

1 Functional Dietary Supplementation of Okara (Soybeans 2 Residue) on Streptozotocin Induced Diabetes Mellitus in Male 3 Wistar Rats

4 Nwozo Sarah O¹, Ikpeme Grace E² and Nwawuba Stanley U³

5 ¹ University of Ibadan

6 *Received: 12 December 2018 Accepted: 1 January 2019 Published: 15 January 2019*

7 **Abstract**

8 A poor dietary habit has been demonstrated to be one of the key players in the development of
9 diabetes mellitus, and a diet rich in dietary fiber has been highlighted to be a potent candidate
10 for the management of diabetes mellitus. Therefore, this study is aimed to validate the role of
11 dietary supplementation of okara (soybeans residue) in streptozotocin induced diabetic male
12 Wistar rats. The total of 28 rats between the weight of 100 to 105g, was grouped into four
13 n=7, and this study spanned for a period of 43days. All experimentations were conducted
14 using standard method, and our findings show that the cumulative feed intake of 15

16 **Index terms**— diabetes mellitus, liver function, okara diet, lipid profile, and glycated hemoglobin.

17 **1 Introduction**

18 diabetes mellitus (DM) is a metabolic disorder whereby either the pancreas does not produce enough insulin (a
19 hormone that regulates hyperglycemia), or situation where the body cannot effectively use the insulin it produced
20 [1]. Correspondingly, DM has not only assumed a pandemic proportions worldwide but has also proven to affect
21 the developing countries of the world much more than their developed counterparts [2]. Of course, DM has been
22 demonstrated to be a prime global health concern with a projected rise in prevalence from 171 million in 2010
23 to 366 million in 2030 [1]. Disturbingly, both the number of cases and the prevalence of DM has steadily been
24 showed to be on the rise over the past few decades, and it is regarded to be a silent killer disease, affecting
25 millions of peoples in the world [3,4]. Considering Africa, studies has revealed that, the number of people with
26 diabetes will increase from 14.2 million in 2015 to 34.2 million in 2040 with majority of the cases predominated
27 in some of the region's most populous countries like: South Africa, the Democratic Republic of Congo, Nigeria,
28 and Ethiopia [2,3].

29 Regardless of the numerous conventional medications that have been in use for the management of DM, it
30 inaccessibility has been a limitation as a result of the relatively high cost and sometimes unavailability [5]. In
31 this light, of course, a switch to a readily available and cheaper alternative has become necessary in the form
32 of phyto/herbal medicine [5]. Herbal medicine similarly referred as phytomedicine; alludes to the use of plants
33 seeds, flowers, roots for medicinal purpose and even today, plant materials continue to play an important role in
34 primary health care as a therapeutic remedy in many developing countries [5]. As reported, the World Health
35 Organization (WHO) recently recommended the use of medicinal plants for the management of DM and further
36 encouraged the expansion of the frontiers for scientific evaluation on the hypoglycemic properties of diverse plant
37 species [5,6].

38 Soybean-based foods have shown to be beneficial on human health and currently the consumption of soybean
39 products elevated due to functional food improving knowledge [7,8]. Generally, it has been demonstrated that a
40 diet high in fiber is useful in the management of the plasma glucose concentration in individuals with diabetes
41 [9]. The beneficial metabolic effects of dietary fiber are long lasting and clinically relevant both in types 1 and
42 type 2 diabetic patients [10]. Also, Fiber has been studied in the treatment of diabetes for many years because

10 H) BIOCHEMICAL ANALYSIS

44 increased fiber content has been shown to decrease the glycemic index of foods. The theory, then, is that the
45 decreased glycemic index would lead to smaller increases in blood glucose, and thus reduced blood glucose and
46 HbA1c levels [11].

47 Okara is the insoluble residue from soybean after milk production and is mainly rich in dietary fiber 50-60%
48 and protein 30% [12]. Its dietary fiber has 12% hemicellulose, 5.6% cellulose, 12% lignin, and 0.16% phytic acid
49 [13]. Because of its high fiber content, okara is used as a supplement in human diets, particularly western diets,
50 which are deficient of the essential fiber [12]. Although there have been several reports on the nutraceutical power
51 of okara [7, ??4,15], still, the use is not yet a common practice, as most people still dispose of it in the form of
52 chaff after extraction. In this light, continual evaluation and research are required to validate and update the
53 existing report on the health benefit of okara. Therefore, the aim of this study was to investigate the antidiabetic
54 ability of okara (soybean residue) on streptozotocin induced diabetic male Wistar rats.

55 2 II.

56 3 Material and Methods

57 4 a) Seed collection and preparation

58 Soybean Seeds were purchased from Bodija market, Ibadan, Oyo State. Thereafter, it was identified by a botanist
59 in the Botany Department of the University of Ibadan. The seeds were sorted manually to remove defective seeds
60 and other extraneous materials and then washed. The washed soybean seeds were blanched in hot water for
61 25minutes at 100 o C and then dehulled. The dehulled cotyledons were washed with hot (100 o C) water twice
62 and wet milled using 5litres of water to 1kg of the soybean seeds. The slurry obtained was mixed and filtered
63 through a muslin cloth to remove the milk and recover the residue called okara. The fresh okara was dried using
64 a hot-air dryer at a temperature of 70 o C, milled and sieved through 0.25mm pore sized sieve. Okara flour was
65 then packaged hermetically and stored for analyses and diet formulation.

66 5 b) Analysis of feed

67 We carried out a proximate content analysis for protein, fat, ash, fiber and moisture according to a standard
68 procedure as described by [16], and mineral (calcium and phosphorus) content analyses were carried out using
69 Atomic Absorption Spectrophotometry (AAS).

70 6 d) Animals used

71 For this study, a total of 28 male Wistar rats between the weights of 100-105g were procured from the central
72 animal house, College of Medicine, University of Ibadan, Nigeria. The male Wistar rats were kept in well-kempt
73 and ventilated cages, and their beddings changed every three days, and were allowed free access to clean drinking
74 water. The rats were allowed to acclimatize for two weeks before commencement of experimentation, and all the
75 processes involved in handling and experiment were carried out according to standard protocols approved by the
76 animal ethics committee of the department.

77 7 e) Induction of Hyperglycemia with Streptozotocin

78 Hyperglycaemia was induced with a single dose of intraperitoneal injection of streptozotocin. 50 mg/kg of
79 streptozotocin was dissolved in (0.1 M, pH 4.5) citrate buffer and after 72 hours; ACCU-CHEK Glucometer was
80 used to measure blood sugar level from blood samples collected from a caudal vein of the rats. Blood sugar levels
81 between the values of (326.50±3.56 to 327.00±4.85 mg/dl) were taken to be diabetic and the values in the range
82 of (88.67±2.16 to 97.67±1.51 mg/dl) were taken to be normal in this study.

83 8 f) Measurements of food intake and body weight

84 Daily food intake was derived by (final feed weight -initial feed weight) on a daily basis throughout the
85 experimentation, and body weight was taken weekly with an electronic balance.

