Global Journals IATEX JournalKaleidoscope ${ }^{\text {TM }}$

Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals. However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

Determinants of Hypertension in a Rural Area of Kancheepuram District, Tamilnadu

Dr. Muthulakshmi Muthiah

Received: 10 December 2019 Accepted: 1 January 2020 Published: 15 January 2020

Abstract
Background: Hypertension is one of the most important modifiable risk factors for cardiovascular diseases (CVDs). Hypertension is a risk factor that accounts for 12.3

Index terms - blood pressure, risk factor, cardiovascular disease.

1 Introduction

igh blood pressure (BP) is one of the most important modifiable risk factors for cardiovascular diseases (CVDs). 1 Hypertension (HTN) is a chronic condition of concern because of its role in the causation of coronary heart disease (CHD), stroke, and other vascular complications. It is the most common CVD disorder which poses a significant public health challenge to a population undergoing socioeconomic evolution. It is one of the dominant risk factors for CVD mortality, accounting for 20-50\% of all deaths. 2,3 Hypertension (HTN) exerts a substantial public health burden on cardiovascular health status and healthcare systems in India. 4,5 The analysis showed that about 26% of the population globally is suffering from hypertension, and the prevalence is higher among developed as compared to developing countries. 6 It is predicted that the number of adults with hypertension would increase by about 60% to a total of 1.56 billion by 2025. $7,8 \mathrm{HTN}$ is directly responsible for 57% of all stroke deaths and 24% of all coronary heart disease (CHD) deaths in India. 9,10 Currently, the incidence of hypertension is 20 to 40% in urban areas and 12 to 17% in rural areas of India. One in three Indian adults has high blood pressure. According to the World Health Statistics 2012 report, India has low rates of hypertension compared to world figures. 11 In India, 23.10% of men and 22.60% of women over 25 years suffer from hypertension. 12,13 As per the NFHS 4 report, prevalence of hypertension in males is 10.3% and in females is 6.7%. 14 Community surveys have documented that in a period of three to six decades, prevalence of hypertension has increased by about 30 times among the urban dwellers and by about ten times among the rural inhabitants. 15,16 The technological and economic developments have reduced the physical activity of the people to a real large extent and increased the alcohol and tobacco use which are the vital causes for the rising burden of hypertension. 17 The risk factors for non-communicable disease are grouped into three categories they are behavioral, metabolic and biochemical risk factors. Behavioral risk factors include tobacco use, alcohol use, unhealthy diet, and lack of physical activity. Metabolic risk factors include overweight, obesity, diabetes, and Abstract-Background: Hypertension is one of the most important modifiable risk factors for cardiovascular diseases (CVDs). Hypertension is a risk factor that accounts for 12.3% of the deaths and disabilities combined in Tamilnadu during 2016.

2 Objectives

3 ?

To assess the prevalence of risk factors of hypertension among the study population.

4 ?

To determine the association between sociodemographic factors and hypertension.

$5 ?$

To determine the association between various risk factors and hypertension.

6 Conclusion: The prevalence of hypertension and its

determinants is high in this study are tumultuous. Lifestyle modification plays a pivotal role, and hypertension is a lifestyle disease change in that harmful lifestyle habits must be adopted.
hypertension (HTN). Biochemical risk factors include hypercholesteremia and hypertriglyceridemia. 18 To contain the increasing burden of Non-Communicable Diseases, Ministry of Health and Family Welfare, Government of India, has launched the National Programme on Prevention and Control of Diabetes, Cardiovascular Diseases and Stroke (NPDCS). 19 As fewer studies has been undertaken in rural India, this study was planned to assess the determinants of hypertension among the rural population of Kancheepuram district of Tamil Nadu. This study will shed some light on the existing problem.

7 II.

8 Materials and Methods

9 a) Study design

This study is a community-based crosssectional study conducted in a rural area of Kancheepuram district, Tamil Nadu.

10 b) Study area

The study was conducted in Serappanachery Padappai (S. Padappai), which is the rural field practice area of the Rural Health and Training Centre (RHTC) attached to our Institution (Sree Balaji medical college and hospital).

