

1 Association between Periodontitis and Severe Asthma: The Role
2 of IgG Anti-Porphyromonas gingivalis levels

3 Soraya Castro Trindade¹

4 ¹ Campus Universitário

5 *Received: 10 December 2019 Accepted: 31 December 2019 Published: 15 January 2020*

6

7 **Abstract**

8 Asthma and periodontitis are both very prevalent worldwide. Although the association
9 between these diseases has been investigated, the biological mechanism underlying this
10 association, especially the role of biological mediators, remains unclear. Thus, the aim of this
11 study was to evaluate serum levels of anti-Porphyromonas gingivalis IgG in subjects with and
12 without severe asthma. A case-control study involving 169 individuals consisted of subjects
13 with severe asthma in addition to others without asthma (control group). An indirect enzyme
14 linked immunosorbent assay (ELISA) was performed to measure serum levels of IgG specific
15 to Porphyromonas gingivalis. Bacterial DNA was extracted from subgingival biofilm samples
16 and real-time polymerase chain reaction (RT-PCR) analysis was performed to quantify
17 Porphyromonas gingivalis levels. No statistically significant differences were observed between
18 case and control groups with respect to levels of IgG specific to Porphyromonas gingivalis
19 whole extract ($p=0.484$) or rHmuY protein ($p=0.903$). The relative quantification of
20 Porphyromonas gingivalis was similar between the groups with and without asthma
21 ($p=0.553$). When participants were regrouped according to a diagnosis of periodontitis, no
22 significant differences were detected between subjects with and without periodontitis, either in
23 serum levels of IgG specific to Porphyromonas gingivalis whole extract ($p=0.789$) or specific to
24 rHmuY ($p=0.630$). However, participants with chronic periodontitis had lower levels of
25 Porphyromonas gingivalis in their biofilm than individuals without periodontitis ($p=0.001$).
26 We hypothesize that the occurrence of asthma exerts an influence over Porphyromonas
27 gingivalis colonization in the biofilm, as well as modulates the production of IgG specific to
28 this pathogen in periodontitis.

29

30 **Index terms**— asthma, periodontitis, immunoglobulin G.

31 **1 Association between Periodontitis and Severe Asthma The Role of IgG Anti-Po**

32 **2 Strictly as per the compliance and regulations of:**

33 Abstract-Asthma and periodontitis are both very prevalent worldwide. Although the association between
34 these diseases has been investigated, the biological mechanism underlying this association, especially the role
35 of biological mediators, remains unclear. Thus, the aim of this study was to evaluate serum levels of anti-
36 Porphyromonas gingivalis IgG in subjects with and without severe asthma. A case-control study involving 169
37 individuals consisted of subjects with severe asthma in addition to others without asthma (control group). An
38 indirect enzyme linked immunosorbent assay (ELISA) was performed to measure serum levels of IgG specific
39 to Porphyromonas gingivalis. Bacterial DNA was extracted from subgingival biofilm samples and real-time
40 polymerase chain reaction (RT-PCR) analysis was performed to quantify Porphyromonas gingivalis levels.

41 **3 I. Introduction**

42 severe asthma and periodontitis are chronic diseases highly prevalent worldwide, affect individuals \geq 18 years (1,2)
43 . Asthma, an inflammatory disease affecting the airways, is characterized by increased bronchial responsiveness
44 and reversible airflow limitations, i.e. frequent episodes of shortness of breath and gasping, thoracic oppression
45 and coughing (2) . Of the individuals affected by asthma, 10% suffer from its severe form, leading to negative
46 economic and social impacts. The recurrent suffocation experienced results in human suffering and decreases in
47 quality of life (3) .

48 Among the chronic diseases that are predominant nowadays, the relationship between asthma and oral health
49 has been a relevant topic of discussion (4) . The presence of chronic infections seems to influence the pathogenesis
50 of asthma, and a wide range of phenotypes and endophenotypes have been observed (5) .

51 Many studies have demonstrated a positive association between asthma and periodontitis (6)(7)(8)(9)(10) .
52 However, other studies found a negative association and attempted to explain this using the hygiene hypothesis.
53 Accordingly, a high prevalence of oral infectious diseases may contribute to decreases in the incidence of asthma
54 and other allergic diseases. Thus, exposure to oral bacteria, including periodontal disease pathogens, could play
55 a protective role in the development of asthma and allergies by polarizing the immune response (13,14) .

56 Recently, a new model describing the pathogenesis of periodontitis was proposed, in which the onset of
57 periodontal disease is promoted by a synergistic and dysbiotic microbial community, instead of a specific group of
58 bacteria referred to as periodontopathogens. Some bacteria present at low levels in the microbiota can affect the
59 entire community. Due to their important role in the development of dysbiosis, these are denominated "keystone
60 pathogens" (15) . Of these, one of the most studied is *Porphyromonas gingivalis*, a Gram-, strictly anaerobic and
61 asaccharolytic bacterium belonging to the Bacteroidaceae family, has been consistently associated with human
62 periodontitis (15,16) .

63 Confirming the role of *Porphyromonas gingivalis* in the etiology and pathogenesis of periodontitis, high levels
64 of specific IgG against this bacteria were found in the sera of affected individuals (17,18) . Moreover, individuals
65 with chronic periodontitis presented higher levels of IgG against *Porphyromonas gingivalis* antigens, such as
66 HmuY and the gingipains proteinases, than healthy individuals, or those with gingivitis (17)(18)(19)(20)(21) .

67 Due to the public health relevance of these two highly prevalent chronic diseases, asthma and periodontitis,
68 and the gaps in knowledge regarding associations between them, specifically concerning the role of biological
69 molecules, the present study aimed to investigate associations between these two chronic diseases, as well as to
70 evaluate levels of IgG specific to the crude extract of *Porphyromonas gingivalis*, and HmuY, a lipoprotein of this
71 bacteria.

72 **4 II. Material and Methods**

73 **5 a) Study Design**

74 The present non-matched case-control study was performed to evaluate the serum humoral immune response
75 against *Porphyromonas gingivalis* in severe asthma. The case group consisted of individuals with severe asthma,
76 while individuals in the control group did not have asthma. The case: control ratio was 1:2.