86 9 g) Experimental design

87 Each group contained seven animals. Group 1: Normal Control fed with a normal diet.

88 Group 2: Negative control received 50mg/kg STZ, fed a normal diet and remained untreated.

89 Group 3: Positive control received 50mg/kg STZ, fed normal diet, and treated with glibenclamide 6mg/kg as
90 used by [17].

91 Group 4: Received 50mg/kg STZ, fed 15% okara supplemented diet as used by [7].

92 10 h) Biochemical analysis

93 ACCU-CHEK glucometer was used to measure blood sugar level, glucose-6-phosphate dehydrogenase (G6PD)
94 was measured by spectrophotometric method using Randoxkits, Randox kit method of enzymatic hydrolysis
95 described by [18] was used for determination

96 **11 i) Histopathological Studies**

97 Small pieces of the pancreatic, liver, and kidney tissues were fixed in 10% formalin solution, followed by embedding
98 in melted paraffin wax. Histopathological assessment and photomicrography of the prepared slides were done by
99 using an Olympus light Microscope with attached Kodak digital camera as previously described by [1].

100 **12 j) Statistical analysis**

101 As previously reported in [1], data were analyzed using ANOVA (analysis of variance) and mean separation was
102 done using Duncan multiple range test and HSD Turkey. Paired T-test was used to establish a difference in
103 timely events. P values less than 0.05 ($p<0.05$) were considered significant. Data were expressed as means \pm
104 standard deviation and pictorially presented in the form of charts. All statistical analysis was done using IBM
105 SPSS Version 22 and Microsoft Excel.

106 **13 III.**

107 **14 Results**

108 **15 a) Feed intake**

109 Table 2 shows the cumulative feed intake of male Wistar rats. Following two weeks of acclimatization, the weight
110 of the feed consumed by each group was recorded on a daily basis, summed up and reported weekly as day 1,
111 day 8, day 15, day 22, day 29, day 36 and day 43 respectively. On day 1, there was no significant difference
112 $p>0.05$ in the amount of feed consumed between all the groups. However, the experimental groups (B, C, and D)
113 intraperitoneally injected with 50mg/kg streptozotocin showed a significant increase $p<0.05$ in cumulative feed
114 intake relative to the normal control at day 8, day 15 and day 22 respectively. Interestingly, the cumulative feed
115 intake from day 29 up till day 43 for 15% okara supplemented diet fed group was significantly different $p<0.05$
116 the negative control and showed no significant difference $p>0.05$ as compared to the normal control.

117 **16 b) Body weight**

118 Figure ?? demonstrates the effect of 15% okara diet on body weight (g). Following two (2) weeks of
119 acclimatization, the rats body weights were taken and reported as initial body weight, and there was no observed
120 significant difference $p>0.05$ between all groups. However, after the experimental groups received 50mg/kg
121 streptozotocin intraperitoneal injection, the body weights were recorded after 7 days, and the result revealed that
122 there was a significant reduction $p<0.05$ in body weight of all experimental groups; negative control 138.17 ± 2.86 ,
123 positive control 138.17 ± 1.33 and 15% okara supplemented diet fed group 140.50 ± 2.81 relative to the normal
124 control 150.67 ± 2.73 . The final body weights of the rats were recorded after treatment for a period of 43 days,
125 6mg/kg glibenclamide treated group 226.33 ± 6.38 and 15% okara supplemented diet fed group 219.83 ± 5.67 showed
126 a significant increase $p<0.05$ in body weight relative to the Negative control 161.17 ± 3.60 . Similarly, the normal
127 control also showed a significant weight increase $p<0.05$ compared to the negative control.

128 **17 Medical Research**

129 Volume XIX Issue V Version I(D D D D) F of

130 triglyceride, total cholesterol, and high-density lipoprotein-cholesterol. Glycated hemoglobin (HbA1c) was
131 measured at the end of the study using a highperformance liquid chromatography (HPLC) technique. Serum
132 level of alanine and aspartate aminotransferases (ALT and AST), alkaline phosphatase (ALP), gammaglutamyl-
133 transferase (GGT), creatinine, urea, sodium, and potassium levels were measured by spectrophotometric method
134 using Randox kits. Superoxide dismutase (SOD) activity was measured using the method of [19] as previously
135 described by [1], catalase (CAT) activity was measured using the method of [20] as previously described by [1],
136 reduced glutathione (GSH) concentration was estimated using the method of [21] as previously described by [1],
137 Glutathione-S-transferase activity was determined following the method of [22] as previously described by [1], and
138 Glutathione peroxidase (GPX) activity was estimated following the method of [23]. Figure ?? shows the effect
139 of 15% okara supplementation diet on blood sugar levels. Baseline blood sugar levels were recorded after two
140 (2) weeks of acclimatization; Blood sugar levels after induction were recorded after 72 hours of intraperitoneal
141 injection of 50mg/kg streptozotocin, and after treatment at end of 43days, blood sugar levels were also recorded.
142 Normal control showed no significant variation $p>0.05$ in blood sugar levels, after treatment 97.67 ± 1.51 relative
143 to after induction 92.67 ± 4.21 , after induction relative to baseline 89.17 ± 1.72 . The experimental groups showed
144 a significant elevation $p<0.05$ in blood sugar level after induction relative to the baseline. However, 15% okara
145 diet supplementation and 6mg/kg glibenclamide treated group significantly lowered $p<0.05$ blood sugar levels
146 after treatment relative to after induction. 3 showed that G6PD ranged from (Normal Control) 91.33 ± 4.32
147 to 46.00 ± 2.83 (Negative Control-Untreated diabetics) and HbA1c ranged from (Normal Control) 4.62 ± 0.28 to
148 11.28 ± 0.54 (Negative Control-Untreated diabetics). In each parameter assay, 15% okara supplemented diet,
149 6mg/kg glibenclamide (positive control) treated group, and the normal control showed a significant increase
150 $p<0.05$ and a significant decrease $p<0.05$ relative to the negative control. Mean value with the same alphabet

22 DISCUSSION

151 as superscript within each column variable are non-significant ($p>0.05$). The abbreviations represent G6PD:
152 glucose-6-phosphate dehydrogenase, HbA1c: Glycated hemoglobin.

153 18 e) Lipid Profile

154 Table 4 shows the effect of 15% okara supplemented diet on lipid profile. At the end of 43 days of treatment,
155 blood samples were collected from the rats, and plasma levels of lipid profile parameters (CHOL, TRIG, LDL,
156 and HDL) were determined. Negative control (untreated group) showed a significant elevation $p<0.05$ in the
157 levels of CHOL, TRIG, LDL, and a significant decrease in the levels of HDL relative to the Normal control.
158 However, the treated groups (15% okara diet and positive control) significantly lowered $p<0.05$ CHOL, TRIG,
159 LDL, and elevated levels of HDL relative to the untreated group (Negative control).