11 c) Study population

The study population included are those permanently residing in Serappana-chery Padappai and belonging to the adult age group of $20-60$ years.

12 d) Study period
 The study was conducted during December 1 st 2018 -May 31 st , 2019.

13 e) Sample size

The sample size was calculated from a previous study conducted by Kishore J et al, in a rural area in 2016, the prevalence of hypertension recorded in this study was 14.1%. 20 The sample size was calculated using the formula $\mathrm{N}=\mathrm{Z} ?^{2} \mathrm{pq} /[\mathrm{L}] 2$ where $\mathrm{Z}=1.96, \mathrm{p}=14.1 \%, \mathrm{q}=85.9$ (100-14.1), $\mathrm{L}=2$. 115 . Accounting 15% for non-response, the final sample size was calculated as 1245 (rounded off to 1250). [$\mathrm{N}=1250$]

14 f) Inclusion criteria

The inclusion criteria for the study were the adult population of age group (20-60 years) residing in Serappanachery Padappaiand willing to participate in the study.

15 g) Exclusion criteria

The exclusion criteria for the study were females who were pregnant, psychiatric patients, who are severely ill, and those who didn't give consent to participate in the study was excluded.

$16 \mathrm{~h})$ Sampling method

A systematic random sampling technique was used to identify the study subjects. Sampling Interval (N / n) is calculated as follows: [$\mathrm{N}=$ Total number of households in Padappai=1851, $\mathrm{n}=$ sample size $=1250$. $\mathrm{N} / \mathrm{n}=1851 / 1250=2$]. Thus alternate household is selected for identifying the adult population between $20-60$ years of age.

17 i) Study tool

A structured questionnaire based on the WHO STEPS approach is used as a study stool for data collection, Details included in it are socio demographic profiles, details regarding risk factors for hypertension, and physical measurements (height, weight, waist circumference, and BP).

18 j) Informed consent

Informed Consent was obtained from each participant before the administration of the interview schedule.

$19 \mathrm{k})$ Ethical approval

The study proposal was presented and was approved by the Institutional Ethics Committee. 1) Operational definitions 1. Tobacco user: 21 Tobacco user was defined as individuals who had used any form of tobacco in the last 30 days. 2. Alcohol user: 21 Alcohol users were those who had consumed at least one standard drink of alcohol (30 ml of spirits, 285 ml of beer, or 120 ml of wine) in the last 12 months. 3. Unhealthy diet: 18 A unhealthy diet is Low consumption of fruits and vegetables at less than five servings per day (one cup of raw leafy vegetables or a half cup of other vegetables (cooked) was considered one serving. One medium-sized piece of fruit or half cup of chopped fruit was measured as one serving). 4. Physical activity: 18 Physical activity low physical activity was defined as <150 minutes of moderate physical activity per week. 5. Overweight: 22 Overweight was defined as BMI $23-24.9 \mathrm{~kg} / \mathrm{m} 2$. 6. Pre obese: 22 Pre obese was defined as BMI equal to or more than $25 \mathrm{~kg} / \mathrm{m} 2$. 7. Obese: 22 Obese was defined as BMI equal to as or more than $30 \mathrm{~kg} / \mathrm{m} 2$. 8. Central obesity: 22 Central obesity is assessed based on the waist-hip ratio. As per WHO guideline, males with a waist-hip ratio above 0.9 and females with a waist-hip ratio above 0.85 have central obesity.
III.

20 Results

21 a) Socio-demographic characteristics of the study population

Socio-demographic characteristics of the study population are shown in Table 1. Among the study participants, 44.2% belonged to $50-60$ years of age, 24.2% belonged to $20-30$ years of age, and 20.8% belonged to $30-40$ years of age. About 57.4% of the study participants were females, and 42.6% were males. Nearly 82.4% are married, and 5.44% were unmarried. Almost 18.7% of the study samples had no formal education, 30.2% had middle school education, and 21.3% had a high school education. Among the participants, around 43.7% were unemployed, 32.2% are engaged in unskilled occupation, and 17.8% are involved in semiskilled occupation. 49.6% belonged to lower-middle socio-economic category, and 21.8% belonged to the upper lower socio-economic group. In this study, 56.8% of them belong to the nuclear family, 30% belonged to the joint family, and the rest were belonging to three-generation family.