77 **6 b) Participants and study area**

78 Asthmatic participants were enrolled at the ProAR clinic (Program for Asthma Control in Bahia), located in
79 Salvador, Bahia, Brazil. This study was approved by the IRB of the Feira de Santana State University (protocol
80 no. 43131615.3.0000.0053).

81 Study volunteers were informed of the research protocol and required to sign a term of free and informed
82 consent. Interviews were conducted to obtain background information regarding socioeconomic status, medical
83 history, lifestyle and health habits, as well as oral hygiene habits and frequency of dental visits.

84 **7 c) Selection criteria**

85 Individuals were seen at the ProAR clinic, part of the multidisciplinary municipal health center (Centro de Saúde
86 Carlos Gomes), located in Salvador, Bahia, Brazil, were selected based on a diagnosis of severe asthma. For
87 each participant in the case group, two other nonasthmatic individuals were selected from the patient pool of the
88 municipal health center for inclusion in the case group, provided they resided in the same neighborhood as the
89 case participant. To not introduce bias, all control individuals were recruited from the dental services division of
90 the municipal health center on days in which a periodontal specialist was not present.

91 **8 d) Sample size calculation**

92 Sample size was calculated based on a previously reported proportion of individuals with periodontitis (61.9%)
93 within a group of severe asthmatic patients versus 27.1% in a group without asthma (6) . Thus, considering an
94 odds ratio of 4.37, a significance level of 95%, a power of 80% for two-tailed testing, and a case: control ratio of
95 1:2, the minimum sample size was 54 individuals for the CASE group and 108 individuals for the CONTROL
96 group.

97 **9 e) Periodontal Diagnosis**

98 Individuals were considered to have periodontitis when at least four teeth presented one or more sites meeting
99 all of the following conditions: probing depth \geq 4mm, clinical attachment level \geq 3mm, and bleeding on probing
100 after stimulation (22)

101 **10 f) Diagnosis of Severe Asthma**

102 The diagnosis of asthma was made by GINA, 2012 7 . Before the inclusion, a revision in the medical records
103 of each participant was realized, and only those who received a diagnosis by two specialists and confirmed by
104 spirometry were included.

105 **11 g) Peripheral blood collection**

106 Peripheral blood (5 mL) was collected by venipuncture in the antecubital fossa from all participants and stored
107 in Vacutainer tubes (BD, SP, Brazil) with clot activator. The tubes were centrifuged for 10 min to obtain sera,
108 which was stored at -20° until analysis.

109 h) Antigen obtainment *P. gingivalis* ATCC33277 was grown in Brucella broth supplemented with menadione
110 and L-cysteine, and then somatic immunogenic proteins were obtained by centrifugation (18). The recombinant
111 protein HmuY (rHmuY) of *Porphyromonas gingivalis* was cloned from *Escherichia coli* using a plasmid as a
112 cloning vector, then purified and characterized.

113 **12 i) ELISA to measure IgG against antigens of *Porphyromonas*
114 *gingivalis***

115 An enzyme linked immunosorbent assay (ELISA) was used to evaluate the humoral immune response against a
116 crude extract of *Porphyromonas gingivalis* and the rHmuY protein using an indirect measure of IgG levels in the
117 sera of the participants.

118 A 96-well plate was coated with 5 μ g/mL of antigen (*P. gingivalis* crude extract or rHmuY) and incubated
119 overnight at 4°C. After washing with phosphate-buffered saline (PBS), blocking was performed using 5% skim
120 milk (Molico, Araçatuba, Brazil). After reincubation for 2h at 37°C, the plates were washed twice, and diluted
121 sera (1:1000) was placed in each well, followed by an incubation period of 1h at 37°C. All wells were then washed
122 five times with PBS and reincubated with anti-human IgG conjugated with peroxidase (Sigma Aldrich, USA)
123 diluted at 1:25000 for 1h at 37°C. After five additional washes, a chromogenic substrate (H₂O₂-TMB) was
124 added, and the reaction was stopped using 2N H₂SO₄ . IgG levels were measured by optical density (OD)
125 using a microplate reader (PR2100 Bio-Rad, USA) at wavelengths ranging from 450-620 nm.

126 **13 j) Biofilm Collection**

127 Following periodontal examinations, subgingival biofilm was collected using a periodontal curette from the
128 site with the greatest probing depth in each sextant (Hu-Friedy, USA). Samples were pooled in a microtube
129 containing sterile PBS (one tube for each patient), and, after centrifugation, pellets were stored at -20°C until
130 DNA extraction.

131 **14 k) Bacterial DNA Extraction and Genotyping**

132 Bacterial DNA was extracted from subgingival biofilm samples using a PureLink[®] Genomic DNA Mini Kit
133 (Invitrogen) by the manufacturer's protocol.

134 The relative quantification of *P. gingivalis* was performed using the TaqMan[®] probe quantitative realtime
135 polymerase chain reaction (qPCR) method. The probe sequence used in the reaction was: 5'-6-FAM-CRA ACA
136 GGA TTA GAT ACC CTG GTA GTC CRC-BHQ1 -3'. The primer sequence was: forward -5'-GAC TGA
137 CAC TGA AGC ACG AAG -3' and reverse -5'-GCT TGA CGG TAT ATC GCA AAC TC -3'. The PCR mix
138 (final volume of 12.5 μ L) consisted of: 10xbuffer (1.25 μ L) containing 50mM MgCl₂ (0.38 μ L), 4x2.5mM(1 μ L), 10 μ M
139 forward primer (0.38 μ L), 10 μ M reverse primer (0.38 μ L), 5U/ μ L Taq (0.05 μ L), RNase-free water (6.33 μ L), 10 μ M
140 probe (0.25 μ L) and DNA (2.5 μ L). Reactions were performed using an initial denaturation cycle at 94°C for 1
141 min, 45 cycles at 94°C for 20 sec, and 58°C for 35 sec.

142 **15 l) Statistical Analysis**

143 Descriptive statistical analysis was carried out using the Student T-test for continuous variates and the chi-square
144 test, or Fisher's exact test, for dichotomous variates. Comparisons of IgG levels were made using the Mann-
145 Whitney test. The association between periodontitis and severe asthma was evaluated by logistic regression,
146 using the backward strategy to select confounders. All statistical analyses were performed using the SPSS v21
147 statistical package, and the results were considered statistically significant when p \leq 0.05.