160 19 f) Liver function

161 At the end of the experimentation, the rats blood samples were collected, and serum levels of liver function
162 biomarkers ALT, AST, ALP, and GGT respectively were determined as demonstrated in table 5. Negative
163 control which had remained untreated after 50mg/kg intraperitoneal streptozotocin injection showed a significant
164 elevation $p<0.05$ in all liver biomarkers assayed for relative to the normal control. However, 15% okara
165 supplemented diet and 6mg/kg glibenclamide significantly lowered $p<0.05$ levels of liver biomarkers vis-
166 à-vis negative control. Mean value with the same alphabet as superscript within each column variable
167 are non-significant ($p>0.05$). The abbreviations represent ALT: Alanine Aminotransferase, AST: Aspartate
168 Aminotransferase, ALP: Alkaline Phosphatase, GGT: Gamma-Glutamyltransferase.

169 20 g) Kidney Function

170 Table 6 shows the effect of 15% okara supplemented diet in male Wistar rats. Serum levels of kidney function
171 markers creatinine, urea, potassium, and sodium respectively were determined at the end of the experimentation.
172 The experimental groups received 50mg/kg streptozotocin intraperitoneal injection. However, the negative
173 control which remained untreated showed a significant increase $p<0.05$ in the levels of kidney function markers
174 relative to the normal control and treatment with 15% okara supplemented diet feeding significantly $p<0.05$
175 lowered the levels in comparison with the negative control and of course similar with the positive control. Mean
176 value with the same alphabet as superscript within each column variable are non-significant ($p>0.05$).

177 21 h) Antioxidant Enzyme

178 Table 7 demonstrates the effect of 15% okara diet on selected organs of male Wistar rats. Following 43 days
179 of experimentation, liver, kidney, and pancreas were harvested, homogenized, cold centrifuged, supernatants
180 collected and used for determination of selected antioxidant enzyme levels. Interestingly, levels of catalase (CAT),
181 superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-s-transferase (GST), and glutathione
182 peroxidase (GPX) for liver, kidney, and pancreas respectively were significantly decreased $p<0.05$ in the negative
183 control group relative to the normal control. However, 15% okara diet supplemented fed group, and 6mg/kg
184 glibenclamide treated group that was exposed to same levels of streptozotocin as the negative control showed a
185 significant increase $p<0.05$ in the levels of selected antioxidant enzymes vis-à-vis negative control. Means with
186 the same alphabet as superscript within each column variable are non-significantly ($p>0.05$). Abbreviations
187 denote SOD: Superoxide dismutase, GSH: reduced glutathione, GST: Glutathione-S-transfer, GPX: Glutathione
188 peroxidase.

189 22 Discussion

190 Diabetes mellitus is a serious health concern worldwide, and it is becoming the third most lethal disease of
191 human and has continued to be on a rapid rise [24,25]. In this light, it is imperative for an unrelenting research
192 on evaluation and validation of nutraceutical potentials of plant food for the management of diabetes mellitus.
193 Therefore, the present study sought to carefully examine the role of Okara supplemented diet on diabetic male
194 Wistar rats.

195 Polyphagia is a condition characterized by an increased appetite leading to an increase in feed/food intake.
196 It represents the initial signs of diabetes in humans as well as in experimental models [26,7]. Owing to this
197 finding, of course, our study demonstrated (table 2) that after diabetes induction with 50mg/kg streptozotocin
198 from day 8 -day 15, the cumulative feed intake of the experimental groups were significantly increased $p<0.05$
199 vis-a-vis the normal control, and this may be as a result of the low levels of leptin; a critical signaling molecule
200 in the hypothalamus influencing appetite and satiety [27]. Correspondingly, streptozotocin toxicity has been
201 demonstrated to elicit a low level of leptin, and during uncontrolled Type 1 diabetes, plasma leptin levels rapidly
202 fall whereas food intake increases [28,29]. However, 15% okara supplemented diets fed group from day 36 to day
203 43 showed no significant difference $p>0.05$ in cumulative feed intake relative to the normal control, and it may
204 be attributed to the hypoglycemic potency of okara diet as seen in figure ?? and apparently, restoring the health
205 status of the rats. Our result corroborates the finding of [7].

206 Streptozotocin-induced diabetes has been demonstrated to be associated with a severe reduction in body
207 weight, perhaps, due to the degradation or loss of structural proteins that are clearly established to contribute to
208 body weight gain [30]. Correspondingly, our study (figure ??) demonstrated that diabetes status was associated
209 with a reduction in body weight as seen with the diabetic groups after an intraperitoneal injection of 50mg/kg
210 streptozotocin. However, 15% okara supplemented diet feeding was significantly able to restore there rats body
211 weight almost back to normal vis-à-vis negative control and this may be due to an improvement in diabetic status
212 and other related abnormalities.

213 Diabetes mellitus is a metabolic disorder associated with an increased blood sugar levels, and of course, the
214 result of our study figure ??, demonstrated a significant blood sugar elevation after intraperitoneal injection
215 of 50mg/kg streptozotocin. However, 6mg/kg glibenclamide treatment and 15% okara diet supplemented diet
216 significantly lowered the blood sugar levels, and the hypoglycemic ability of okara diet may be attributed to its
217 high fiber content. High dietary fiber has been demonstrated to be beneficial, long lasting, and clinically relevant
218 both in types 1 and type 2 diabetes [10] and this reports corroborate the findings of [31, ??4].

219 To further confirm the hypoglycemic ability of okara diet, glucose-6-phosphate dehydrogenase, and glycated
220 hemoglobin levels were evaluated (table 3). Glucose-6-phosphate dehydrogenase (G6PD), an enzyme that
221 catalyzes the first step in the hexose monophosphate (HMP) shunt an alternative pathway for the catabolism
222 of glucose to yield pentose sugar), and Glycated hemoglobin (HbA1c) formed in a nonenzymatic pathway by
223 hemoglobin's normal exposure to high plasma glucose levels [32]. As reported by [32], both markers are good
224 predictors of diabetes. In this light, our study revealed that 15% okara diet supplemented diet restored the
225 levels of G6PD and HbA1c vis-à-vis the negative control. Therefore, okara diet is a potent dietary agent for the
226 management of diabetes.

227 Diabetic dyslipidemia shows high levels of plasma cholesterol (CHOL), triglyceride (TRIG), LDLcholesterol
228 (LDL), and low HDL-cholesterol (HDL) concentrations [33]. Similarly, alterations in lipid metabolism can cause
229 lipotoxicity, which can further exacerbate diabetic complications [34]. Also, a high level of serum triglycerides,
230 and a low level of High-Density Lipoprotein (HDL) are listed among the constellation for the medical conditions
231 related to metabolic syndrome [35]. Of course, the result of the present study (table 4) revealed that the diabetic
232 group (negative control) significantly $p < 0.05$ had an elevated level of CHOL, TRIG, LDL and a reduced level of
233 HDL relative to the normal control. Conversely, 15% okara supplemented diet feeding significantly normalized
234 the lipid triad and hence may have also improved the diabetic condition of the rats. Additionally, our result
235 corroborates the finding of [13, ??4,36].