22 f) Knowledge regarding hypertension among the study population

Among the study participants, when asked whether they know the normal blood pressure value, 24.8% said they know the normal blood pressure value., and among them, only 60% said the correct blood pressure value and 40% said incorrect value. In this study, 47.5% of the participants have adequate knowledge about hypertension, as shown in FIGURE ??.

$23 \mathrm{~g})$ Univariate analysis findings among the study population

In the Univariate analysis the variables that are significantly associated with hypertension are age (pvalue<0.0001), marital status (p-value- <0.0001), education (p-value-0.015), occupation (p-value-0.003), socioeconomic status (p -value- <0.015), family type ($\mathrm{pvalue}-<0.0001$), positive family history (p -value-0.009), presence of associated comorbidity (p-value- <0.0001), knowledge about hypertension (p -value- <0.0001) and BMI (p -value<0.0001). There was no association found between other variables and hypertension. 2325.5% of the ever used tobacco in a study by Maroof KA In Uttar Pradesh. 24 In Peter Lloyd-Sherlock study 64.6% had never smoked and 24.1% are smoking daily. 2515.9% are smoking daily, and 73.2% are using smokeless tobacco in a study by Aroor Bhagyalaxmi which was conducted in a rural area of Gujarat, India. 26 Sathish Kumar conducted a study in Salem in which 24.7% had never used tobacco, and 25% are past users. 21 ii. Alcohol use In this stud, 18.6% are current alcohol users, and 1.1% were past users of alcohol. Sathish Kumar, s study showed that 58.3% are using alcohol daily or a few days a week, and 28.6% had used alcohol in the past. 2140.9% are consuming alcohol in a study by Chataut J. 23 In a study by K. A. Maroof, 35.5% had ever used alcohol,, and the remaining 64.5% had never used alcohol. 2476.8% had never consumed alcohol in their lifetime in a study conducted by Peter Lloyd-Sherlock. 25 iii. Physical activity In this study, 66.2% were physically inactive, and only 33.8% were physically active as per the operational definition, and this showed that the majority of the study participants are following unhealthy lifestyle habits. In Chataut J study, 51.8% are involved in moderate physical activity, and 8% are engaged in sedentary activities. 2328.5% are physically inactive in a study done by Peter Lloyd-Sherlock. 25 Aroor Bhagyalaxmi study showed that 14.1% of the study samples were physically inactive. 2634.9% were doing sedentary physical activity and 33.8% are involved in vigorous physical activities in a study done by Sathish Kumar. 21 iv . Unhealthy diet 72.5% of the respondents in this study were following an unhealthy diet. In a study conducted by Aroor Bhagyalaxmi most of the study participants i.e. 96.4% were following unhealthy diet. 2694.5% were taking low fruit, and vegetables in a study by Garg A. 27 Bhattacherjee S conducted a study in West Bengal in which 60.4% were consuming an unhealthy diet. 28

2486
 25 v. Overweight and obesity

In this study, as per the Asian Adults BMI criteria, 26.2% were overweight, 22% were pre-obese, and 12.6% belonged to obese category. In V Mohan study 22.5% were overweight and 28.5% of the respondents are obese. 2912% of the respondents were overweight in a study by Aroor Bhagyalaxmi. 26 In a study done by Prabhakaran D 35% of them were overweight, and 3.3% of the study participants belonged to theobese category. 3020.5% were overweight, and 4.2% were the obese in Midha T. 31

26 vi. Central obesity

In this study, central obesity was assessed based on the waist-hip ratio. About 83.4% of the study participants have central obesity. In a study by Isezuo SA. 13% of the study participants had central obesity. 32 Aroor Bhagyalaxmi showed that central obesity was present in 38% of the samples. 2615.7% of the study participants have central obesity in AK Agarwal study. 33 In a study by K. A. Maroof 30.5% were centrally obese. 2449.1% have central obesity in a study by V Mohan. 29

