

1 Socio-economic Vulnerabilities to COVID-19 in India: Swimming
2 against the Tide

3 S. K. Singh¹, Aditi² and Sudipta Mondal³

4 ¹ International Institute for Population Sciences

5 *Received: 14 December 2019 Accepted: 31 December 2019 Published: 15 January 2020*

6

7 **Abstract**

8 COVID-19 poses an unforeseen challenge to the world. The virus is testing the capacity of
9 public health systems globally and their ability to respond effectively. India is no exception.
10 The country has already witnessed more than 35,000 confirmed positive cases by the end of
11 April 2020, and the number is fast rising despite strict measures by the government. The virus
12 has reached every state and union territory of the country. In the absence of a drug or a
13 vaccine, the only measure available to fight this deadly novel pathogen is to adopt changes in
14 behaviors and lifestyle â?? physical distancing, frequent hand washing, and proper respiratory
15 etiquette. The government has imposed lockdown to maintain social distance since 24th March
16 2020, but it cannot continue for long due to the immense loss of economy and livelihood. The
17 country needs to learn to co-exist with the virus and embrace the prescribed measure of
18 physical distancing, and handwashing even after the government lifts the lockdown. The paper
19 uses the data from the most recent Indian version of DHS, known as National Family Health
20 Survey-4, to examine the feasibility of the adoption of these new norms and their impact on a
21 densely populated country like India, where there are nearly half of the households (49)

22

23 *Index terms—*

24 **1 Background and Rationale**

25 The rapidly spreading severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which originated from
26 Wuhan city in China, was declared as a pandemic by the World Health Organisation (WHO) in early March
27 2020. Initially, not much could be said about the virus except for the fact that it was highly infectious. The
28 disease spread fast and engulfed about Author ?: e-mail: sksingh31962@gmail.com 185 countries in a short
29 period, with nations reporting human-to-human transmission (Cohen and Kupferschmidt, 2020). The entire
30 human population generally lacks immunity to SARS-CoV-2 and hence is susceptible to the novel virus. Even
31 after months, there has been no substantial containment in geographical spread, mortality, and economic losses
32 caused due to the pandemic. Worldwide, it has engulfed 3,269,667 people, and there have been 233,704 reported
33 deaths as on 30 th April 2020 (JHU CCSE, 2020). China is the epicenter of the pandemic and witnessed the
34 havoc first with a massive number of patients and deaths, later the disease spread to the entire world encasing
35 almost all the major countries of the world including US, Italy, Spain, Iran, UK France, India and many more
36 (Khan & Fahad, 2020). Currently, the case-fatality ratio of the current pandemic in the world is 7.1 percent. The
37 United States has the maximum number of confirmed cases and deceased people due to the virus (JHU CCSE,
38 2020). The Indian sub-continent is not aloof to the disease. In India, as of 30 th April 2020, a total of 35,043
39 confirmed cases and 1,154 deaths had taken place with the current case-fatality ratio of 3.3 percent (JHU CCSE,
40 2020). The reproduction number defines the transmissibility of a virus, and represents the average number of
41 new patients rising due to an infectious person in a naïve population. SARS-CoV-2 is much more contagious than
42 any known virus that affects human race. On an average one infected person passes the disease to 3.2 people

1 BACKGROUND AND RATIONALE

43 (Liu et al., 2020; Ryu et al., 2020). The older adults with comorbidities and pregnant women are more prone to
44 acquiring SARS-CoV-2 (Yi et al., 2020).

