

1 Trigallayl glucose Kaempferol hexoside

2 Dr. Sushma BV

3 Received: 12 December 2019 Accepted: 3 January 2020 Published: 15 January 2020

4

5 Abstract

6 Papaya seeds are reported to have higher therapeutic potential in comparison to the fruits in
7 which they reside. Thus, the present in-vitro study aimed to evaluate and compare the
8 anti-oxidant, anti-inflammatory and anti-microbial effect of seed extracts on *Carica papaya* L.
9 (Caricaceae). The bioactive form the seeds were sequentially fractionated with hexane,
10 chloroform, diethyl ether, and methanol in the increasing order of polarity. Total phenolic and
11 flavonoid contents were estimated. These extracts were assessed for an antioxidant property
12 by 1, 1-diphenyl-2-picryl-hydroxyl (DPPH) method and reducing power assay was carried out
13 using the FeCl₃ method. Inhibition of 15-lipoxygenase (LOX) by these extracts at 5 - 25^g to
14 asses anti-inflammatory capacity was studied.

15

16 **Index terms**— *carica papaya* L., seed extracts, phytochemical analysis, antioxidant, lipoxygenase inhibition,
17 antimicrobial activity.

18 In Vitro Antioxidant, Anti-Inflammatory and Anti-Microbial Activity of *Carica Papaya* Seeds Abstract-Papaya
19 seeds are reported to have higher therapeutic potential in comparison to the fruits in which they reside. Thus, the
20 present in-vitro study aimed to evaluate and compare the anti-oxidant, anti-inflammatory and anti-microbial effect
21 of seed extracts on *Carica papaya* L. (Caricaceae). The bioactive form the seeds were sequentially fractionated
22 with hexane, chloroform, diethyl ether, and methanol in the increasing order of polarity. Total phenolic and
23 flavonoid contents were estimated. These extracts were assessed for an antioxidant property by 1, 1-diphenyl-2-
24 picryl-hydroxyl (DPPH) method and reducing power assay was carried out using the FeCl₃ method. Inhibition
25 of 15-lipoxygenase (LOX) by these extracts at 5 -25^g to asses anti-inflammatory capacity was studied.

26 Antibacterial activity against some human pathogenic bacteria was tested by agar disk diffusion method.
27 Among all the organic solvent extracts, methanolic extracts exhibited good antioxidant and antibacterial activity.
28 Methanolic extract with an IC₅₀ value of 48mg for LOX inhibition is reported. The extracts showed inhibition
29 of human pathogenic bacteria in the order: *Escherichia coli* >*Pseudomonas vulgaris*>*Klebsiella pneumonia*.
30 Significant and positive linear correlations were found between total antioxidant capacities and phenolic contents
31 indicating that phenolics were the dominant antioxidant constituents in tested seeds. Methanol extracts of
32 C.papaya were subjected to LC-MS metabolite profiling. The LC-MS analysis identified 6 metabolites p-
33 hydroxybenzoic acid, salicylic acid, hyperoxide, genteel alcohol, triallyl glucose, kaemferolhexoside as the main
34 constituents for the first time from this seed extract. Our study demonstrated that the selected papaya seeds
35 have good antioxidant, antiinflammatory, and antibacterial properties.

36 1 Keywords:

37 *carica papaya* L., seed extracts, phytochemical analysis, antioxidant, lipoxygenase inhibition, antimicrobial
38 activity. *apaya* (*Carica papaya* L.) is a member of the family Caricaceae. This plant family has four
39 genera including *Jarilla*, *Cylicomorpha*, *Cylicomorpha*, and *Carica*. *Carica papaya* L. is common papaya and
40 extensively grown over the world. The plant is herbaceous, soft tissue and fast-growing. Common names include
41 papaya, papaw or pawpaw, *Papeete* (Pakistan), *paper* (French), *Tenenbaum* (German), *chose* (Spanish), *mamao*,
42 *mamoeiro* (Portuguese), *mugu* (Chinese) and *Malakal* (Thailand). Papaya is a fruit plant with a soft stem,
43 commonly and erroneously referred to as a tree. The papaya seeds contain balance-nutrients which consist of
44 protein (24.3%), fatty oil (25.3%) and total carbohydrate (32.5 %,). Although it contains a significantly high
45 level of unsaturated fatty acids, papaya seeds seem not to be good oil seeds. Papaya seeds are used generally as

10 QUALITATIVE ANALYSIS OF SAPONINS AND TANNINS A) A TEST FOR SAPPONINS

46 an anti-parasitic agent by humans' plant is properly a large herb growing at the rate of 1.8-3 m in the first year
47 and reaching 6-9 m in height [1]. The lower trunk is conspicuously scarred where leaves and fruit are borne. In
48 some parts of the world, papaya leaves are made into tea as a treatment for malaria, dengue but the mechanism
49 is to be scientifically proven. Papaya contains about 6% of the level of beta carotene. Excessive consumption
50 of papaya may cause carotenemia, the yellowing of soles and palms [15]. Papaya releases a latex fluid when not
51 ripe, possibly causing irritation and an allergic reaction in some people.

52 2 Introduction

53 3 II.

54 4 Material and Methods

55 5 a) Chemicals and Reagents

56 Linoleic acid, 1, 1-diphenyl-2 (DPPH), catechin were purchased from SIGMA ALDRICH (USA, MO). Sodium
57 bicarbonate, 15 lipoxygenase, aluminum chloride, gallic acid, ascorbic acid, trichloroacetic acid (TCA), potassium
58 ferricyanide, ferric chloride, folic-ciocalteu (FC) potassium buffer, borate buffer, nutrient agar, peptone, beef
59 extract, hexane, chloroform, diethyl ether, methanol, borate salt, sodium dihydrogen phosphate, disodium
60 hydrogen phosphate were laboratory chemicals.