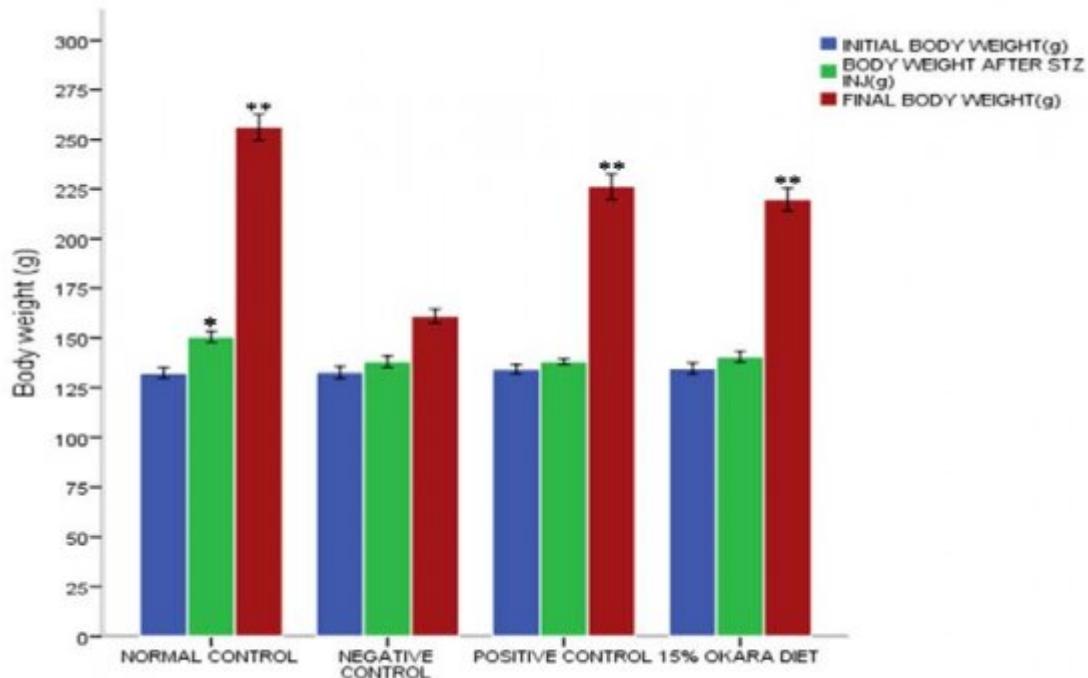
236 Markers used to determine toxic effects of administered foreign substances to experimental animals are enzymes
237 activities. Liver function enzyme ALP, is a membrane-bound enzyme meanwhile, ALT, and AST are cytosolic
238 enzymes [37]. Therefore, high levels of ALP, ALT and AST respectively in the serum, are indicators of cell
239 membrane permeability and a significant degree of damage to the liver [37]. Streptozotocin, a diabetogenic
240 agent is associated with some degree of liver damage by several studies [38,39]. In this light, of course, our
241 result presented in Table 5 demonstrated that the levels of liver function biomarkers were significantly elevated
242 in negative control which was exposed to 50mg/kg intraperitoneal injection of STZ relative to normal control.
243 However, 15% okara diet supplementation potentiated a significant reduction in liver function biomarkers and
244 this result suggests that some components of okara, namely; dietary fiber, dietary bioflavonoids, and isoflavones,
245 could be associated with its ability in maintaining liver function.

246 Furthermore, one of the huge concerns of DM is its related complications, which can affect multiple vital organ
247 systems [40,41]. Creatinine, Urea, and electrolyte are selected indices of kidney function [42]. In this light, of
248 course, the result of the present study table 6, underscored the favorable role of 15% okara diet supplementation
249 in abrogating renal dysfunction induced by exposure to streptozotocin, as the was a significant reduction $p < 0.05$
250 in markers of kidney function vis-à-vis the negative control.

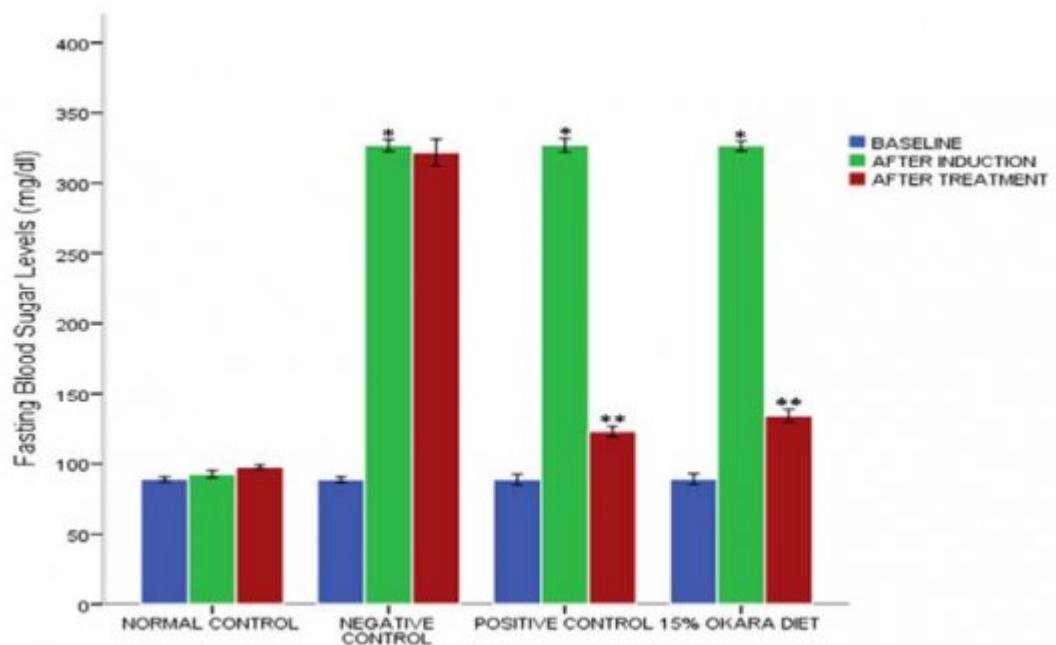
251 Antioxidants are key players for the investigation of oxidant stress-related diabetic pathologies, and the
252 activities of the antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase has been
253 demonstrated to be reduced in diabetic conditions [43]. Correspondingly, DM is associated with an increased
254 free radicals formation, and a decreased antioxidant capacity, consequently resulting to oxidative stress and a
255 damage of cell components [44].