45 The COVID-19 is contagious during the latency period and is highly transmissible in humans, especially in the
46 elderly and people with underlying diseases. People who have a weak immune system and who are exposed to the
47 virus directly or indirectly are more likely to catch the infection. The symptoms of the disease are similar to that
48 of pneumonia, common flu such as fever, malaise, and cough (Guo et al., 2020; Singhal, 2020; ??i et al., 2020).
49 Yet, it is a more severe illness with a substantial risk of death, particularly among the elderly and especially
50 among those with other chronic underlying conditions (Zhou et al., 2020). The disease has an incubation period
51 of 1-14 days, and the advanced stage of the disease has people exhibiting symptoms like acute respiratory distress
52 syndrome, respiratory failure, multiple organ failure, and eventually death (Guo et al., 2020). However, not all
53 the affected people show symptoms of the disease. There are asymptomatic carriers who do not have any visible
54 signs, but they are the possible carriers of the infection (Ryu et al., 2020). For this one way out is testing, but
55 again, there are constraints such as; only limited availability of testing kits and other health resources. The overall
56 casefatality rate of 2019-nCoV, as estimated by international experts, ranges from 3 percent to 14 percent (Ryu
57 et al., 2020). The case-fatality ratio is less than that seen in two recent epidemics i.e., SARS-CoV-1 and Middle
58 East Respiratory Syndrome (MERS)-CoV. Still, it is more concerning because the observed characteristics of
59 this virus are excessive transmissibility and rapidity of the spread (Chowell, 2015). There are various predictions
60 made for the COVID-19, including by a leading Harvard epidemiologist Marc Lipsitch who warned that the
61 coronavirus would infect up to 70 percent of humanity within a year (HTHC, 2020).

62 It is important to flatten the exponential growth curve of the COVID-19 cases because if the outbreak becomes
63 severe in a country like India, then it can prove to be devastating as it will be overwhelming for the health system to
64 handle. It will lead to a huge shortage of health workers and essential supplies like Personal Protective Equipment
65 (PPE), masks, oxygen ventilators, testing kits, among others. Considering India's population size and existing
66 health facilities, the problem will compound even further. As per the National Health Profile-2019, 713,986 beds
67 are available in the government hospitals in India, which amount to 0.55 beds per 1000 population and around
68 915 government allopathic doctors per 10,00,000 population. With 1.38 billion population, and with much less
69 number of hospital beds and health care physicians, not overwhelming the hospitals is the first and the foremost
70 crucial step that the country can take and gradually prepare for the emerging cases of the disease ??Bedford
71 et al., 2020;. These differentials will be even more glaring in rural areas compared to urban areas. Keeping
72 the directives of the WHO and the healthcare professionals in view, the Indian government imposed a complete
73 lockdown from 24 th March 2020 till 17 th May 2020 (IANS, 2020). The government has completely shut its
74 borders, put in place restrictions on inbound travel, suspended all visas except diplomatic ones, and quarantined
75 the travelers who came to the country (Bajpai, 2020). Additionally, it has been actively trying to make people
76 understand the importance of social distancing and self-quarantining for preventing the spread of the virus and
77 has been creating isolation wards, arranging testing kits, identifying as well as providing fast-track provision of
78 medical facilities to those who have symptoms. The government suspended all public transports, including rail,
79 inter-state bus services, and metro services. The masses have been encouraged to maintain personal hygiene,
80 frequent handwashing with soap and water, or using alcoholbased hand sanitizer, mandatory use of facemask in
81 case one has any of the symptoms, covering the face with a handkerchief while sneezing and, most importantly,
82 to follow social distancing (Prem et al., 2020).

83 The importance of social distancing as a tool to limit disease transmission is well recognized, but there are
84 several difficulties associated with this measure in a country like India. There are challenges in ensuring social
85 distancing, especially in densely populated urban slums in Indian cities where people helplessly occupy and live
86 together in small overcrowded and poorly ventilated homes (Bhatia, 2020). Accessibility to clean water for
87 maintaining proper hygiene, as well as usage of soap as recommended, is also an issue. Given the Indian scenario,
88 it would be worth delving deeper into the feasibility of using such measures successfully in the country.

89 The vaccine remains the only solution to end the COVID-19 pandemic. Yet, until now, no vaccine is in sight;
90 clinical trials are going on to develop a vaccine against the novel coronavirus. However, as put forward by the
91 WHO and other experts, developing and approving the use of a vaccine is a lengthy process, and it may take
92 at least 18 months before such a vaccine is available. Hence, to limit the spread of the disease, it is need of the
93 hour to not only treat the infected persons but also to take immediate steps to isolate them from the general
94 population through social distancing and other behavioral measures. The novel coronavirus is known for its high
95 infectivity, once its spread continues, it can lead to stage 3 or 'the community transmission' of the disease, which
96 will make it impossible to track and contain the source of the infection (Singh & Adhikari, 2020). No approved
97 treatments are available at present, various non-pharmaceutical interventions (NPIs) are the only options to halt
98 the exponential rise of the disease. The measures include maintaining social distance, washing hands repeatedly,
99 observing safe respiratory etiquette, avoiding contact with those infected with COVID-19, refraining from non-
100 essential use of public transport, working from home and avoiding gatherings, socializing, and visiting other places
101 where infections can spread rapidly. Hand hygiene and respiratory etiquettes are individual behavior. Hence, the
102 health officials and governments have widely propagated these manners (Bhatia, 2020). It is well established that
103 if we implement these measures promptly and effectively during a pandemic, it can reduce disease transmission.
104 In the absence of a cure or an established therapeutic strategy, curtailing transmission through preventive measures
105 is the only means available to stem the growth of the pandemic (Casella et al., 2020).