148 16 III. Results

149 A total of 169 individuals were included in the study. The group with severe asthma (case) consisted of 53
150 Participants (31.4%), while 116 participants (68.6%) were included in the group without asthma (control). The
151 mean age in the case group was 49.5 ± 12.1 years, versus 43.95 ± 11.4 years in the control group. In the case group,
152 45 (84.9%) participants were female, and eight (15.1%) were male, while the control group consisted of 100(86.2%)
153 females and 16 (13.8%) males. No statistically significant differences were detected between the groups in terms
154 of age ($P=0.17$) or sex ($P=1.0$), nor concerning the socioeconomic and demographic characteristics evaluated
155 (Table 1), demonstrating homogeneity regarding these covariates.

156 Table 2 delineates the distribution of aspects related to lifestyle habits and oral health in the groups with
157 and without severe asthma. No statistically significant differences were observed between cases and controls
158 concerning these aspects, except for mouth-breathing habit ($P <0.01$).

159 Table 3 lists characteristics related to the general health status of the participants. While homogeneity was
160 observed between the case and control groups, statistically significant differences were seen about diagnoses of
161 periodontitis ($P <0.01$) and hypertension ($P <0.01$).

162 A positive association between periodontitis and severe asthma was observed ($OR = 6.73$ [2.57-17.64]), even
163 after adjusting for mouth breathing, hypertension, body mass index (BMI) and practicing physical activity
164 ($OR=7.96$ [2.65-23.9]). The frequency of periodontitis in the case group was 30.8% versus 6%, in the control
165 group, i.e, the chance of having severe asthma was almost eight times higher among individuals with periodontitis.

166 The humoral evaluation found ,no statistically significant differences in levels of IgG specific to the crude
167 extract ($P=0.48$) or rHmuY ($P=0.90$) between the case and control groups, as illustrated in Figures 1 and
168 2, respectively. Moreover, IgG levels specific to the crude extract ($P=0.79$) and to rHmuY ($P=0.63$) were
169 similar among individuals with or without periodontitis, as shown in Figures 3 and 4, respectively. Also, we
170 found no statistically significant differences in the relative amount of *Porphyromonas gingivalis* ($P=0.05$) among
171 participants with severe asthma and those without asthma (Figure ??). Unexpectedly, significantly lower relative
172 amounts of *Porphyromonas gingivalis* ($P <0.001$) were observed in the biofilm of individuals with periodontitis in
173 comparison to those without periodontitis (Figure 6).

174 17 IV. Discussion

175 The main finding of the present study was the establishment of a strong association between periodontitis and
176 asthma, even after adjusting for confounders, indicating that individuals with periodontitis are more likely to
177 suffer from asthma. Another relevant result was similar production levels of IgG specific to *P. gingivalis* among
178 the participants, regardless of whether they had severe asthma, periodontitis, or neither of these conditions.
179 While the literature indicates that individuals with periodontitis are expected to harbor significantly higher
180 levels of IgG specific to *Porphyromonas gingivalis* (17) , the present results were divergent. This would seem to
181 suggest that the presence of severe asthma may influence the humoral response to *Porphyromonas gingivalis*, the
182 relative quantities of *Porphyromonas gingivalis* were found to be significantly lower in the subgingival biofilm of
183 individuals with chronicperiodontitis.

184 To date, the literature is controversial regarding the relationship between periodontitis and asthma. Several
185 studies have shown positive associations (7,(23)(24)(25)(26) in individuals with periodontitis, who are five times
186 as likely to present bronchial inflammation (6) , or have a three times greater chance of developing severe asthma
187 (27) . By contrast, other studies have reported either a negative association (13) or demonstrated the absence of
188 any relationship between these diseases (11,12) .

189 Possibly due to this lack of concordance, there are no reports in the literature that attempt to confirm this
190 association on a molecular level. To an effort to investigate this association, we sought to evaluate serum levels
191 of IgG against antigens of *Porphyromonas gingivalis*, a keystone microorganism in periodontal dysbiosis (15,28)
192 , which is prevalent in deep periodontal pockets (16) .

193 In contrast to the findings reported herein, previous studies have shown that individuals with periodontitis
194 present high levels of IgG specific to *Porphyromonas gingivalis* extract, as well as to itslipoprote in HmuY. The
195 literature indicates a remarkable discrepancy regarding IgG levels in individuals with a clinical diagnosis of
196 periodontitis, those with gingivitis, and others with sound periodontal health (18,19,35) . Nevertheless, is
197 important to emphasize that these studies did not include individuals diagnosed with any other diseases, nor
198 those taking medications, such as corticosteroids, which like this eliminated agents capable of modulating host
199 response.

200 Given this fact, it is possible to speculate that, in individuals with chronic periodontitis, the presence of
201 severe asthma may modulate the production of IgG specific to *Porphyromonas gingivalis*, which reinforces the
202 bidirectional association between these two diseases. Regardless, further investigation is necessary to clarify
203 whether this modulation occurs by way of immune system regulation.

204 Furthermore, it is possible that the similarities seen in levels of IgG specific to the *Porphyromonas gingivalis*
205 extract and HmuY, in individuals with and without severe asthma, may be related to possible interactions
206 between periodontal tissues and the drugs used to control the clinical symptoms of asthma (23,25) . The
207 immunosuppressant effect of corticosteroids can influence the host immune response seen in periodontal tissues,
208 including the production of IgG (36) . Moreover, it is possible that the presence of asthma provokes changes in
209 the periodontal microenvironment, which may alter the colonization, in the subgingival biofilm, of members of