27 vii. Food habits

In this study, nearly 89.9% of the study participants were nonvegetarian and 10.1% were vegetarian. Among the non vegetarians, 54.1% had non vegetarian food once a week, and 35.1 had non vegetarian food twice a week. In Chataut J study, 91.3% of them are were nonvegetarian and 8.7% were vegetarian and 71.4% were nonvegetarian in a study by Sathish Kumar. 21

28 viii. Family history of hypertension

In this study, among the study participants, 21.4% had a positive family history of hypertension. Rajeev Bhardwaj conducted a study in which only 4% of the study participants have a positive family history of hypertension. 34 In a study by Shyamal Kumar Das, 2.4% of the study participants had a positive family history of hypertension. 3553.8% of the families have hypertension in a study by Haresh Chandwani. 37

29 b) Association between sociodemographic variables, risk factors and hypertension

In this study in the Univariate analysis, the variables that are significantly associated with hypertension are age, marital status, education, occupation, socio-economic status, family type, positive family history, presence of associated comorbidity, knowledge about hypertension, and BMI. The variables that are significant in multivariate analysis are age, presence of associated comorbidity, knowledge about hypertension, family type, and BMI. In a study by Sathish Kumar, increasing age, male gender, increasing BMI levels, tobacco, alcohol, WHR were found to be significant independent predictors of hypertension and on multivariate analysis of these significant variables age, male gender, increasing BMI levels, were found to be significant after adjusting for other variables. 21 In hypertension study group multicentric study multiple logistic regression analyses identified a higher body mass index, higher education status, and prevalent diabetes mellitus as important correlates of the prevalence of hypertension. 37 Jonas JB conducted a study, in which hypertension was associated with higher age, higher body mass index, body height, Higher blood hemoglobin levels, and elevated blood urea concentration. 38 V .

30 Conclusion

The prevalence of hypertension and its determinants is high in this study are tumultuous. Lifestyle modification plays a pivotal role, and hypertension is a lifestyle disease change in that harmful lifestyle habits must be adopted. The target population for this strategy will be adolescents, and early adults, as the prevention of risk factors will curb the rates of hypertension and its risk factors.

This study will initiate an internalization process of the government sector to make it more attractive, viable, and reliable, thereby giving scope proper screening, early diagnosis and treatment, and to provide accessible quality tertiary care.

[^0]

Figure 1: Figure 2 :

Determinants of Hypertension in a Rural Area of Kancheepuram District, Tamilnadu			
Sl. No.	Socio-Demographic Variable	Frequency ($\mathrm{N}=1250$) Percentage (\%)	
1.	20-30 Years	Age 136	10.9
2. 3 .	30-40 Years 40-50 Years 50-60	302260552 Sex 532718 Marital Status 68	24.220 .8
	Years Male Female Unmarried		$44.2 \quad 42.6$
			57.45 .4
	Married	1030	82.4
4.	Widower	142	11.4
	Divorcee Illetereate Primary	10 Education 234282378	. 818.722 .6
	School Middle School		30.2
5.	High School Post High School	26612726 Occupation	21.31 .05 .8
	Diploma Ug/Pg Professional		. 5
	Unemployed	546	43.7
	Unskilled	402	32.2
	Semiskilled	222	17.8
	Skilled	46	3.7
	Farmers/Clerks/Shop Owners	10	. 8
	Semiprofessional	14	1.1
	Professional	10	. 8
			(c) 2020
			Global
			Journals

Figure 2: Table 1 :

2
$\left.\begin{array}{lll}\text { Sl. No. } & \text { Food Habits } & \text { FREQUENCY }\end{array} \begin{array}{l}\text { PERCENTAGE } \\ \text { (\%) }\end{array}\right)$
[Note: c)]
Figure 3: Table 2 :

3
\(\left.$$
\begin{array}{llll}\begin{array}{lll}\text { Sl. } \\
\text { No. }\end{array} & \text { Lifestyle } & \text { FREQUENCY } & \begin{array}{l}\text { PERCENTAGE } \\
(\%)\end{array}
$$

1. \& \& Job Type (N-1250)\end{array}\right]\)| |
| :--- |
| |
| |
| |
| |
| |
| |
| Sedentary Work |
| Moderate Work |
| Heavy Work |

Figure 4: Table 3 :