61 6 b) Processing of Plant Samples

62 Carica papaya fruits were collected from Mysore district, Karnataka, India. The pawpaw fruits were washed in
63 tap water and then rinsed in sterile distilled water. The seeds were removed and shade about a week and were
64 crushed using liquid nitrogen using mortar and pestle. Seeds were ground into a coarse powder. Fractionation of
65 bioactive compounds was carried out using a solvent to increase the polarit of the solvents like hexane, chloroform,
66 diethyl ether and methanol for 48 h in dark with constant stirring at room temperature. After each fractionation,
67 the respective solvents were carefully filtered using a muslin cloth to prevent contamination by seed residue. The
68 clear extract was air-dried to get a fine paste. The extract was weighed and stored at 4OC in dark until further
69 analysis.

70 7 c) Extraction Of Plant Material

71 About 25 g of coarsely powdered papaya seeds were weighed and suspended into 200mL of th (hexane, chloroform,
72 diethyl ether, and methanol) based on the increasing order of polarity. The extraction was ethods 2-picrylhazyl
73 (DPPH), catechin were purchased from SIGMA ALDRICH (USA, MO). Sodium bicarbonate, 15acid, ascorbic
74 acid, trichloroacetic acid (TCA), potassium ferricyanide, ciocalteu (FC) potassium buffer, borate buffer, nutrient
75 agar, peptone, beef extract, hexane, chloroform, diethyl ether, methanol, borate salt, en phosphate, disodium
76 hydrogen fruits were collected from Mysore district, Karnataka, India. The pawpaw fruits were washed in tap
77 water and then rinsed in sterile distilled er. The seeds were removed and shade-dried for about a week and were
78 crushed using liquid nitrogen using mortar and pestle. Seeds were ground into a coarse powder. Fractionation
79 of bioactive compounds was carried out using a solvent to increase the polarity of the solvents like hexane,
80 chloroform, diethyl ether and methanol for 48 h in dark with constant stirring at room temperature. After each
81 fractionation, the respective solvents were carefully filtered using a muslin cloth to ed residue. The clear dried
82 to get a fine paste. The extract was weighed and stored at 4OC in dark until further analysis. About 25 g of
83 coarsely powdered papaya seeds were weighed and suspended into 200mL of the solvent (hexane, chloroform,
84 diethyl ether, and methanol) based on the increasing order of polarity. The extraction was carried out at room
85 temperature for 48 h using rotatory shaker at 30C 60 rpm for 48 h. The extracts were first filtered with a clean
86 muslin cloth and then suction filtered using flash operator at 44? C 160 rpm and finally dried it in glass Petri
87 dishes at RT. The final drying process was carried out using by collecting the filtrates in the Eppendorf tube and
88 dried in speed vacuum for 3 h 40?C and the extracts were stored in dark at 4 further use.

89 8 III.

90 9 Phytochemical A

91 10 Qualitative Analysis of Saponins and Tannins a) A Test for 92 Saponins

93 About 0.1 g of methanolic extract was diluted in 1ml of methanol. Extract (0.5 mL) was taken in a test tube
94 and solubilized using 4.5mL of distilled water[The formation of stable foam indicated the presence of Saponins.

95 **11 b) A Test for Tannins**

96 About 0.1 g of methanolic extract was diluted in 1ml of methanol. Extract (0.5 mL) was taken i tube and
97 mixed with 10mL distilled water and ferric chloride reagent (3 drops,) added to the filtrate. A blue black green
98 precipitate confirmed the presence of Gallic tannins or catechol tannins [2].

99 **12 c) Determination of Total Phenolics**

100 The total phenolic content was estimated using the Folin-Ciocalteu (FC) calorimetric method. Gallic acid (20-
101 100mg) standard was prepared. Extract (0.1 g) was weighed and diluted to make 100mg in 100mL. The extract
102 (20-100mL) reacted with FC reagent (250mL) and was incubated at RT for 5min[neutralized with saturated
103 sodium bicarbonate (1.5mL, carried out at room temperature for 48 h using rotatory shaker at 30C 60 rpm for
104 48 h. The extracts were first uslin cloth and then suction filtered C 160 rpm and finally dried it in glass Petri
105 dishes at RT. The final drying process was carried out using by collecting the filtrates in the Eppendorf tube and
106 dried in speed vacuum for 3 h at C and the extracts were stored in dark at 4?C till hytochemical Analysis

107 Qualitative Analysis of Saponins and Tannins About 0.1 g of methanolic extract was diluted in) was taken
108 in a test tube and solubilized using 4.5mL of distilled water [2]. The formation of stable foam indicated the
109 presence of About 0.1 g of methanolic extract was diluted in 1ml of methanol. Extract (0.5 mL) was taken in
110 a test tube and mixed with 10mL distilled water and ferric chloride reagent (3 drops,) added to the filtrate. A
111 blueblack green precipitate confirmed the presence of Gallic Determination of Total Phenolics lic content was
112 estimated using Ciocalteu (FC) calorimetric method. Gallic acid 100mg) standard was prepared. Extract (0.1 g)
113 was weighed and diluted to make 100mg in 100mL. The 100mL) reacted with FC reagent (250mL) ated at RT
114 for 5min [3]. The reaction was neutralized with saturated sodium bicarbonate (1.5mL,) that was added to the
115 mixture and allowed to stand for 1 h [6]. The absorbance of the resulting blue color was measured at 765 nm
116 (BECKMAN COULTER, DU 730 LIFE SCIENCE UV/VISIBLE SPECTRO-PHOTOMETER). Total phenolics
117 content in the methanol extract of seeds was quantified by the calibration curve obtained from measuring the
118 absorbance of known concentrations of gallic acid standard. The total phenolic contents were expressed as gallic
119 acid equivalence (GAE) in ?g.