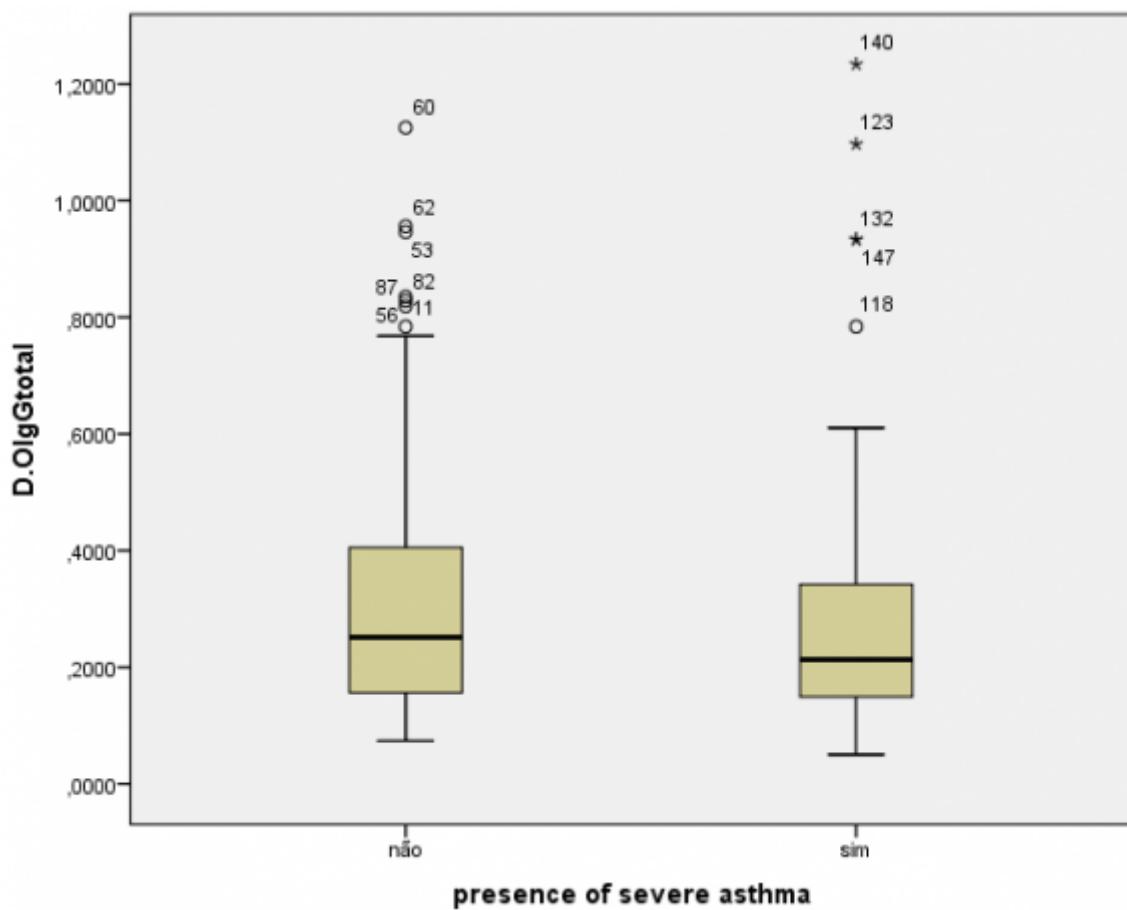
210 the microbial community. Herein, surprisingly, the relative quantities of *Porphyromonas gingivalis* were found to
211 be higher in individuals without periodontitis.

212 As previously mentioned, this microorganism is capable of modulating host defense by altering the growth
213 and development of the entire microbial community, i.e. eliciting destructive changes in the relationships among
214 its members, which is normally homeostatic. *Porphyromonas gingivalis* is considered to be a keystone pathogen
215 that, when present even in low amounts in the biofilm, can provoke, an imbalance between host response and the
216 biofilm, which may favor the onset and progression of periodontitis (15) .

217 It is important to consider that some studies argue that the presence of periodontitis may offer protection
218 against asthma. This is justified by the hygiene hypothesis, which holds that fewer opportunities for infection
219 are responsible, at least in part, for increases in the prevalence of allergic diseases (11)(12)(13) .

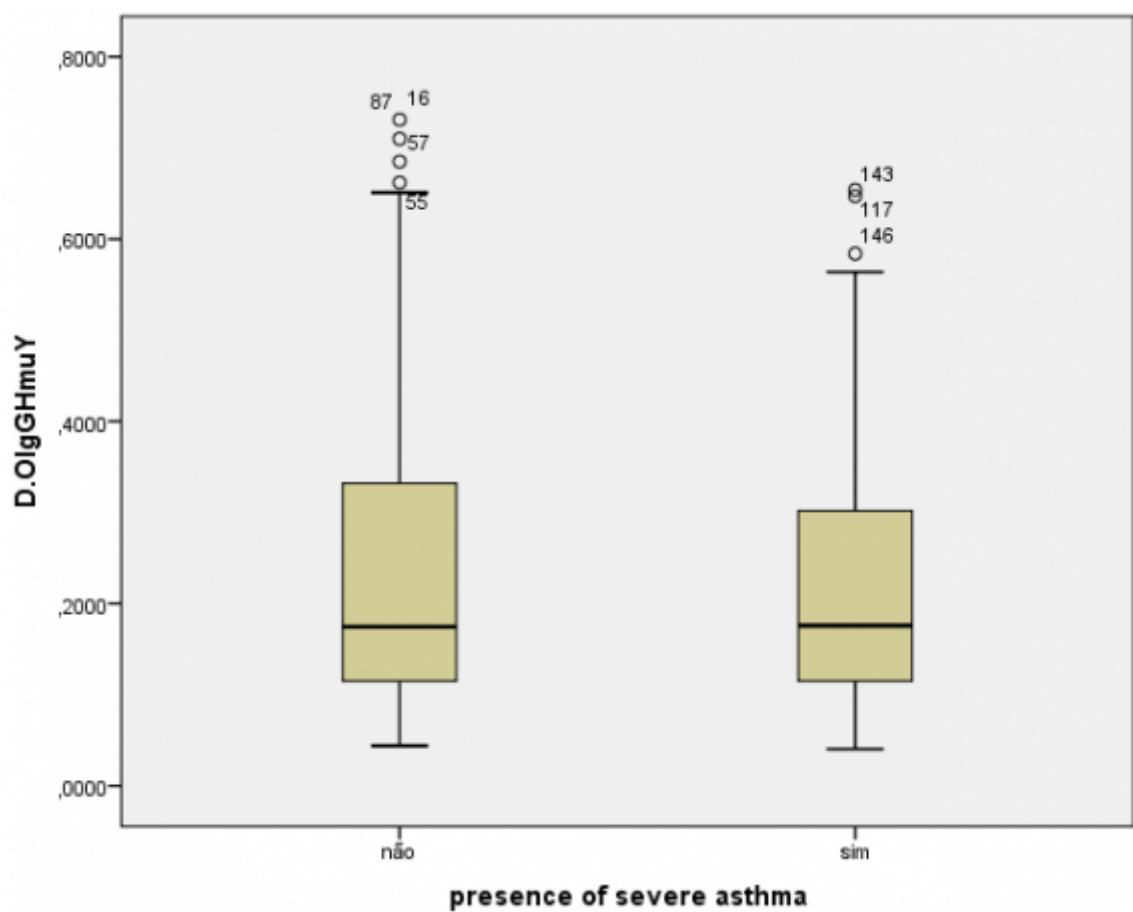
220 In this context, a study reported that *Porphyromonas gingivalis* can reduces inflammation in the airways,
221 although this effect did not affect the hyperreactivity of these airways (14) . Also, high concentrations of serum
222 IgG against *Porphyromonas gingivalis* were also found to be significantly associated with a lower prevalence of
223 asthma and sibilance (13) . The present study represents an initial attempt to investigate the molecular aspects
224 of the association between periodontitis and asthma. A link between levels of *Porphyromonas gingivalis* in the
225 subgingival biofilm and, the humoral immune response against this bacterium was found. Moreover, the relative
226 quantification of the bacterium was performed via a widely used sensitive technique. Also, the immunoassays
227 employed to evaluate IgG levels were previously standardized, and the capacity to distinguish among a variety
228 of periodontal conditions was also demonstrated (35) .