4

Sl. No.	Risk Fac- tor	Frequency (N-1250)	Percentage (\%)
1.	Tobacco Use		
	Yes	160	12.8
	No	1090	87.2
2.		Alcohol Use	
	Yes	232	18.6
	No	1018	81.4
3.		Physical Inactivity	
	Yes	828	66.2
	No	422	33.8
4.		Unhealthy Diet	
	Yes	906	72.5
	No	344	27.5

d) Prevalence of risk factors among the study population
Prevalence of risk factors for hypertension is depicted in TABLE 4 and 5.in this study 12.8% use tobacco in any form, 18.6% use alcohol, 66.2% of the participants are physically inactive, and 72.5% are
consuming an unhealthy diet. Among the study participants, 21.4% had a positive family history of hypertension, 3% of them are under oral contraceptiv pills, and 24.8% are suffering from various comorbidt (TABLE 5)

Figure 5: Table 4 :

5

Sl.	Risk Factors	Frequency (N-1250)	Percentage No.
1.			
1.	Family History of Hypertension (N-1250)		
	YES	268	21.4
	NO	982	78.6
2.	OCP Pill Intake Among Females (N-718)		
	YES	38	3.0
	NO	680	97.0
3.	Co-Morbidity	$(\mathrm{N}-$	
		$1250)$	
		310	24.8
	YES	940	75.2

[Note: e) Prevalence of obesity among the study populationAs per the Asian Adults BMI criteria (FIGURE2), 26.2% were overweight, 22.\% were pre-obese and 12.B © 2020 Global JournalsDeterminants of Hypertension in a Rural Area of Kancheepuram District, Tamilnadu]

Figure 6: Table 5 :
8
. 5%

Figure 7: TABLE 8.

7

Figure 8: Table 7:

8

Variable		AdjustedHypertension		Nagelkerke R
	Value	Or	$95 \% \mathrm{Ci}$	
				Square
				Value
Age	<0.0001	0.417	0.341-0.510	
Marital Status	0.235	0.807	0.567-1.149	
Education	0.266	0.925	0.806-1.061	0.360
Occupation	0.397	0.935	0.393-1.093	
Socio Economic Status	0.556	1.058	0.877-1.276	
Positive Family History	0.117	1.343	0.929-01.944	Cox
				And
				Snell
				R
				Square
				Value
Presence of Associated				
Comorbidity	<0.0001	2.516	1.806-3.505	
Knowledge	About		0.240	
Hypertension	<0.0001	2.712	1.958-3.756	
Bmi	<0.0001	0.530	0.459-0.611	
Family Type	0.0001	0.656	0.517-0.832	
${ }^{* *} \mathrm{P}$ value <0.05 is significant and ${ }^{* * *} \mathrm{P}$ value <0.01 is highly significant				
a) Risk factors for hypertension				
i. Tobacco use				
In this study among the study participants,				
12.8% use tobacco and tobacco. In a study, by population has smoking	keless he study			