256 The result of the present study table 7, demonstrated that the negative control which remained untreated
257 after 50mg/kg intraperitoneal injection of streptozotocin showed a significant decrease $p < 0.05$ in levels of
258 antioxidant enzymes CAT, SOD, GSH, GST, and GPX relative to the normal control for pancreas, liver and
259 kidney respectively. The result is in tandem with the reports that kidney antioxidant enzyme activity declines in
260 STZ induced animals as a consequence of the oxidative stress elicited by STZ [45]. Oxidative stress induced by
261 streptozotocin (STZ) results to pancreatic beta cell damage [46], and a decline in the levels of liver antioxidant
262 enzyme [47]. Interestingly, 15% okara supplemented diet caused a significant increase $p < 0.05$ in antioxidant
263 enzyme levels vis-à-vis negative control for all organs and this activity may be as a result of its composition
264 which corresponds with the report of [48]; reported that, Okara contains phenolic compounds (106.7 mg gallic
265 acid equivalents (GAE)/100 g) and flavonoids (32.7 mg quercetin equivalents/100 g) and showed antioxidant
266 activity.

267 The histological observation of the pancreas figure A to D as contained in plate I for this study, revealed
268 that the untreated group after 50mg/kg STZ injection (Negative control) had a severe a peritubular cellular


23 CONCLUSION

269 infiltration. Perhaps, as a result of STZ diabetogenic action, by a direct irreversible damage to the pancreatic
270 beta cells, this leads to degranulation, and loss of capacity to secrete insulin [49]. Correspondingly, the prevalence
271 of diabetes mellitus is positively correlated with fatty infiltration of the pancreas [50]. However, the pancreatic
272 tissue of the 15% okara supplemented diet fed group showed no visible lesions, and this highlights its ameliorative
273 potency in the management of diabetes mellitus. The histological observation of the liver figure E to H, plate II
274 shows that negative control (F) had random foci of single-cell hepatocellular necrosis, but this was reversed by
275 15% okara supplemented diet (H) as no visible lesion was observed. However, the histological observation
276 of the kidney figure I to L, plate III showed no visible lesion for all groups contrary to the findings of [45] that
277 histological observation of the kidney exposed to STZ was necrotic.


278 V.

279 23 Conclusion

280 A poor dietary habit has been demonstrated to be one of the key players in the development of diabetes mellitus,
281 and a diet rich in dietary fiber has been highlighted to be a potent candidate for the management of DM. Thus,
282 the result of our study shows that Okara diet; perhaps an excellent nutraceutical aids weight reduction, lower
283 blood sugar and glycated hemoglobin levels and maintains a healthy level of lipid profile, liver, kidney, and
antioxidant enzyme biomarkers. Conclusively, we recommend a supplementation of food with Okara.¹

284 Figure 1:

12

Figure 2: FFigure 1 :Figure 2 :

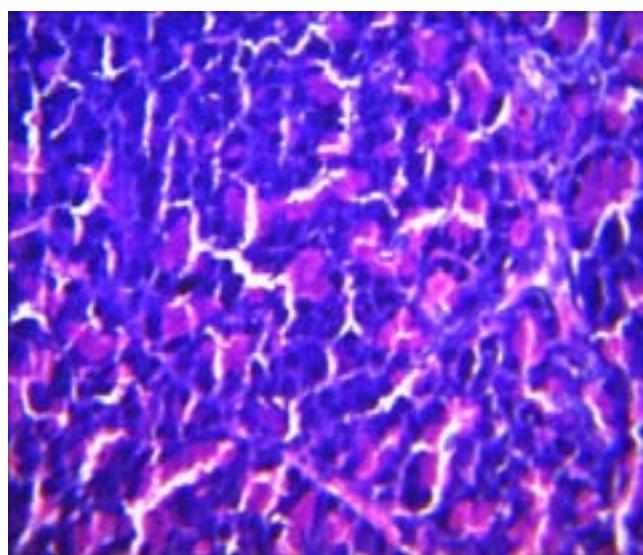


Figure 3:

23 CONCLUSION

1

Parameters	Normal Diet (%)	Okara Diet (%)
Protein	21	24.5
Ash	1.3	4.2
Moisture	4.6	7.4
Fat	3.5	3.2
Fibre	6.0	40.8
Calcium	0.8	0.9
Phosphorus	0.8	0.72
Okara	-	15
Dry Matter	-	91.38%

Figure 4: Table 1 :

2

G	Day 1	Day 8	Day 15	Day 22	Day 29	Day 36	Day 43
	24.8±1.17	33.7±1.03	50.3±1.63	62.7±5.61	96.3±5.28 a	132.3±1.51	174.8±1.72
a		a	a	a		c	c
	25.0±1.41	42.2±0.75	71.3±1.63	93.3±2.07	105.7±0.82	119.2±2.23	156.2±1.17
a		b	b	b	b	a	a
	24.5±1.64	42.8±1.47	72.8±2.04	92.8±2.56	117.5±1.52	128.7±2.42	165.0±2.10
a		bc	b	b	c	b	b
	24.7±1.21	44.2±1.47	73.5±1.87	93.3±1.63	125.7±1.63	131.5±1.52	173.3±3.27
a		c	b	b	d		bc

[Note: c Mean value with the same alphabet as superscript within each column variable are non-significant ($p>0.05$). The abbreviations represent G: Groups, A: Normal Control, B: Negative Control, C: Positive Control, D: 15% Okara Diet supplementation.]

Figure 5: Table 2 :

3

GROUPS	G6PD	HbA1c %
Normal Control	91.33±4.32 d	4.62±0.28 a
Negative Control	46.00±2.83 a	11.28±0.54 d
Positive Control	74.50±5.21 c	6.37±0.36 b
15% Okara Diet	58.17±2.56 b	7.57±0.52 c

Figure 6: Table 3 :

4

Groups	CHOL	TRIG	LDL	HDL
Normal Control	51.00±1.55 a	34.83±2.23 a	17.00±1.67 a	40.00±3.74 c
Negative Control	70.17±1.17 c	51.67±1.86 d	28.67±1.63 c	21.83±1.17 a
Positive Control	57.50±3.39 b	41.00±1.41 b	20.50±1.87 b	30.17±1.60 b
15% Okara Diet	56.17±1.17 b	44.67±1.75 c	22.17±2.48 b	30.17±2.14

[Note: b Mean value with the same alphabet as superscript within each column variable are non-significant ($p>0.05$). The abbreviations represent CHOL: cholesterol, TRIG: triglyceride, LDL: low-density lipoprotein, HDL: high-density lipoprotein.]