229 About limitations, due to the present casecontrol design, there was no way to establish which disease preceded
230 the other, as both are chronic diseases. The possibility of residual confounding may also exist, since some
231 covariates, such as genetic factors, may not have been considered.


232 Thus, in light of its limitations, the present study seems to suggest that the occurrence of severe asthma is
233 capable of modulating the colonization of *Porphyromonas gingivalis* in the subgingival biofilm, in addition to
234 the production of IgG specific to antigens of this bacterium (extract and HmuY) in the sera of individuals with
235 periodontitis.

236 18 Tables and Figures

237 ¹



¹ Association between Periodontitis and Severe Asthma: The Role of IgG Anti-*Porphyromonas gingivalis* Levels
© 2020 Global Journals

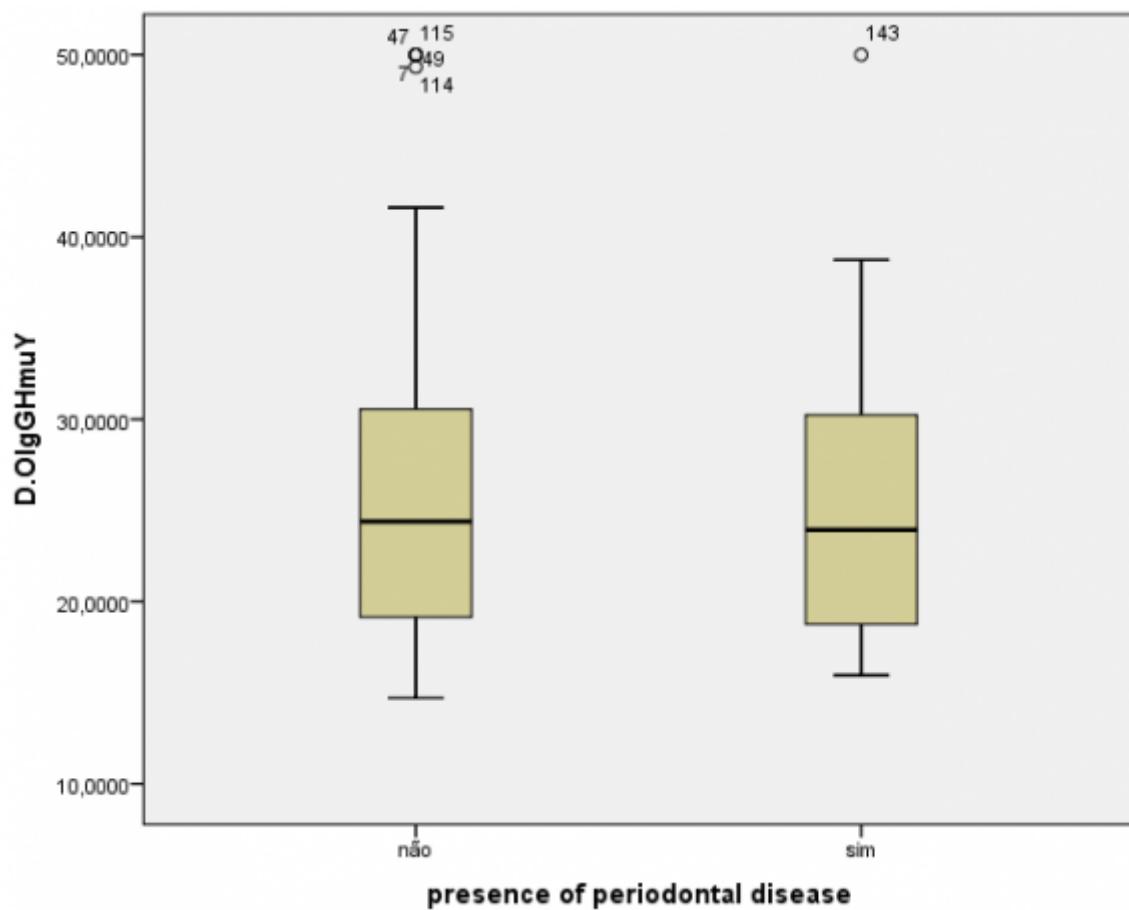

1

Figure 1: Figure 1 :