120 **13 Global**

121 **14 d) Determination of Total Flavonoids**

122 The total flavonoid content was determined by the aluminum chloride colorimetric method [5]. In brief, 10-50
123 mL of extract were made up to 1mL with methanol, mixed with 4mL of distilled water and then 0.3mL of 5%
124 NaNO2 solution. AlCl3 (0.3mL of 10%) solution was added after 5min of incubation and the mixture could stand
125 for 6min. Then, 2mL of 1 mol/L NaOH solution was added, and the final volume of the mixture was brought to
126 10 mL with double-distilled water. The mixture could stand for 15min, and absorbance was measured at 510nm.
127 The total flavonoid content was calculated from a calibration curve, and the result was expressed as ug catechin
128 equivalent per g dry weight [9].

129 **15 e) Antioxidant Activity i. DPPH radical scavenging assay**

130 The free radical scavenging property of the methanol extracts of papaya seeds was determined by the DPPH
131 method. An aliquot of the extract was dissolved in a solvent and was plated out in duplicate in a 96-well microtiter
132 plate. The DPPH radical solution (50mM; 2.9mg in 25mLmethanol) was added to alternating columns of the test
133 samples and methanol was used as control. The percent of decolorization was recorded spectrophotometrically
134 at 517nm using the Thermo Scientific Varioskan Flash Microtiter Plate Reader. The reaction for scavenging
135 DPPH radical was in dark and the absorbance was recorded at 517 nm (Spectra Max, Molecular devises).
136 Percent radical scavenging activity was determined by comparing with a solvent added as a control. The IC50
137 values were determined, which denote the Concentration of extracts required to scavenge 50% DPPH radicals
138 [4]. Ascorbic acid (0.1 g in 5mL) was used as positive control at least three independent tests were performed
139 for each sample. Solvent extracts of hexane, diethyl ether and methanol were tested [6]. Percent scavenging
140 effect was determined by the following equation: % inhibition = [(Absorbance of control -Absorbance of the test
141 sample)/Absorbance of control] x100 [7].

142 **16 f) Reducing Power Assay**

143 This estimation of reducing power was carried for papaya seeds with slight modifications. Test solution (0.1mL,
144 1mg/mL) was mixed with equal volume of phosphate buffer (0.2M, pH 6.6) and potassium ferricyanide (2.5mL,
145 1%) and was incubated at 50oC for 20 min. Trichloroacetic acid (TCA; 10%, 2.5mL) was added to the mixture,
146 which was then centrifuged at 3000 rpm for 5 min. After centrifugation, the supernatant solution (1.5mL)
147 was taken in a test tube and was mixed with an equal volume of distilled water and ferric chloride (0.5mL,
148 0.1%). Ascorbic acid was used as a standard and phosphate buffer was used as a blank solution. Absorbance was
149 measured at 700nm (Beckman-Colter, Du 730 Life Science Uv/Visible Spectrophotometer). Increased absorbance
150 of the reaction mixture indicates stronger reducing power [8].

24 B) TOTAL FLAVONOID CONTENT

151 17 g) Anti-Inflammatory Activity i. Lipoxygenase assay (LOX)

152 Carica papaya seeds were extracted and solubilized in methanol and tested for in vitro antiinflammatory activity
153 spectrophotometric assay for determination of LOX activity for papaya seed. Weight of empty Eppendorf tube
154 was noted and 5mg of methanol extract was taken in empty Eppendorf tube extract was diluted using 1ml of
155 methanol and shaken well. 15-LOX (5mg) activity with linolenic acid(0.2mM) in borate buffer (0.2M, pH 9.0)
156 was carried out methanol extract ??5, 10, 15, 20ml). The inhibition of LOX by the extracts was recorded by
157 the time scan method at 234 nm [10]. Ascorbic acid inhibiting LOX was as recorded at 234nm using UV-Visible
158 Spectrophotometer (Beckman-Coulter, Du 730 Life Science Uv/ Visible Spectrophotometer). The inhibitory
159 effect of the extract was expressed as % of enzyme activity inhibition (IC50) value indicating the concentration
160 required to inhibit 50% LOX activity [14]. It was calculated using the formula % of inhibition= [(initial activity-
161 inhibitor activity)/initial activity] '100.

162 18 h) Antibacterial Activity i. Determination of Antibacterial 163 Activity

164 Antibacterial activity of methanolic extracts (1, 2.5, 5 10 uL) of papaya seeds was determined by the disc diffusion
165 method. The bacterial samples tested were Escherichiacoli, Klebsiellapneumonia, and Pseudomonasvulgaris. The
166 media was prepared using peptone (3.75g), beef extract (2.25g), agar (15g) and distilled water (750mL). The
167 contents were transferred to a flask and were plugged with cotton and wrapped using brown paper. Glass Petri
168 plates were washed thoroughly rinsed with methanol and autoclaved at 121°C for 15min for complete sterilization
169 [11]. The agar solution could cool, and 15 mL was poured into sterile glass Petri plates. The plates could set and
170 then incubated at 37°C overnight. Colonies were picked from plates and used as inoculums of test organisms.
171 The plates were incubated at 37°C overnight. Disc of Whatman No.1 filter paper was sterilized by heating in an
172 oven for 30 min at 80°C [12]. Agar plates were inoculated with each organism and after 5 min, 6 filter paper discs,
173 impregnated with 5mL of the concentrated extracts, streptomycin (0.5mg/mL) were transferred onto the agar
174 plates using sterile forceps. The plates were then incubated at 37°C overnight. The effectiveness of the extract
175 as an antibiotic against the test organism was determined by measuring the diameter of the zone of inhibition.