Figure 9: Table 8 :
[World Health Organization. World health statistics report ()] , World Health Organization. World health statistics report 2012.
[Agarwal et al. (1994)] 'A clinicalepidemiological study of hypertension in rural population of Jawan Block'. A K Agarwal, M Yunus, A Khan, J Ahmad . Journal of the Royal Society of Health 1994 Feb. 114 (1) p. .
[Bhattacherjee et al. (2015)] 'A Cross-sectional Assessment of Risk Factors of Non-Communicable Diseases in a Sub-Himalayan Region of West Bengal, India Using WHO STEPS Approach'. S Bhattacherjee , S Datta, J K Roy , M Chakraborty . J Association Physicians India 2015 Dec. 63 (12) p. .
[Leeder et al. ()] A race against time. The challenge of cardiovascular disease in developing economies, S Leeder , S Raymond, H Greenberg, H Liu . 2004. New York: Columbia University.
[Maroof et al. (2007)] A study on hypertension among the bank employees of Meerut district of Uttar Pradesh. Indian journal of public health, K A Maroof, P Parashar, R Bansal, S Ahmad . 2007 Oct 1. 51 p. 225.
[Midha et al. ()] 'A study on the association between hypertensive status and Anthropometric correlates in the Adult Population of Lucknow District'. T Midha, M Z Idris, R K Saran, A K Srivastava, S K Singh . India. Indian J PrevSoc Med 2009. 40 (1) p. .
[Prabhakaran et al. (2005)] 'Cardiovascular risk factor prevalence among men in a large industry of northern India'. D Prabhakaran, P Shah, V Chaturvedi, L Ramakrishnan, A Manhapra, K S Reddy . National Medical Journal of India 2005 Apr. 18 (2) p. 59.
[Vijayakarthikeyan et al. (2017)] 'Cross-sectional study on the prevalence of risk factors for non-communicable in a rural area of Kancheepuram'. M Vijayakarthikeyan, J Krishnakumar , R Umadevi . Tamil Nadu. International Journal Of Community Medicine And Public Health 2017 Nov 23. 4 (12) p. .
[Snehalatha et al. (2003)] Cutoff values for normal anthropometric variables in Asian Indian adults. Diabetes care, C Snehalatha, V Viswanathan, A Ramachandran . 2003 May 1. 26 p. .
[Park ()] Epidemiology of Chronic Non communicable diseases and condition; p-362.Park's Textbook of Preventive and Social Medicine, K Park . 2015. (23rd ed. Jabalpur: Bhanot)
[Park ()] Epidemiology of chronic non-communicable diseases and conditions. Park's Textbook of Preventive and Social Medicine, K Park . 2005. Jabalpur, India: Banarasidas Bhanot Publishers. p. 293. (18th ed.)
[Geneva: World Health Organization WHO. World Health Statistics (2013)] 'Geneva: World Health Organization'. http://www.who.in/gho/publications/world health statistics/EN WHS2012 pdf WHO. World Health Statistics 2013. May 2018.
[Kearney et al. ()] 'Global burden of hypertension: Analysis of worldwide data'. P M Kearney, M Whelton , K Reynolds, P Muntner, P K Whelton , J He . Lancet 2005. 365 p. .
[Lloyd-Sherlock et al. (2014)] Hypertension among older adults in lowand middle-income countries: prevalence, awareness and control. International journal of epidemiology, P Lloyd-Sherlock, J Beard, N Minicuci , S Ebrahim, S Chatterji . 2014 Feb 1. 43 p. .
[Anchala et al. (2014)] 'Hypertension in India: a systematic review and meta-analysis of prevalence, awareness, and control of hypertension'. R Anchala, N K Kannuri, H Pant, H Khan, O H Franco , Di Angelantonio , E Prabhakaran, D . Journal of hypertension 2014 Jun. 32 (6) p. 1170.
[Sathish et al. ()] 'Incidence of hypertension and its risk factors in rural Kerala, India: a communitybased cohort study'. T Sathish, S Kannan, P S Sarma, O Razum, K R Thankappan . Public health 2012. 126 (1) p. .
[Gupta ()] 'Meta-analysis of prevalence of hypertension in India'. R Gupta. Indian Heart J 1997. 49 p.
[NFHS 4 India 2015-16 report (2018)] http://rchiips.org/NFHS/NFHS-4Reports/TamilNadu.pdf NFHS 4 India 2015-16 report, May 2018.
[Chandwani et al. (2010)] Prevalence and correlates of hypertension among adults in the urban area of Jamnagar, Gujarat, India. Electronic physician, H Chandwani, J Pandor, P Jivarajani, H Jivarajani . 2010 Jan 1. 2 p. .
[Bhadoria et al. (2014)] 'Prevalence of hypertension and associated cardiovascular risk factors in Central India'. A S Bhadoria, P K Kasar, N A Toppo, P Bhadoria, S Pradhan, V Kabirpanthi . Journal of family \mathcal{G} community medicine 2014 Jan. 21 (1) p. 29.