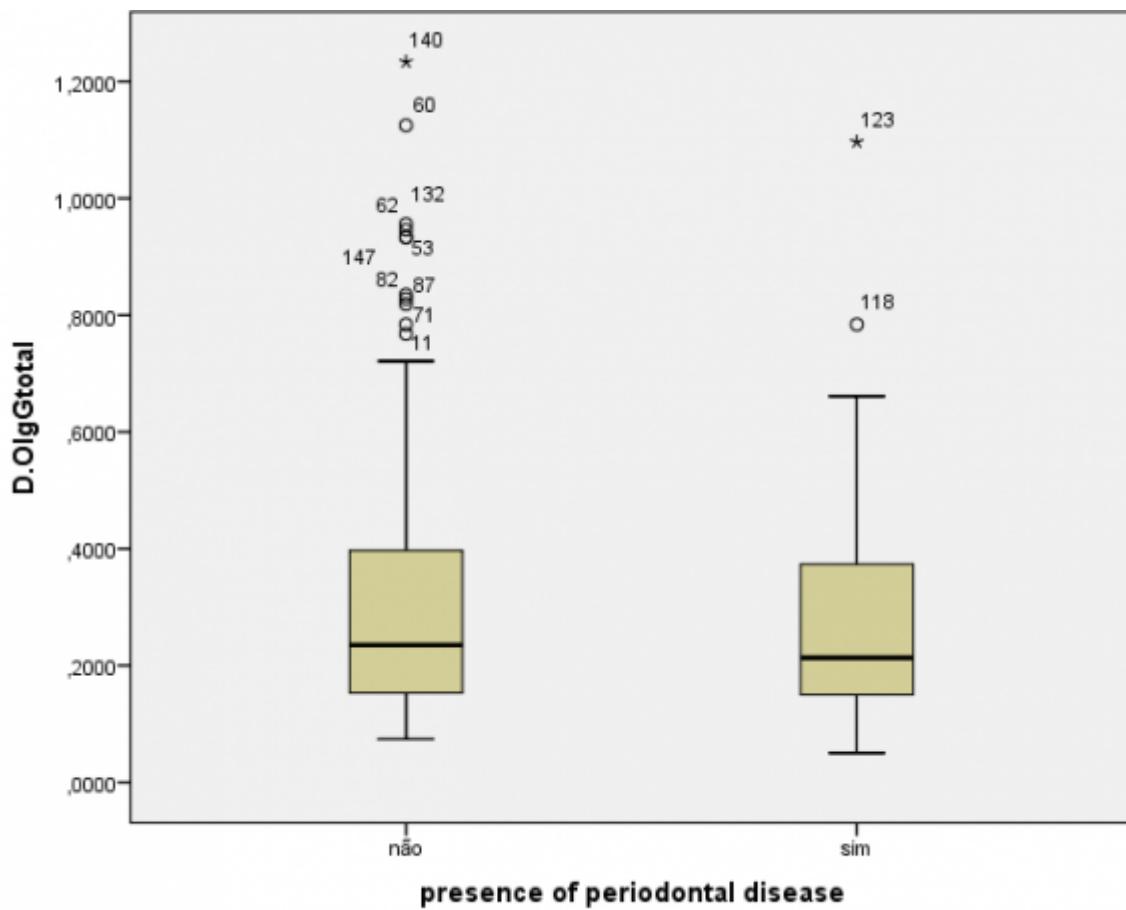

2

Figure 2: Figure 2 :J

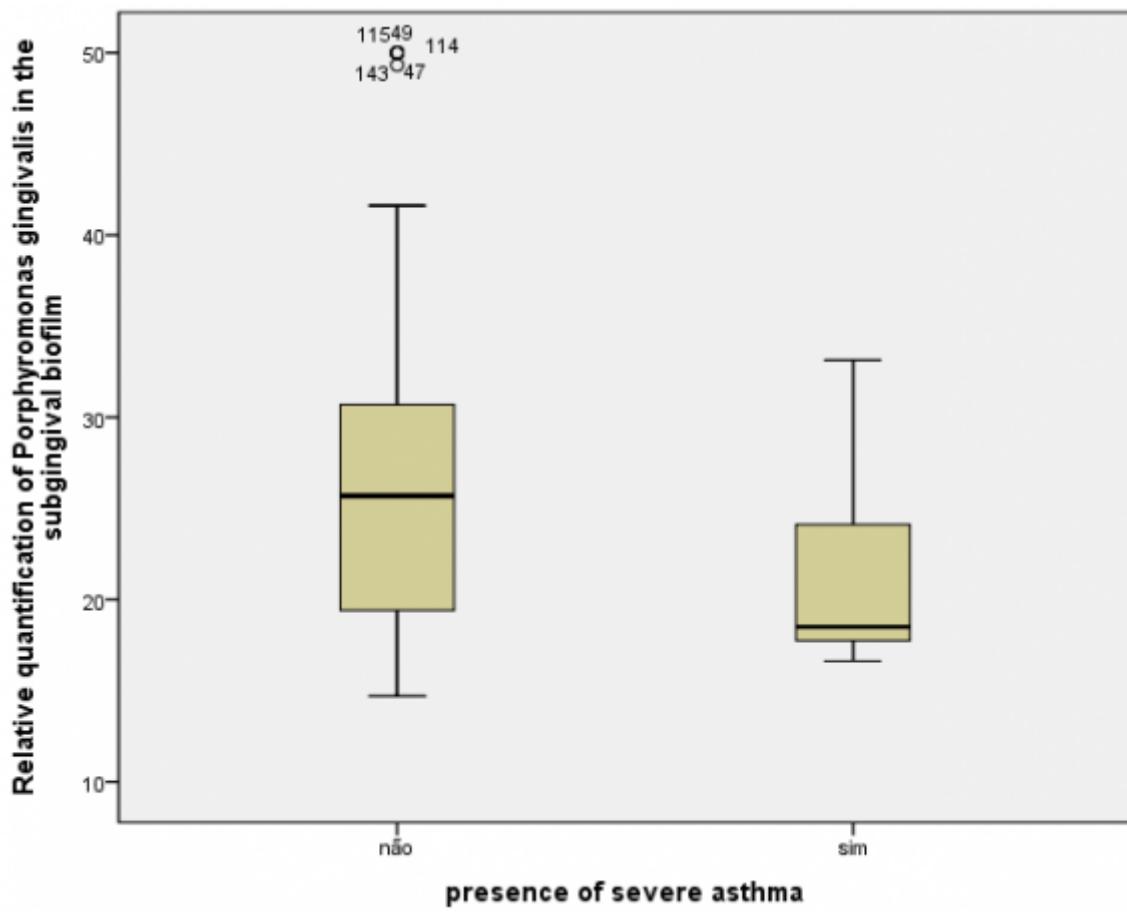

4

Figure 3: Figure 4 :