176 19 ii. LC-MS ANALYSIS

177 For the qualitative analysis of the metabolites were analyzed by Synapt G2 (UPLC separations with Quant of)
178 according to the manufacturer's protocol. The nebulizer pressure was 60 psi and the nitrogen flow rate 10 L/min
179 at a drying temperature of 350°C. The methanol seed extract was filtered (0.2-micron syringe filters, Millipore,
180 U.S.A) and an aliquot (5 ?l) was injected into the system. The mass spectra were acquired from m/z 100-1000 in
181 negative ionization mode. Helium was used as the collision gas for the fragmentation of the isolated compounds
182 in the ion trap [13]. The detection conditions were as follows: capillary voltage, 3500 V; skimmer voltage, -40 V;
183 cap exit voltage, -158.5 V; Oct 1 DC, -12 V; Oct 2 DC, -2.45 V; trap drive level, 45.0; Oct RF, 150 Vpp; Lens 1,
184 5.0 V; Lens 2, 60 V.

185 20 IV.

186 21 Results

187 Carica papaya seed extract was prepared using four different solvents (hexane, chloroform, diethyl ether, and
188 methanol) for the screening of bioactive capacity. The analysis was performed using a generally accepted
189 laboratory technique for qualitative determinations. Saponins test performed showed a positive result for hexane,
190 diethyl ether and methanol whereas negative for chloroform. The tannins test conducted showed a positive result
191 for hexane and methanol whereas negative results for chloroform and diethyl ether extracts. Thus methanol
192 extract of C.papaya seeds contains saponins, tannin compounds. The importance of saponins and tannins in
193 various antibiotics for treating common pathogenic strains has been reported [16].

194 22 Phytochemical Analysis

195 23 Quantitative Analysis of Total Phenols and Flavonoids a) 196 Total Phenolic Content

197 Total phenolic contents of the methanolic fractions of the seed of C. papaya were determined by using the Folin-
198 Ciocalteu reagent and were expressed as gallic acid equivalents (GAE) per gram of seed extract. The total
199 phenolic contents were 147?g for methanol extract of papaya seeds.

200 24 b) Total Flavonoid Content

201 Flavonoids are secondary metabolites, the antioxidant activity of which is dependent on the presence of free -OH
202 group, especially 3-OH. The total flavonoid content was 100mg for methanol extract of papaya seeds. As this is
203 the report on the antioxidant activity of C. papaya through phytochemical analysis, identification of the active

204 phenolic and flavonoid compounds was attempted. The results of the antibacterial sensitivity of the methanolic
205 extract of *C. papaya* seed by disc diffusion method are depicted for different time intervals of 12, 24 and 48 h
206 in the graph for *Escherichia coli* (Fig. ??) and *Pseudomonas Vulgaris* (Fig. 10). The results reveal that the
207 extract has antimicrobial activity against these pathogenic organisms studied. The antibacterial activity was
208 screened from the zone of inhibition. The four different concentrations of methanolic extract (1, 2.5, 5 and 10 mg)
209 inhibited *Escherichia coli* (Table 3; Fig. 11) *Pseudomonas Vulgaris* (Table ??; Fig. 12) growth with a maximum
210 inhibition at 10mg. The streptomycin drug used showed maximum growth inhibition (3.94mm) compared to
211 control (methanol, 10 ml). The drug inhibited *Escherichia coli* (2.95mm).

212 **25 ANTIBACTERIAL ASSAY PSEUDOMONAS VULGARIS 213 12 h.**

214 control drug 1 2.5 5 10

215 **26 ANTIBACTERIAL ASSAY PSEUDOMONAS VULGARIS 216 24 h.**

217 control drug 1 2.5 5 10

218 **27 ANTIBACTERIAL ASSAY PSEUDOMONAS VULGARIS 219 48 h.**

220 control drug 1 2.5 5 10

221 In Vitro Antioxidant, Anti-Inflammatory and Anti-Microbial Activity of *Carica Papaya* Seeds

222 **28 Discussion**

223 The constituent of the extract of *C. papaya* (dried) seeds contain compounds and micronutrients which may
224 be responsible for its observed antioxidant activity. This study suggests that the plant possesses antioxidant
225 activities that can counteract the oxidative damage. The total phenol test provides information on the reactivity
226 of the seed extract with a stable free radical. It gives a strong absorption band. The degree of reduction in
227 absorbance measurement is indicative of the radical scavenging (antioxidant) power of the extract. The extract
228 of *Carica papaya* appeared to be as potent as Gallic Acid with maximum inhibition. The extract is found to
229 have broadspectrum antibacterial activity and used as analgesics and narcotics for pain relief. A report indicates
230 that extracts are more active against Gram-positive bacteria than Gram-negative bacteria while that of the leaf
231 extract of *C. papaya* was next to the most sensitivity with Gramnegative bacteria [17]. The activity of the extract
232 is comparable to those of antibiotics. The demonstration of activity against the test bacteria provides scientific
233 bases for the local usage of the plant in the treatment of various ailments. The fact that the extract is active
234 against Gram-positive bacteria and Fungi tested may indicate a broad spectrum of activity. This observation
235 is very significant because of the possibility of developing therapeutic substances that will be active against
236 multidrug-resistant organisms.