Figure 7: Table 4 :

5

Groups	ALT(U/I)	AST(U/I)	ALP(U/I)	GGT(U/I)
Normal Control	32.33±2.94 a	39.50±2.34 a	125.67±2.94 a	5.67±1.21 a
Negative Control	44.67±2.01 b	53.67±2.34 b	164.17±2.86 b	15.67±1.63 b
Positive Control	58.83±2.23 c	63.67±2.94 c	143.25±2.51 c	9.00±0.89 c
15% Okara diet	44.00±2.53 b	51.67±1.86 b	144.33±4.80 b	8.17±0.98 b

Figure 8: Table 5 :

6

Groups	Creatinine	Urea	Potassium	Sodium
Normal Control	51.67±1.03 a	15.17±1.17 a	6.50±0.55 a	147.50±2.17 a
Negative Control	70.00±1.41 c	26.67±1.37 b	10.67±1.21 c	164.17±3.00 c
Positive Control	53.00±0.89 a	18.00±1.72 a	8.83±1.72 b	152.67±1.63 b
15% Okara diet	55.50±1.05 b	17.00±2.83 a	8.00±0.89 ab	153.00±2.10 b

Figure 9: Table 6 :

GROUPS	CATALASE	SOD	GSH	GST	GPX
Normal Control	39.60±1.14 c	43.60±2.30 d	83.20±1.92 d	38.40±1.14 d	33.00±1.58 c
Negative Control	15.00±1.58 a	22.00±1.58 a	39.00±1.58 a	11.20±1.92 a	12.80±1.48 a
Positive Control	26.20±1.92 b	35.60±1.14 c	62.00±3.58 c	26.40±2.30 c	25.00±1.87 b
15% Okara Diet	24.20±2.77 b	30.10±1.14 b	56.40±3.36 b	21.40±2.30 b	22.20±1.92 b
KIDNEY					
Normal Control	33.60±1.14 d	35.40±2.30 c	64.80±3.11 d	33.40±2.70 c	32.20±1.92 c
Negative Control	10.20±1.92 a	16.80±2.28 a	33.00±3.16 a	18.20±4.76 a	11.00±1.87 a
Positive Control	25.20±1.30 c	27.80±1.64 b	47.20±1.48 c	24.20±0.84 b	24.60±2.24 b
15% Okara Diet	21.00±1.58 b	25.20±2.39 b	42.00±1.58 b	23.80±2.25 b	23.40±3.05 b
PANCREAS					
Normal Control	30.20±0.84 c	32.60±1.14 c	54.40±2.97 c	34.80±1.30 c	35.00±2.74 c
Negative Control	11.40±1.14 a	12.60±3.05 a	23.80±2.39 a	12.80±1.92 a	11.60±1.82 a
Positive Control	23.80±1.30 b	23.20±1.79 b	45.20±2.86 b	25.60±2.30 b	23.20±2.86 b
15% Okara Diet	23.40±1.82 b	24.40±2.41 b	43.00±2.65 b	23.00±2.55 b	22.60±2.61 b

Figure 10: Table 7 :

285 .1 Authors Contributions

286 Nwozo Sarah Onyenibe contributions to study were; conceptualized of the study, preparation of study design,
287 supervision of the study, proofread and revised the study. Ikpeme Grace Edet contributed to the study in the
288 area of carry out experimentation, co-preparation of study design, collection of experimental data and reporting
289 and revision of work. Nwawuba Stanley Udogadi contributed to the study by analysis and interpretation of data,
290 preparation of manuscript and revision of the manuscript. All authors have approved the submitted version and
291 agrees to be personally accountable for the authors contributions.

292 .2 Conflict of interest statement

293 The authors declare that there is no conflict of interest regarding the publication of this manuscript.

294 [AOAC Official Methods of Analysis, Association of Official Analytical Chemists ()] , *AOAC Official Methods
295 of Analysis, Association of Official Analytical Chemists* 1995. (16th edition Washington DC)

296 [World Health Organization. Global Report on Diabetes (2016)] , https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1(acces World Health
297 Organization. *Global Report on Diabetes* 2016. June 2019. 978. (Isbn)
298

299 [Nwawuba et al. (2019)] 'Ameliorative effect of aqueous seed extract of delonixregia on hyperglycemia, liver function
300 and lipid profile levels in Streptozotocin induced Diabetic Male wistar rats'. S U Nwawuba , C C Monago
301 , K C Mejulu . <https://medcraveonline.com/PPIJ/PPIJ-07-00242.pdf>(accessedon10th *Pharm
302 PharmacolInt J* June 2019. 2019 (3) p. .

303 [Nwozo and Nwawuba (2019)] 'Ameliorative Potentials of Cyperus Esculentus Oil on Type 2 Diabetes Induced
304 by High Fat Diet and Low Dose Streptozotocin in Male Wistar Rats'. S O Nwozo , S U Nwawuba .
305 <http://www.ghrnet.org/index.php/ijhr/article/view/2494> *IJDR* May 2019. 2019 (1) p. .

306 [Lim and Lee (2010)] 'Anti-diabetic effect of material fermented using rice bran and soybean as the main
307 ingredient by *Bacillus* sp'. S I Lim , B Y Lee . 10.3839/jksabc.2010.035. <https://link.springer.com/article/10.3839/jksabc.2010.035> *J. Korean Soc. Appl. Biol Chem*2010. June 2019. 53 p. .

309 [Li et al. (2019)] 'Antihyperglycemic effect of *Ganoderma lucidum* polysaccharides on streptozotocin-induced diabetemicmice'. F Li , Y Zhang , Z Zhong . <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189773>
310 *Int. J. Mol. Sci*2011 June 2019. 12 p. .

312 [Chis et al. (2009)] 'Antioxidant effects of a grape seed extract in a rat model of diabetes mellitus'. I C Chis , M
313 I Ungureanu , A Marton , R Simedrea , A Muresan , I D Postescu . <https://www.ncbi.nlm.nih.gov/pubmed/20368212> *DiabVasc Dis Res* 2009. June 2019. 6 (3) p. .

315 [Bajaj and Afreen (2012)] 'Antioxidants and diabetes'. S Bajaj , K Afreen . <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603044/> *Indian J Endocrinol Metab* 2012. June 2019. 16 (2) p. . (Suppl)

317 [Dueñas et al. (2012)] 'Bioactive phenolic compounds of soybean (*Glycinemax* cv. Merit): modifications by
318 different microbiological fermentations'. M Dueñas , T Hernández , S Robredo , G Lamparski , I Estrella ,
319 R Muñoz . <https://content.sciendo.com/view/journals/pjfn/62/4/article-p241.xml> *Pol. J. Food Nutr Sci*2012. June 2019. 62 p. .

321 [Rotruck et al. (1973)] 'Biochemical role as a component of glutathione peroxidase'. J T Rotruck , A L Pope ,
322 H E Ganther , A B Swanson , D G Hafeman , W G Hoekstra , Selenium . <https://www.ncbi.nlm.nih.gov/pubmed/4686466> *Science* 1973. June 2019. 179 p. .

324 [Elreffaei-Wael et al. (2019)] 'Biological Evaluation of Okara in Rats Based on Plasma Lipid Profile and Histology'. H M Elreffaei-Wael , M Eman , M M Rageb , A H Masoud . <https://journals.indexcopernicus.com/search/article?articleId=2021998> *International Journal of Plant & Soil Science* June 2019.
325 2014 (6) p. .

328 [Sheweita et al. (2016)] 'Changes in Oxidative Stress and Antioxidant Enzyme Activities
329 in Streptozotocin-Induced Diabetes Mellitus in Rats: Role of *Alhagi maurorum* Extracts'. S A Sheweita , S Mashaly , A A Newairy , H M Abdou , S M Eweda .
330 10.1155/2016/5264064<https://www.hindawi.com/journals/omcl/2016/5264064/>(Accessed6th. ID 5264064.
331 <http://dx.doi.org/10.1155/2016/5264064><https://www.hindawi.com/journals/omcl/2016/5264064/>(Accessed6th *Oxid Med Cell Long* 2016. June 2019. p. .