35

Figure 4: Figure 3 Figure 5 :

6

Figure 5: Figure 6 :

1

Association between Periodontitis and Severe Asthma: The Role of IgG Anti-Porphyromonas gingivalis Levels

Figure 6: Table 1 :

2

gingivalis Levels

[Note: * Diagnosis of periodontitis according to GomesFilho et al 2007 ** p: significance level (? 0.05) Pearson's chi-square or Fisher's exact test]

Figure 7: Table 2 :

3

	Without asthma (N=116)	Severe asthma (N=52)	
Hypertension	N (%)	N (%)	p**
Not	95 (81,9%)	29 (54,7%)	
Yes	21(18,1%)	24(45,3%)	
Diabetes	N (%)	N (%)	p**
Not	109 (94,0%)	46(86,8%)	0,14
Yes	7(6,0%)	7(13,2%)	
Osteoporosis	N (%)	N (%)	p**
Not	115(99,1%)	51(96,2%)	0,23
Yes	1 (0,9%)	2 (3,8%)	
Kidney disease	N (%)	N (%)	p**
Not	115(99,1%)	53 (100%)	1,00
Yes	1 (0,9%)	0(0%)	
Hypercholesterolemia	N (%)	N (%)	p**
Not	110 (94,8%)	46(86,8%)	0,01
Yes	1(0,9%)	7(13,2%)	
Cardiovascular disease	N (%)	N (%)	p**
Not	115(99,1%)	84(93,3%)	0,04
Yes	1 (0,9%)	6 (6,7%)	
Body mass index (weight / height ²)	N (%)	N (%)	p**
< 25	42(36,2%)	11 (20,8%)	0,05
?25	74 (63,8%)	42(79,2%)	
Diagnosis of periodontitis *	N (%)	N (%)	p***
Without periodontitis	109 (94%)	36(69,2%)	<0,01
With periodontitis	7 (6%)	16 (30,8%)	

[Note: * Diagnosis of periodontitis according to Gomes Filho et al 2007 ** p: significance level (? 0.05) Pearson's chi-square or Fisher's exact test]

Figure 8: Table 3 :

238 .1 Acknowledgements

239 To the Coordination for the Improvement of Higher Education Personnel (CAPES) of the Ministry of Education
240 (MEC), the Postgraduate Program in Immunology (PPGIm) of the Federal University of Bahia (UFBA), ProAr
241 and the Research Center, Integrated Practice and Multidisciplinary Research (NUPPIIM) at the State University
242 of Feira de Santana (UEFS).

243 [Zhang and Khl ()] 'A complex role for complement in allergic asthma'. X Zhang , J Khl . *Expert Rev Clin*
244 *Immunol* 2010. 6 (2) p. .

245 [Kohl et al. ()] 'A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma'. J Kohl , R Baelder
246 , I P Lewkowich , M K Pandey , H W Hawlisch , L . *J Clin Investig* 2006. 116 (3) p. .

247 [Trombelli and Fr ()] 'A review of factors influencing the incidence and severity of plaque-induced gingivitis'. L
248 Trombelli , Fr . *Minerva Stomatol* 2013. 62 (6) p. .

249 [Yaghobee et al. (2008)] 'Association between Asthma and Periodontal Disease'. S Yaghobee , M Paknejad , A
250 Khorsand . *J Dent* 2008. December. 5 p. .

251 [Soledade-Marques et al. (2017)] 'Association between Periodontitis and Severe Asthma in Adults: A Case-
252 Control Study'. K R Soledade-Marques , I S Gomes-Filho , Seixas Da Cruz , S De , Santana Passos-Soares ,
253 J Trindade , S C Cerqueira E De , MM . *Oral DisI* 2017. July. p. .

254 [Morjaria et al. ()] 'Biologic and pharmacologic therapies in clinical development for the inflammatory response
255 in COPD'. J B Morjaria , M Malerba , R Polosa . *Drug Discov Today* 2010. 15 (9) p. .

256 [Stensson et al. ()] 'Birkhed D. Caries Prevalence, Caries-Related Factors and Plaque pH in Adolescents with
257 Long-Term Asthma'. M Stensson , L K Wendt , G Koch , G Oldaeus , P Ramberg . *Caries Res* 2010. 44 p. .

258 [Hajishengallis ()] 'Breaking bad: Manipulation of the host response by Porphyromonas gingivalis'. George
259 Hajishengallis , Rjl . *Eur J Immunol* 2014. 44 (2) p. .

260 [Sj and Me ()] 'Can oral pathogens influence allergic disease?'. Arbes SjJr , Me . *J Allergy Clin Immunol* 2011.
261 127 (5) p. .

262 [Stensson et al. ()] 'Caries prevalence, cariesrelated factors and plaque pH in adolescents with long-term asthma'.
263 M Stensson , L K Wendt , G Koch , G Oldaeus , P Lingström , D Birkhed . *Caries Res* 2011. 44 (6) p. .

264 [Cukier ()] 'Comparação entre medidas objetivas do tabagismo e tabagismo autodeclarado em pacientes com
265 asma ou DPOC: será que nossos pacientes dizem a verdade?'. R S Cukier . *J Bras Pneumol* 2015. 41 (2) .

266 [Laurikaines and Kuusisto ()] 'Comparison of the health status and salivary flow rate of asthmatic patients with
267 those of nonasthmatic adults -results of a pilot study'. K Laurikaines , P Kuusisto . *Allergy* 1998. 53 p. .

268 [Lukacs et al. ()] 'Complementdependent immune complex-induced bronchial inflammation and hyperreactivity'.
269 N W Lukacs , M M Glovsky , P A Ward . *Am J Physiol Lung Cell Mol Physiol* 2001. 280 (3) p. .