[Kishore et al. ()] 'Prevalence of hypertension and determination of its risk factors in rural Delhi'. J Kishore, N Gupta, C Kohli , N Kumar . International journal of hypertension 2016. 2016.
[Kokiwar et al. (2012)] 'Prevalence of hypertension in a rural community of central India'. P R Kokiwar , S S Gupta , P M Durge . J Assoc Physicians India 2012 Jun. 60 (6) p.
[Meshram et al. (2012)] Prevalence of hypertension, its correlates and awareness among adult tribal population of Kerala state, I I Meshram , N Arlappa, N Balkrishna, K M Rao , A Laxmaiah , G N Brahmam . 2012 Oct 1. India. 58 p. 255. (Journal of postgraduate medicine)
[Garg et al. (2014)] Prevalence of risk factors for chronic non-communicable diseases using who steps approach in an adult population in Delhi, A Garg, T Anand, U Sharma, J Kishore, M Chakraborty, P C Ray , G K Ingle . 2014 Apr. 3 p. 112. (Journal of family medicine and primary care)
[Bhagyalaxmi et al. (2013)] Prevalence of risk factors of non-communicable diseases in a District of Gujarat, India, A Bhagyalaxmi, T Atul, J Shikha. 2013 Mar. 31 p. 78. (Journal of health, population, and nutrition)
[Isezuo et al. (2011)] 'Prevalence, associated factors and relationship between prehypertension and hypertension: a study of two ethnic African populations in Northern Nigeria'. S A Isezuo, A A Sabir, A E Ohwovorilole, O A Fasanmade. Journal of human hypertension 2011 Apr. 25 (4) p. 224.
[Mohan et al. (2007)] Prevalence, awareness and control of hypertension in Chennai-the Chennai urban rural epidemiology study (CURES-52), V Mohan, M Deepa, S Farooq, M Datta, R Deepa . 2007 May 1. 55 p. 326. (Journal of Association of Physicians of India)
[Bhardwaj et al. (2010)] 'Prevalence, awareness and control of hypertension in rural communities of Himachal Pradesh'. R Bhardwaj, A Kandori, R Marwah, P Vaidya, B Singh, P Dhiman, A Sharma . J Assoc Physicians India 2010 Jul. 58 p. .
[Jonas et al. (2010)] Prevalence, awareness, control, and associations of arterial hypertension in a rural central India population: the Central India Eye and Medical Study. American journal of hypertension, J B Jonas, V Nangia, A Matin, P P Joshi, S N Ughade . 2010 Apr 1. 23 p. .
[Prevalence, awareness, treatment and control of hypertension among the elderly in Bangladesh and India: a multicentre study B 'Prevalence, awareness, treatment and control of hypertension among the elderly in Bangladesh and India: a multicentre study'. Bulletin of the World Health Organization 2001. 79 (6) p. 490. Hypertension Study Group
[Kumar et al. (2017)] 'Prevalence, awareness, treatment and control of hypertension in a rural community of'. K S Kumar, K C Ganapathi, M Duraimurugan, R Selavaraj, K Kokila, M Megala . International Journal of Community Medicine 2017 May 22. 4 (6) p. .
[Reddy et al. ()] 'Responding to the threat of chronic diseases in India'. Srinath Reddy, K Shah , B Varghese , C Ramadoss, A . Lancet 2005. 366 p. .
[Das et al.] 'Study of urban community survey in India: growing trend of high prevalence of hypertension in a developing country'. S K Das, K Sanyal, A Basu. International journal of medical sciences
[Chataut et al. (2011)] 'The prevalence of and risk factors for hypertension in adults living in central development region of Nepal'. J Chataut, R K Adhikari, N P Sinha . Kathmandu Univ Med J 2011 Jan. 33 (1) p. .
[Gupta ()] 'Trends in hypertension epidemiology in India'. R Gupta . J Hum Hypertens 2004. 18 p. .
[World Health Organization. Global health risks: Mortality and burden of disease attributable to selected major risks ()] World Health Organization. Global health risks: Mortality and burden of disease attributable to selected major risks, 2009. Geneva.
[World Health Organization: Community Prevention and Control of Cardiovascular Diseases WHO Tech Rep Series ()] 'World Health Organization: Community Prevention and Control of Cardiovascular Diseases'. WHO Tech Rep Series 1986. 732.

[^0]: ${ }^{1}$ B © 2020 Global JournalsDeterminants of Hypertension in a Rural Area of Kancheepuram District, Tamilnadu