237 Lipoxygenases (LOXs) are a family of non-heme iron-containing dioxygenases catalyzing the biosynthesis of
238 leukotrienes. Leukotrienes function as initiators of inflammation and their inhibition is partly responsible for
239 the anti-inflammatory activity. In the present study methanolic extracts, *Carica papaya* showed good anti-LOX
240 activity with an IC₅₀ value of .LOX inhibition was used to evaluate the antiinflammatory activity of a few
241 medicinal plants [10].

242 Plant phytochemicals with health benefits have been attributed to health as they cannot be synthesized
243 by humans and they have been linked to antioxidant activity. In the present study, UPLC-DAD identified
244 phydroxybenzoic acid, salicylic acid, hyperoside, gentisyl alcohol, trigalloyl glucose, kaemferolhexoside among
245 others. These are reported as the strongest natural anti-inflammatory agent [13]. The presence of the
246 phytochemicals in the extract could also support the therapeutic property tamarind seed for the mentioned
247 application in the traditional literature of India.

248 **29 VII.**

249 **30 Conclusion**

250 *Carica papaya* is a nutraceutical plant having a wide range of pharmacological activities. The whole plant has
251 its own medicinal value. The wide range of enzymes, vitamins present in *Carica papaya* makes it a nutraceutical
252 plant. Antioxidant and antimicrobial properties of methanolic extract of *Carica papaya* have recently been of
253 great interest in both the research and food industry, because of its possible use as natural additives which
254 emerged from a growing tendency to replace synthetic antioxidants with natural ones. Owing to the antioxidant
255 and antibacterial activities exhibited by the seed extract investigated in this study, it could be considered a
256 natural herbal source that can be used in the food and pharmaceutical industries. However, further studies are

Figure 1: Figure Figure 1 :

Figure 2: Figure 2 :Figure 3 :

257 needed to obtain purified compounds that may be responsible for the activities observed from the tested seeds.
1

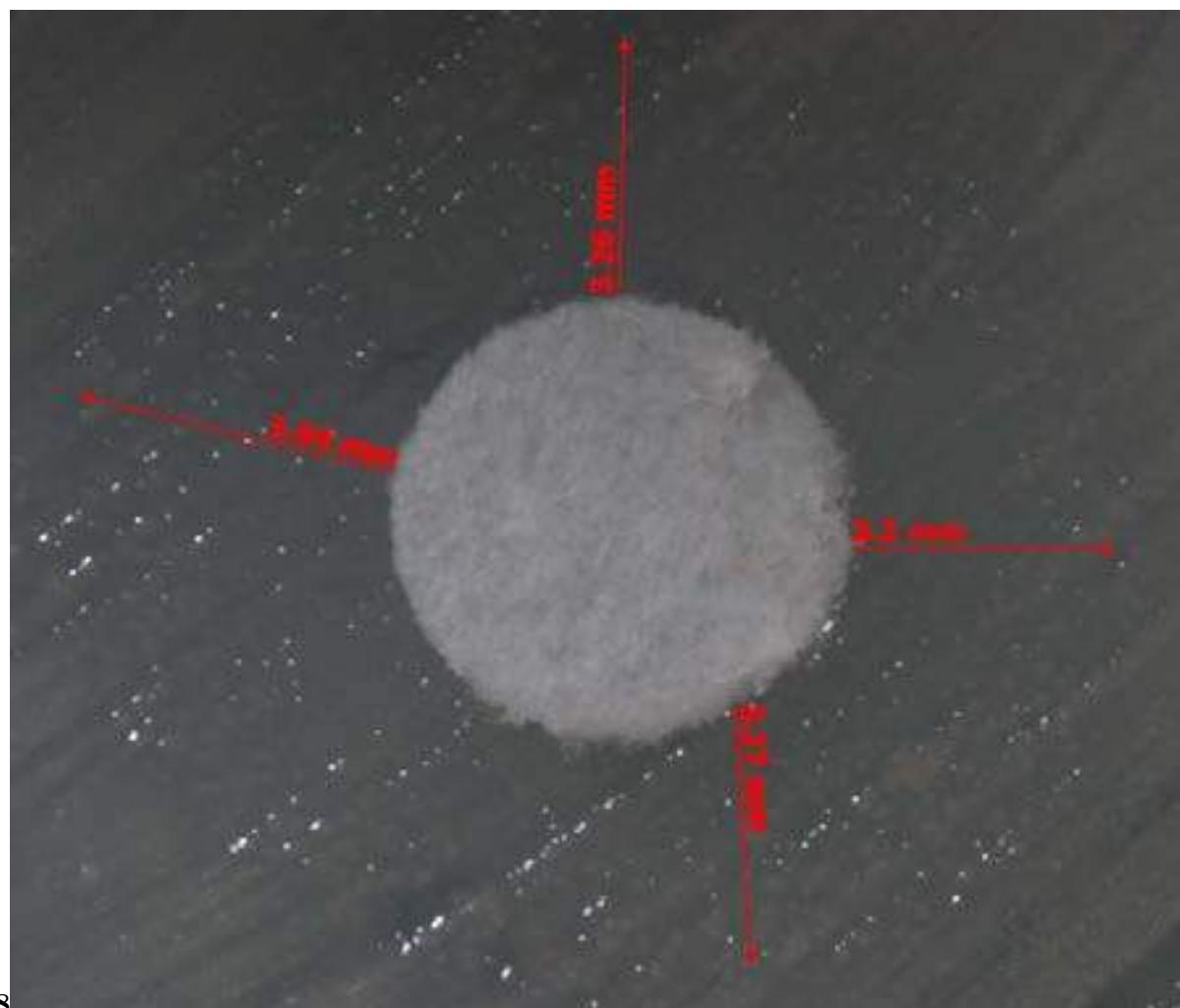

457

Figure 3: Figure 4 :Figure 5 :Figure 7

6

Figure 4: Figure 6 :

