cerebral vasodilator responsiveness in both
middle and posterior cerebral arteries [170]. In addition, a single 75 mg dose of resveratrol was found to improve
neurovascular coupling and cognitive performance in Thirty-six T2DM adults aged 40-80 years [171]. A more
recent study has shown that a daily 100mg resveratrol supplementation for twelve weeks in 50 T2DM patients
was associated with a significant decrease of arterial stiffness estimated by cardio-ankle vascular index [172].

When the endothelial function was assessed using digital volume plethysmography to measure the changes
in the reflective index, oral intake of curcumin 150 mg twice daily for eight weeks has lead to a significant
improvement in endothelial function [173]. Supplementation of twenty T2DM patients suffering overt proteinuria
with 22mg of curcumin three times daily for two months significantly decreased urinary protein excretion and
urine IL-8 beside serum levels of TGF-? and IL-8 [174]. Curcumin 500 mg three times daily was administered for
nine months to 120 pre-diabetic patients and significantly improved insulin resistance and beta cell function with
consequent prevention of diabetes [175]. Further studies supported the favorable anti-diabetic effect of curcumin
[176][177][178].

9 i) Recommendations of diabetes associations

In October 2018, the European Association for the Study of Diabetes (EASD) and the American Diabetes
Association (ADA) issued an updated consensus statement on management of hyperglycemia in T2DM patients.
This consensus showed-up during the annual meeting of EASD in Berlin, Germany. In this consensus, patients
with clinical CV disease should receive one of SGLT2Is or GLP-1RAs, while in patients with CKD or clinical
HF and ASCVD, SGLT2Is should be considered [179]. The choice of diabetes therapies as recommended by the
American Association of Clinical Endocrinologists (AACE) and American College of Endocrinology (ACE) must
be individualized based on many attributes including the risk reduction in heart and kidney disease [180].

10 j) Novel markers of Diabetic complications

Mannose-binding lectin (MBL) is a recognized protein of the innate immune system. It is composed of a lectin
(carbohydrate-binding) moiety attached to a collagenous moiety. MBL binds to a wide range of sugars that
permits MBL to interact with a wide range of viruses, bacteria, yeasts, fungi, and protozoa containing such
sugars within their cell walls or membranes. When bound to its target sugar moiety, MBL can activate the
complement system in the classic pathway or in Cl-independent manner [181]. MBL is independently associated
with HbAlc among diabetic patients [182]. MBL is involved in complement activation within the diabetic kidney
[183] and was discovered as a possible independent predictor of DR, DN and other vascular complications in type
1 and type 2 diabetes [184][185][186][187][188][189].

In 297 newly diagnosed T2DM patients, serum fibrinogen was a strong predictor for DN [190]. Serum
Adiponectin was proved as a strong predictor of DN in both type 1 and type 2 diabetic patients according
to a recent meta-analysis of 13 studies of more than five thousand cases [190].

11 1II.

12 Discussion

Diabetic complications pose a massive public health and economic burden. The introduction of GLP1RAs,
DPP4ls, and SGLT2Is has revived the hope to effectively prevent or slow down the rate of progression of
these complications. These hypoglycemic agents have, in addition, a favorable effect on body weight with less
likelihood to experience hypoglycemia. In parallel with their evolving evidence of CV and renal protective
effects, ADA recommended SGLT2Is as second-or thirdline antihyperglycemic treatment [191]. The updated
consensus statement on management of hyperglycemia in type 2 diabetes issued by EASD and ADA has also
recommended the early introduction of SGLT2Is and GLP1RAs to diabetic patients with clinical CV disease
and SGLT2Is to patients with CKD or clinical HF and ASCVD. These recommendations were founded on the
accumulating evidence of the significant impact of these agents in secondary prevention. The lack of similar
significant impact in primary prevention is likely related to the relatively short duration of CVOTs. The most
famous primary prevention trial in T2DM patients is UKPDS. It took ten years after the end of this study to get
significant differences in acute myocardial infarction and overall mortality between intensive therapy group and
the standard of care group [192]. In spite of the significant renoprotective effect of canaglifiozin in CREDENCE
trial in the whole studied group, patients with eGFR? 60 mL/min/1.73 m 2 and patients with UAE 71000 mg/gm
creatinine failed to get the expected benefit [153]. The planned duration of this study was 5.5 years. However,
the study was prematurely terminated according to the observed significant difference in the composite endpoints
between the 2 arms in the whole group. Given the known long duration of stage 4 DN, the short duration of
this study was not enough for patients recruited with eGFR? 60 mL/min/1.73 m 2 and patients with UAE
71000 mg/gm creatinine to d evelop enough number of primary endpoints. The rate of decline of GFR in DN
patients is around 6mL/min/1.73m 2 [146]. The more recent results of the DECLARE -TIMI 58 did support
this view. This last mentioned trial continued for 4.2 years. In this study, the significant impact of dapagliflozin
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was encountered in patients having baseline GFR >90, between 60 and 90, in normoalbuminuric patients, and in
patients with microalbuminuria. These favorable effects in patients of DECLARE study are likely related to the
relatively longer duration of follow-up [154]. Taking these results into account and according to the accumulating
evidence, more energetic primary preventive studies should be designed. These new studies should select newly
diagnosed diabetic patients that have laboratory markers of likelihood to develop diabetic nephropathy later
during the future course of their disease. The main obstacle for such studies is the duration needed to have
enough number of endpoints for adequate statistical analysis. Such long duration may lend such studies very
costly and very exhaustive. Given the safety and noninferiority of SGLT2Is, GLP1RAs, and DPP4lIs, and the
highlighted beneficial effects of these agents, we suggest a more reproducible approach to manage T2DM patients.
In addition to T2DM patients with clinical CV disease, and those with ASCVD, patients with high cardiovascular
risk should be prescribed SGLT2Is as second-line hypoglycemic agent after metformin. RAS blockers should be
additionally added to guarantee optimum benefit. In the case of morbid obesity, inability to control food avidity
or hyperglycemia, GLP1RAs can be used instead of SGLT2Is. In case of failure of SGLT2Is to achieve the
glycemic target, either DPP4I or GLP1RA should be added as the third-line agent. SGLT2I can be added on
top of GLP1RA if the later failed to achieve the glycemic target. Routine screening of diabetic patients for
likelihood to develop diabetic nephropathy using the early predictors like serum MBL, fibrinogen, or adiponectin
can help to select patients prone to develop diabetic nephropathy. These patients should be prescribed SGLT2Is
to prevent the development of the disease instead of waiting untill they develop albuminuria. This primary
prevention approach can completely abort the development of DN instead of the current secondary prevention
that just postpones the event for few months or years. L
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