334 [Sinha (2019)] 'Colrimetricassay of catalase'. A K Sinha . <https://www.ncbi.nlm.nih.gov/pubmed/4556490> *Anal Biochem*1972 June 2019. 47 p. .

336 [Afrin et al. (2015)] 'Curcumin ameliorates streptozotocin-induced liver damage through modulation of endoplasmic reticulum stress-mediated apoptosis in diabetic rats'. R S Afrin , V Arumugam , R A Soetikno , V
337 Thandavarayan , V Pitchaimani , R Karuppagounder , M Sreedhar , H Harima , S Suzuki , M Miyashita , K
338 Nomoto , K Watanabe . <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389763/> *Free Radic.
339 Res* 2015. June 2019. 49 (3) p. .

23 CONCLUSION

341 [Nuttall (1993)] 'Dietary fiber in the management of diabetes'. F Q Nuttall . <https://www.ncbi.nlm.nih.gov/pubmed/8384131> *Diabetes* 1993. June 2019. 42 (4) p. .

342 [Giacco et al. (2002)] 'Dietary fibre in treatment of diabetes: myth or reality?'. R Giacco , G Clemente , G Riccardi . <https://www.sciencedirect.com/science/article/pii/S1590865802801827> *Digestive and Liver Disease* 2002. June 2019. Elsevier. p. . (Suppl 2)

343 [Nwawuba et al. (2019)] 'Dietary Management of Diabetes Mellitus with Focus on Nigeria'. S U Nwawuba , S O Nwozo , K A Mohammed . <http://www.ghrnet.org/index.php/ijhr/article/view/2493> *IJDR* May 2019. 2019 (1) p. .

344 [Surel et al. ()] 'Dietaryfibre potentials of some selected flours and their effect on blood glucose and serum cholesterol reduction. (EJFST) EA Journals'. O Surel , B Couplet , O F Eze , J C Ani , N E Obasi . [http://www.eajournals.org/wp-content/uploads J.Sci.Food.Agric.2005.2014.June.2019.85\(2\).p.pdf](http://www.eajournals.org/wp-content/uploads/J.Sci.Food.Agric.2005.2014.June.2019.85(2).p.pdf) . (Influence of the dehydration process on active compounds of okara during its fractionation)

345 [Mooradian (2009)] 'Dyslipidemia in type 2 diabetes mellitus'. A D Mooradian . <https://www.ncbi.nlm.nih.gov/pubmed/19229235> *Nat Clin Pract Endocrinol Metab* 2009. June 2019. 5 (3) p. .

346 [Sani et al. (2019)] 'Effect of oral administration of Aqueous leaf extract of momordicacharantia (bitter melon) on serum glucose, and lipid profile in Alloxan-induced Diabetic Rats'. F A Sani , M K Atiku , A A Imam . <https://www.ajol.info/index.php/bajopas/article/view/136646> *BAJOPAS* June 2019. 2015 (2) p. .

347 [Nwozo et al. (2018)] 'Effect of Solanummelongena fruits supplemented diet on hyperglycemia, overweight, liver function and dyslipidemia in male New Zealand rabbits fed high fat and sucrose diet'. S O Nwozo , D A Adeneye , S U Nwawuba . <https://www.oatext.com/effect> *Integr Obesity Diabetes* 2018. June 2019. 4 (3) p. .

348 [Gülen and Dincer (2007)] 'Effects of leptin on oxidative stress in healthy and Streptozotocin-induced diabetic rats'. S Gülen , S Dincer . <https://www.researchgate.net/publication/6483345> *Mol Cell Biochem* 2007. June 2019. 302 (1-2) p. .

349 [Gu et al. (1997)] 'Endocrine/ exocrine intermediate cells in Streptozotocin treated Ins-IFNgamma transgenic mice'. D Gu , M Arnush , N Sarvetnic . <http://europepmc.org/abstract/MED/9336787> *Pancreas* 1997. June 2019. 15 (3) p. .

350 [Gomathi et al. (2019)] 'Evaluation of Antioxidants in the Kidney of Streptozotocin Induced Diabetic Rats'. D Gomathi , M Kalaiselvi , G Ravikumar , K Devaki , C Uma . <https://www.ncbi.nlm.nih.gov/pubmed/24757306> *Ind J ClinBiochem* 2014 June 2019. 29 (2) p. .

351 [Ismaiel et al. (2019)] 'Evaluation of High Fibers Okara and Soybean Bran as Functional Supplements for Mice with Experimentally Induced Type 2 Diabetes'. M Ismaiel , Y Hong , Cui Min . <https://content.sciendo.com/view/journals/pjfn/67/4/article-p327.xml> *Pol. J. Food Nutr. Sci* 2017 June 2019. 67 (4) p. .

352 [Ogbonnia et al. (2008)] 'Evaluation of hypoglycemic and hypolipidemic effects of ethanolic extracts of Treculia Africana Decne and Bryopyllumpinnatum Lam. and their mixture on steptozotocin (STZ) -induced diabetic rats'. S O Ogbonnia , J I Odimegu , V N Enwuru . <http://www.academicjournals.org/AJB> (Accessed on 5th) *Afr J Biotech* 2008. June 2019. 7 (15) p. .

353 [Nwozo et al. (2018)] 'Evaluation of Momordica charantia, Boerhaavia diffusa and Cotreatment on Streptozotocin induced Diabetes in Male Wistar Rats'. S O Nwozo , T E Modeme , S U Nwawuba . <http://www.ijbs.org/User/ContentFullText.aspx?VolumeNo=14&StartPage=66&Type=pdf> *IJBS* December 2018. 2018 (2) p. .

354 [Chang et al. (2013)] *Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds*. *Evid Based Complement Alternat Med*, C L Chang , Y Lin , A P Bartolome , Y C Chen , S C Chiu , W C Yang . <https://www.ncbi.nlm.nih.gov/pubmed/23662132> (accessed on 6th) 2013. June 2019. 378657.

355 [Mateos-Aparicio et al. (2019)] 'High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean'. I Mateos-Aparicio , C; Mateos-Peinado , P Rupérez . <http://www.sciencedirect.com/science/journal/14668564> *IFSET* June 2019. 2010 (3) p. .

356 [Nwozo et al. (2019)] 'Hypoglycemic and Antioxidant Capacity of Curcuma Longa and Viscum Album in Alloxan Induced Diabetic Male Wistar Rats'. S O Nwozo , A N Nyam , S U Nwawuba , O I Olukotun . <http://www.sciencepublishinggroup.com/j/ijde> *IJDE* May 2019. 2019 (1) p. .