258

8

Figure 5: Figure 8 :

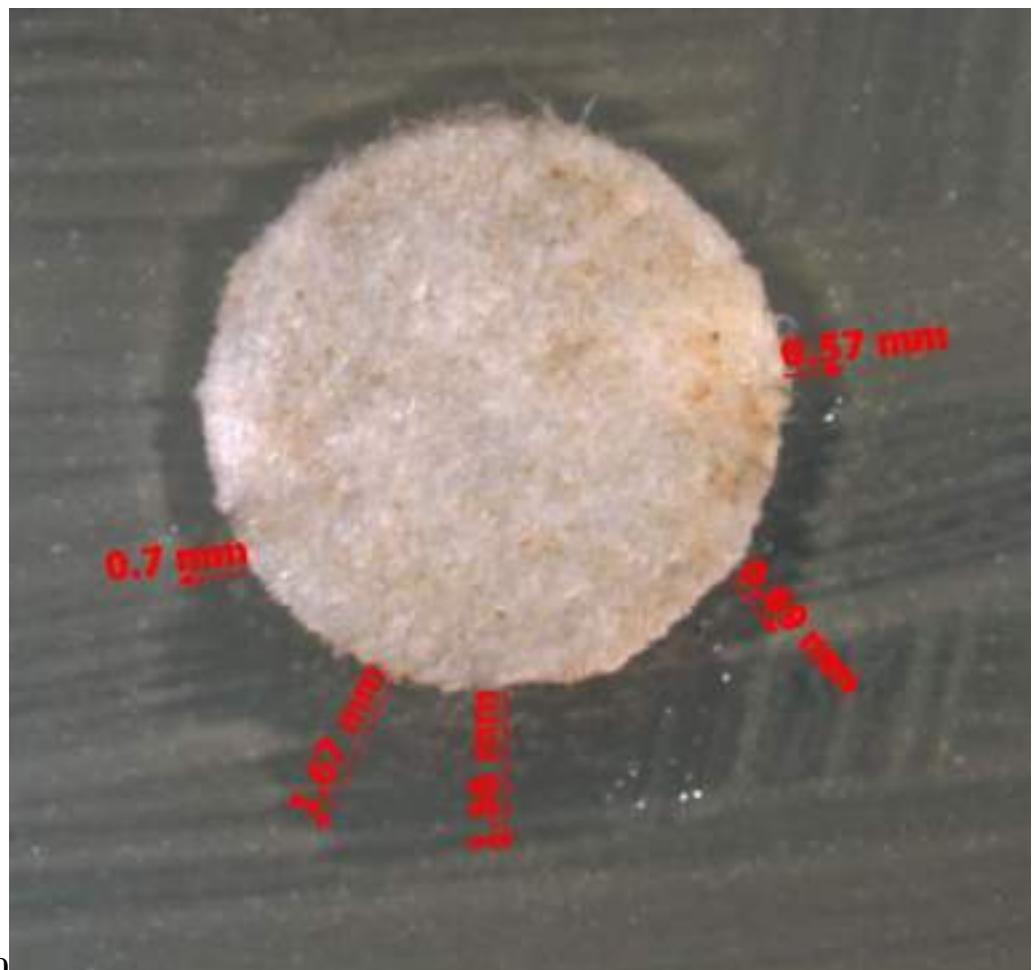


Figure 6: InFigure 9 :Figure 10 :

11124

Figure 7: Figure 11 :Figure 12 :Table 4 :