270 [Gomes-Filho et al. ()] 'Does Periodontal Infection Have an Effect on Severe Asthma in Adults?'. I S Gomes-Filho
271 , K R Soledade-Marques , Seixas Da Cruz , S De , Santana Passos-Soares , J Trindade , S C Souza-Machado
272 , A . *J Periodontol* 2014. 85 (6) p. .

273 [Gomes-Filho et al. ()] 'Exposure measurement in the association between periodontal disease and prematurity/
274 low birth weight'. I S Gomes-Filho , S S Cruz , E J Rezende , Dos Santos , C A Soledade , K R
275 Magalhães , M A De Azevedo , A C Trindade , S C Vianna , MI , Passos Jde , S Ce . *J Clin Periodontol*
276 2007. 34 (11) p. .

277 [TH ()] 'Gingival IgE and histamine concentrations in patients with asthma and in patients with periodontitis'.
278 TH . *J Clin Periodontol* 1984. 11 (2) p. .

279 [Gina ()] *Global initiative for asthma. Global strategy for asthma management and prevention*, Gina .
280 Disponível em: www.ginasthma.org. Acessado em ABRI de 2016 2016.

281 [Franca et al. ()] 'Humoral immune response to antigens of Porphyromonas gingivalis ATCC 33277 in chronic
282 periodontitis'. M Franca , L Moura-Costa , R J Meyer , S C Trindade , R Tunes U Da , S M Freire . *J Appl*
283 *Oral Sci* 2007. 15 (3) p. .

284 [Trindade et al. ()] 'Induction of interleukin (IL)-1?, IL-10, IL-8 and immunoglobulin G by Porphyromonas
285 gingivalis HmuY in humans'. S C Trindade , Olczakt , I S Gomes-Filho , L F Moura-Costa , Emm Cerqueira
286 , M Galdino-Neto . *J Periodontal Res* 2012. 47 (1) p. .

287 [Friedrich et al. ()] 'Inverse association between periodontitis and respiratory allergies'. N Friedrich , H Völzke ,
288 C Schwahn , A Kramer , M Jünger , Schäfert , U John , Kt . *Clin Exp Allergy* 2006. 36 (4) p. .

289 [Mehta et al. ()] 'Is bronchial asthma a risk factor for gingival diseases? A control study'. N Y State Dent' A
290 Mehta , P S Sequeira , R C Sahoo , Kg . *J* 2009. 75 (1) p. .

291 [Huj Joel et al. ()] 'Longterm use of medications and destructive periodontal disease'. P P Huj Joel , J Cunha-Cruz
292 , G Maupome , Sb . *J Periodontol* 2008. 79 (8) p. .

293 [Socransky et al. ()] 'Microbial complexes in subgingival plaque' S S Socransky , A D Haffajee , M A Cugini ,
294 C Smith , Krj . *J Clin Periodontol* 1998. 36 (4) p. .

295 [Card et al. ()] 'Modulation of allergic airway inflammation by the oral pathogen *Porphyromonas gingivalis*' J
296 W Card , M A Carey , J W Voltz , J A Bradbury , C D Ferguson , E A Cohen . *Infect Immun* 2010. 78 (6)
297 p. .

298 [Stensson et al. ()] 'Oral health in young adults with long-term, controlled asthma' M Stensson , L-K Wendt ,
299 G Koch , G Oldaeus , P Ramberg , D Birkhed . *Acta Odontol Scand* 2011. 69 (3) p. .

300 [Samuel et al. ()] 'Oral pathogens and allergic disease: Results from the Third National Health and Nutrition
301 Examination Survey' J Samuel , ArbesJr , Dds , Mph , Michelle L Phda , Sever , Ben Bsa , Vaughn , E A
302 Msb , Bsa Cohen , Darryl C Zeldin Md . *J Allergy Clin Immunol* 2006. 118 (5) p. .

303 [Rocha et al. ()] 'Periodontal disease and asthma: literature review' K Rocha , S Marques , A Souza-Machado
304 . *Med Biol* 2011. 10 (103) p. .

305 [GH ()] 'Periodontitis: from microbial immune subversion to systemic inflammation' GH . *Nat Rev Immunol*
306 2015. 15 (1) p. .

307 [Ec ()] 'Respiratory symptoms in asthma: the view through a wide-angle lens' Ec . *J Allergy Clin Immunol*
308 2012. 130 (2) p. .

309 [Nguyen et al. ()] 'Responses to *Porphyromonas gingivalis* Gingipain Adhesin Domains in Subjects with Chronic
310 Periodontitis' Ky-Anh Nguyen , Arthur A Decarlomp , Charles A Collyer Dbl , N H Humoral . *Infect
311 IMMUNITY* 2004. 72 (3) p. .

312 [Guor and Ward ()] 'Role of C5a in Inflammatory Responses' -F Guor , P A Ward . *Annu Rev Immunol* 2005.
313 23 (1) p. .

314 [Trindade et al. ()] 'Serum antibody levels against *Porphyromonas gingivalis* extract and its chromatographic
315 fraction in chronic and aggressive periodontitis' S C Trindade , I S Gomes-Filho , R Meyer , V L Vale , L
316 Pugliese , Freire Sm . *J Int Acad Periodontol* 2008. 10 p. .

317 [Neil et al. ()] 'Serum Immunoglobulin G (IgG) and IgG Subclass Responses to the RgpA-Kgp Proteinase-
318 Adhesin Complex of *Porphyromonas gingivalis* in Adult Periodontitis' M Neil , Catherine L O'brien-Simpson
319 , Peter S Black , Nada Bhogalsmc , Thomas J Slakeski , Higgins Aecr . *Infect Immun* 2000. 68 (5) p. .

320 [Kim et al. ()] 'The many paths to asthma: phenotype shaped by innate and adaptive immunity' H Y Kim , R
321 H Dekruyff , Ud . *Nat Immunol* 2010. 11 (7) p. .

322 [SK ()] 'The role of PI3K in immune cells' SK . *Nat Immunol* 2003. 4 (4) p. .

323 [Cardoso and Trindade ()] *Utilização De Diferentes Antígenos De Porphyromonas Gingivalis Para Avaliação Da
324 Resposta Imune Humoral Na Periodontite Crônica*, Kapa Cardoso , S C Trindade . 2017. Universidade Federal
325 da Bahia