357 [Azahar et al. (2019)] 'Hypoglycemic effect of Octomelessumatrana aqueous extract in streptozotocin-induced diabetic rats and its molecular mechanisms'. M A Azahar , G Al-Naqeb , M Hasan , A Adam . <https://www.ncbi.nlm.nih.gov/pubmed/23146801> *Asian Pac J Trop Med* June 2019. 2012 (11) p. .

358 [Beutler et al. (1963)] 'Improved method for the determination of blood glutathione'. E Beutler , O Duron , B M Kelly . <https://www.ncbi.nlm.nih.gov/pubmed/13967893> *J. Lab Clin Med* 1963. July 2019. 61 p. .

359 .

400 [Omonkhua et al. (2019)] 'Liver function of Streptozotocin-Induced Diabetic Rats Orally Administered Aqueous
 401 Root-Bark Extracts of Tetrapleuratetraptera (Taub)'. A A Omonkhua , E Adebayo , J A Saliu , T H Ogunwa
 402 , T T Adeyelu . <https://www.ajol.info/index.php/njbas/article/view/118049> *Nig. J. Basic
 403 and Appl. Sci* July 2019. 2014 (3 & 4) p. .

404 [Sindelar et al. (1999)] 'Low plasma leptin levels contribute to diabetic hyperphagia in rats'. D K Sindelar , P J
 405 Havel , R J Seeley , C W Wilkinson , S C Woods , M W Schwartz . <https://www.ncbi.nlm.nih.gov/pubmed/10342816> *Diabetes* 1999. June 2019. 48 (6) p. .

406 [Shivaraj et al. (2019)] 'Markers of renal function tests'. G Shivaraj , B D Prakash , S K Shruthi , V H Vinayak
 407 , A K Avinash , N V Sonal . <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354405/> *N Am J
 408 Med Sci* June 2019. 2010 (4) p. .

409 [Mohamed et al. (2016)] *Mechanisms of Diabetes-Induced Liver Damage; The role of oxidative stress and
 410 inflammation*, J Mohamed , N A H Nazratun , A H Zariyaney , S B Budin . <https://www.ncbi.nlm.nih.gov/pubmed/27226903> 2016. June 2019. 16 p. . Sultan Qaboos Univ Med J

411 [Lu et al. (1349)] 'Okara dietary fiber and hypoglycemic effect of okara foods'. F Lu , Y Liu ,
 412 B Li . <https://pubag.nal.usda.gov/catalog/5359622> *Bioact. Carbohydr. Diet. Fibre2013
 413 Food%20and%20Agri/2005v 85/no.8/2005v85no8p1343-1349*. June 2019. June 2019. 2 p. . (Journal/J.Sci.)

414 [Vital et al. (2019)] 'Okara residue as source of antioxidants against lipid oxidation in milk enriched with omega-
 415 3 and bioavailability of bioactive compounds after in vitro gastrointestinal digestion'. A C P Vital , C Croge ,
 416 D F Da Silva . <https://www.ncbi.nlm.nih.gov/pubmed/29606766> *J Food Sci Technol2018* June 2019.
 417 55 (4) p. .

418 [Chikezie et al. (2015)] 'Overview of Anti-Diabetic Medicinal Plants: The Nigerian Research Experience'.
 419 P C Chikezie , O A Ojiako , K C Nwifo . <https://www.omicsonline.org/open-access/overview-of-antidiabetic-medicinal-plants-the-nigerian-research-experience-2155-6156-1000546.php?aid=53380> *J Diabetes Metab* 2015. June 2019. 6 (6) p. .

420 [Bashan et al. (2019)] 'Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen
 421 species'. N Bashan , J Kovsan , I Kachko , H Ovadia , A Rudich . <https://www.ncbi.nlm.nih.gov/pubmed/19126754> *Physio Rev2009* June 2019. 89 p. .

422 [Hori et al. (2016)] 'Possible Involvement of Pancreatic Fatty Infiltration in Pancreatic Carcinogenesis'.
 423 M Hori , M Michihiro , I Toshio , N Hitoshi , T Mami . <http://pancreas.imedpub.com/possible-involvement-of-pancreatic-fatty-infiltration-in-pancreatic-carcinogenesis.pdf> *JOP* 2016. June 2019. 17 (2) p. .

424 [Richmond (1973)] 'Preparation and properties of a cholesterol oxidase from Nocardia specie and its application
 425 to the enzymatic assay of total cholesterol in serum'. W Richmond . <https://www.ncbi.nlm.nih.gov/pubmed/4757363> *Clinical Chemistry* 1973. June 2019. 19 (12) p. .

426 [Ravipati and Rajkumar ()] 'Role of Leptin in Diabetes Mellitus'. S Ravipati , B Rajkumar . <http://www.cibtech.org/jls.htm> *Indian Journal of Fundamental and Applied Life Sciences* 2011. 1 (2) p. . (Accessed on 5th 2019)

427 [Reid et al. ()] *Sleisenger and Fordtran's Gastrointestinal and Liver Disease: Pathophysiology/diagnosis/management*, A E Reid , M Feldman , L S Friedman , L Brandt . 2006. St Louis,
 428 Missouri, USA: Saunders. p. . (Non-alcoholic fatty liver disease. 8th ed)

429 [Matsumoto et al. (2007)] 'Soybean Residue, Prevents Obesity in a Diet-Induced Murine Obesity Model'. K;
 430 Matsumoto , W Yutaka , Y Shin-Ichiro , Okara . 10.1271/bbb.60563. <https://www.tandfonline.com/doi/abs/10.1271/bbb.60563> *Bioscience, Biotechnology, and Biochemistry* 2007. June 2019. 71 (3) p. .

431 [Nwawuba and Okechukwu ()] 'The effect of Cyperusesculentus (Tigernut) oil on liver, kidney and hematological
 432 biomarkers in low dose streptozocin and high fat diet exposed male wistar rats'. S U Nwawuba , F C
 433 Okechukwu . <http://www.foodsciencejournal.com/archives/2018/vol3/issue4> *Int. J. Food Sci. Nutr* 2018. JULY 2018. 3 (4) p. .

434 [Préstamo et al. (2007)] 'The effects of okara on rat growth, cecal fermentation, and serum lipids'. G Préstamo
 435 , P Rupérez , I Espinosa-Martos , M J Villanueva , M A Lasunción . <https://www.researchgate.net/publication/225557986> *Eur. Food Res Technol* 2007. June 2019. 225 p. .

436 [Habig et al. (1974)] 'The first enzymatic step in mercapturic acid formation'. W H Habig , M J Pabst , W B
 437 Jakoby , Glutathione S-Transferases . <https://www.ncbi.nlm.nih.gov/pubmed/4436300> *J Biol Chem*
 438 1974. July 2019. 249 p. .

439 [Misra and Fridovich (1972)] 'The role of superoxide anion in the autoxidation of epinephrine and a simple assay
 440 for superoxide dismutase'. H P Misra , I Fridovich . <https://www.ncbi.nlm.nih.gov/pubmed/4623845>
 441 *J Biol Chem* 1972. June 2019. 247 p. .