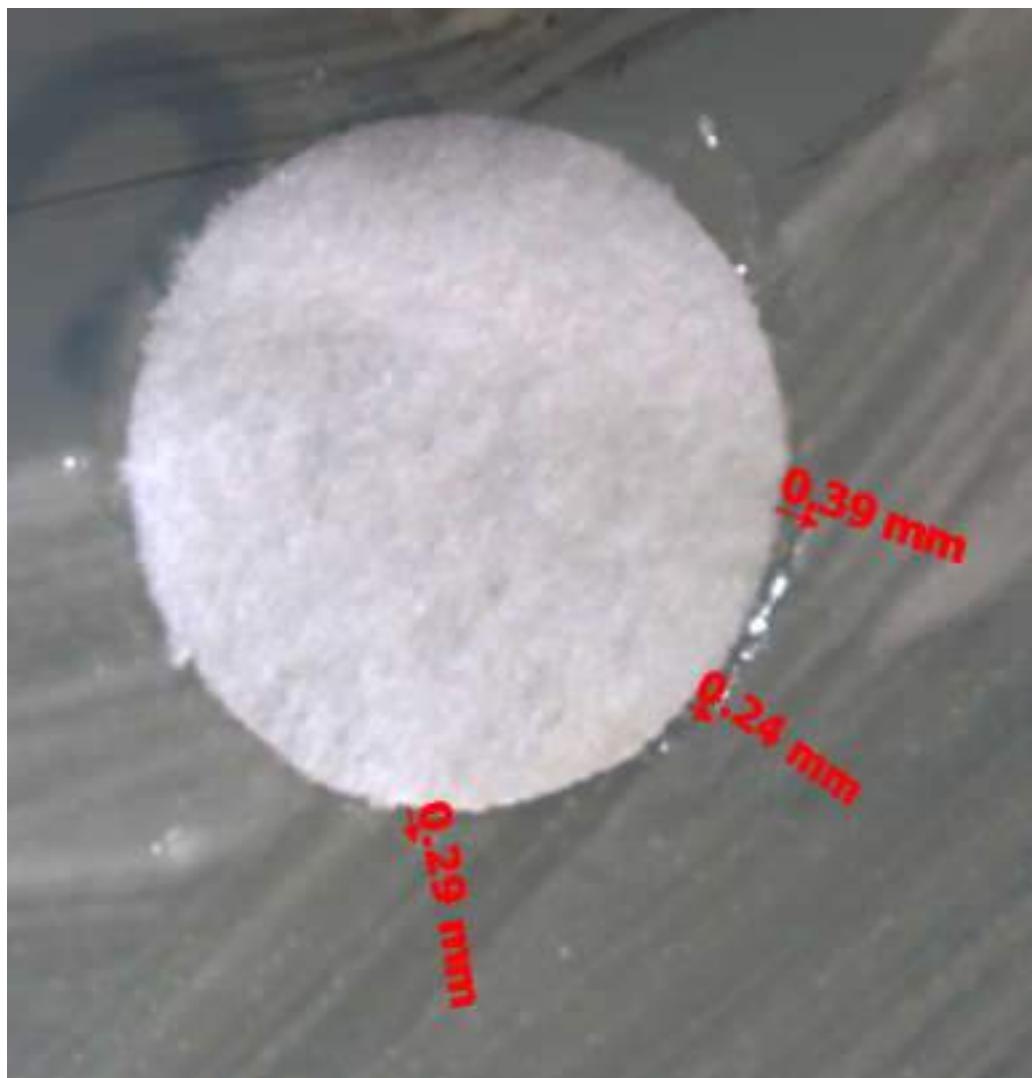


Figure 8: In

1

Bioactives	Hexane	Chloroform	Diethyl Ether	Methanol
Tanins	+	-	-	+
Saponin	+	-	+	+
V.				

Figure 9: Table 1 :

2

Year 2020
26

Figure 10: Table 2 :

30 CONCLUSION

3

Sl No.	Solvent Used	Concent ration	Zone of Inhibition			
			T(0h)	T(12h)	T(24h)	T(48h)
1	Methanol	Control	0.0	0.96mm	1.43mm	1.65mm
		Streptomycin Drug	0.0	3.26mm	3.27mm	3.94mm
		1?L	0.0	0.22mm	0.23mm	0.34mm
		2.5?l	0.0	0.0mm	0.34mm	0.36mm
		5?l	0.0	0.24mm	0.29mm	0.39mm
		10?l	0.0	0.7mm	1.56mm	1.67mm

Figure 11: Table 3 :

259 [In Vitro Antioxidant, Anti-Inflammatory and Anti-Microbial Activity of Carica Papaya Seeds] , *In Vitro Antioxidant, Anti-Inflammatory and Anti-Microbial Activity of Carica Papaya Seeds*

260

261 [Trease and Evans ()] , G E Trease , W C Evans . *Pharmacology* 1989. p . . (11th edn.)

262 [Anti-Inflammatory and Anti-Microbial Activity of Carica Papaya Seeds References Références Referencias In Vitro Antioxidant]

263 'Anti-Inflammatory and Anti-Microbial Activity of Carica Papaya Seeds References Références Referencias'.

264 *In Vitro Antioxidant*

265 [Jigna ()] 'Antibacterial activity and phytochemical screening of some medicinal plants commonly used in Saudi Arabia against selected pathogenic microorganisms'. Sumitra Jigna . *Journal of King Saud University-Sciences* 2007. 25 (2) p . .

266

267

268 [Lohiya et al. ()] 'Antifertility effects of aqueous extract of Carica papaya seeds in male rats'. N K Lohiya , R B Goyal , D Jayaprakash , A S Ansari , S Sharma . *Planta Med* 1994. 60 (5) p . . (PubMed: 7997464)

269

270 [Kovendan et al. ()] 'Antimalarial activity of carica papaya leaf extract against plasmodium falciparum'. K Kovendan , K Murugan , C Panneerselvam , N Aarthi . *Asian Pac J. Trop Dis. Inc* 2012. p . .

271

272 [Zhou et al. ()] 'Antioxidant Activity of Papaya Seed Extracts'. Kaibing Zhou , Hui Wang , Wenli Meri , Xiaona Li , Ying Luo , Haofu Dai . *Molecules* 2011. 16 (8) p . .

273

274 [Aysun et al. ()] 'Antioxidant capacity of juice from different papaya cultivars grown under greenhouse conditions in Turkey'. Ozkan Aysun , Gubbuk Hamide , Gunes Esma , Erdogan Ayse . *Turkish Journal of Biology* 2009. 35 (5) p . .

275

276

277 [Chethan J et al. ()] 'Antioxidant, Antibacterial and DNA Protecting Activity of Selected Medicinally Important Asteraceae Plants'. Chethan J , Sampath Kumara K K , Shailasreesekhar , H S Prakash . *Int J Pharm PharmSci* -0975-1491. 2012.

278

279

280 [Apigenin Hydroxybenzoic acid-O-Hexoside Rasmarinic acid Isorhamnetin-3-O-Hexoside] *Apigenin Hydroxybenzoic acid-O-Hexoside Rasmarinic acid Isorhamnetin-3-O-Hexoside*,

281

282 [Lisdahayatie and Biworo ()] 'Aqueous Extracts of Seed and Peel of Carica Papaya Against Aedes Aegypti'. Agung Lisdahayatie , Ekosuhartono Biworo . *Journal of Medical and Bioengineering* 2315-442. 2015. 4 (4) .

283

284 [Sekhar Shailasree et al. ()] 'Bioactive Potential of Medicinal Plants from Western Ghats Region'. K K Sekhar Shailasree , S R Sampathkumara , H S Niranjana , Prakash . *India. Journal of Herbs, Spices & Medicinal Plants* 2014. 20 p . .

285

286

287 [Chrysophytolide Chlorogenic acid 3-O-Caffeoylquinic acid] *Chrysophytolide Chlorogenic acid 3-O-Caffeoylquinic acid*,

288

289

290

291 [Rezaeizadeh et al. ()] 'Determination of antioxidant activity in methanolic and chloroformic extracts of *Momordica charantia*'. A Rezaeizadeh , A B Z Zuki , Abdollahi , Y M Goh , M M Noordin , M Hamid , TI . *African Journal of Biotechnology* 2011. 10 (24) p . .

292

293

294 [Udoh et al. ()] 'Effect of Carica papaya (paw paw) seeds extract on the morphology of pituitary-gonadal axis of male Wistar rats'. P Udoh , I Essien , F Udoh . *Phytother Res* 2005. 19 p . . (PubMed: 16372375)

295

296 [Boning ()] *Florida's Best Fruiting Plants: Native and Exotic Trees, Shrubs, and Vines*, Charles R Boning . 2006. Sarasota, Florida Pineapple Press. Inc. p . .

297

298 [Yusha'u et al. ()] 'In-Vitro Sensitivity Pattern of Some Urinary Tract Isolates to Carica papaya extracts'. Yusha'u , F C Onuorah , Y Murtala . *Bayero Journal of Pure and Applied Sciences* 2009. 2 (2) p . .

299

300 [Shailasreesekhar et al. ()] 'Lipoxygenase Cyclooxygenase-2 Inhibition and DNA Protection Properties of memecylon species'. Sampath-Kumara Shailasreesekhar , Niranjana Kk , H S Prakash . *Vitro Antioxidant Activity*, 2013. 5 p . .

301

302

303 [Tumkurramasettybharathi et al. ()] 'Metabolite profiling by UPLC-PDA-esi/hdms and antibacterial activity of memecylontalbotianum'. Shailasreesekhar Tumkurramasettybharathi , Kiggakadappasampath Kumara , Madhusudhanand Mudalabeeduchandregowda , Harishchandra , Prakash . *Pharmacogn. Commun* 2016. 6 (4) p . .

304

305

306

307 [Boshra and Tajul ()] 'Papaya -an innovative raw material for food and pharmaceutical processing industry'. V Boshra , A Y Tajul . *Health and the Environment Journal* 0936-6768. 2013. (4) .

308

309 [Singh and Ali ()] 'Phytochemical and Antifungal Profiles of the Seeds of Carica Papaya L'. Onkar Singh , M Ali . *Indian J Pharm Sci* 2011. 73 (4) p . .

310

311 [Tariq et al. ()] 'Phytochemical and Microbiological Evaluation of Different Chemical Extracts of Papaya Seeds on Clinical Isolates'. Irfan Muhammad Haseeb Tariq , Bilal Ghaffar , Tauqeer Ahmed , Abbas Sultan , Muhammad Junaid Muhammad , Farrukh . *Int j pharm* 2015. 5 (1) p . .

312

313

30 CONCLUSION

314 [Ocloo et al. ()] 'Phytochemical Characterization and Comparative efficacies of crude extracts of carica papaya'.
315 Augustine Ocloo , Constance Nonye , Nicholas T K D Nwokolo , Dayie . *Int. J. Drug Res. Tech* 2012. 2 (5)
316 p. .

317 [Ayoola ()] 'Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants'. Ayoola .
318 *Journal of Pharmaceutical Research* 2008. 7 (3) p. .

319 [Delphin et al.] 'Phytochemical Screening of Various Ethanolic Seed Extracts'. D V Delphin , R Haripriya , S
320 Subi , Jothi D Vasan . *Research Publications in Ayurvedic Sciences* 7 (3) p. .

321 [EI ()] 'Preliminary phytochemical analysis and antimicrobialActivity of seeds of Carica papaya'. EI . *American*
322 *Journal of Pharmacology and Pharmacotherapeutics* :2393-8862. 2011.

323 [Kubmarawa et al. ()] 'Preliminary phytochemical and antimicrobial screening of 50 medicinal plants from
324 Nigeria'. D Kubmarawa , G A Ajoku , M Enworem , D A Okorie . *AfricanJournal of Biotechnology* 2007. 6
325 p. .

326 [Akah et al. ()] 'Preliminary studies on purgative effect of Carica papaya root extract'. P A Akah , A N Oli , N
327 M Enwerem , K Gamaniel . *Fitoterapia* 1997. 68 (4) p. .

328 [Raaman ()] 'Thin layer chromatographic analysis and Anioxidant Activities of Methanol Extract of Leaves of
329 C.papaya L'. N Raaman . *IJAPBC* 2277 -4688. 2015. 4 (2) .

330 [Verma et al. ()] 'Toxicological effects of Carica papaya seeds extract on spermatozoa of mice'. R J Verma , D
331 Nambiar , N J Chinoy . *J ApplToxicol* 2006. 26 p. . (PubMed: 17080407)