106 2 II. Research Questions and Objectives

107 The COVID-19, which is not randomly distributed in the population but transmits through human contacts,
108 can be contained by ensuring social distancing and hand hygiene practices, which are the two significant
109 behavioral interventions in addition to the above-discussed structural and ecological interventions promoted
110 by the Governments and hordes of civil society organizations. The lockdown of a country or some selected
111 states/districts in a country can be treated simply as a pause to shift the severity of the problem by breaking the
112 chain of transmission, but. Still, it may not be the permanent solution to ensure preventive practices including
113 social distancing. Keeping this in view, the key research question to be addressed in this study is the extent of
114 vulnerability for a substantial proportion of Indians. The socially deprived, economically marginalized, those who
115 were not a part of inclusive development, in adopting the protective measures against COVID-19. The specific
116 objectives of this paper are to analyze the barriers in ensuring the protective measures i.e., social distancing
117 and handhygiene practices, and examine the socio-economic inequalities in adopting preventive practices for
118 COVID-19 in India.

119 3 III.

120 4 Data and Methods

121 The study utilized data from the fourth round of the Indian DHS, popularly known as the National Family Health
122 Survey (NFHS), which is a cross-sectional survey conducted during 2015-2016. NFHS is conducted under the
123 stewardship of the Ministry of Health and Family Welfare (MoHFW), Government of India. The survey provides
124 information on demographic and health indicators at the national, regional, state, and district levels from a
125 nationally representative sample. NFHS-4 (2015-16) collected information from a total of 601,509 households
126 and 699,686 women aged between 15-49 years (IIPS and ICF, 2017). Different rounds of NFHS have been a
127 key source of information on household assets, WASH, household environment, and other socio-economic and
128 developmental indicators. It is put to use for evidence-based decision making in the country. Other relevant
129 information regarding the study design and response rates in the NFHS-4 are there on the Demographic and
130 Health Surveys website (IIPS and ICF, 2017).

131 Among the various analytical approaches used in this paper, the first one is descriptive statistics to analyze
132 the variation in household crowding as an indicator of vulnerability to maintain social distance and availability
133 of soap or detergent at the place designated for hand washing in a household as an indicator of hand hygiene by
134 some selected background characteristics. To analyze the adjusted effects of various predictors on the response
135 variables, we applied a multivariate logistic regression technique. The study further calculated the Wagstaff's
136 Concentration Index and decomposition to investigate the inequalities in the prevalence of preventive practices
137 for COVID-19 measured in terms of household crowding, water source outside household premises, and not
138 having a toilet within the household as the barrier to maintain social distancing. Socioeconomic inequalities in
139 barriers and preventive practices for COVID-19 were quantified with the concentration index and subsequently
140 decomposed into associated factors using Decomposition Analysis. A concentration index (CI) provides a measure
141 of socioeconomic inequality in the variables under study. It ranges from -1 to +1: a value close to zero indicates
142 near equality, a value near -1 shows a greater concentration of the study variable among the poor (pro-poor)
143 while a value increasing to +1 indicates greater concentration amongst the wealthier groups (pro-rich). The
144 CI is twice the area between the concentration curve and the line of perfect equality, or as twice the weighted
145 covariance between the outcome variables and the fractional rank in the wealth distribution divided by the mean
146 of study variable. The study used the concentration index to assess the vulnerability to infection from COVID-19
147 owing to prevailing socio-economic inequality measured in terms of household crowding and presence of soap or
148 detergent for handwashing at the place designated for handwashing in a household. The concentration index
149 can be defined merely as twice the covariance between the study variables, (y : let household crowding) of CI is
150 a widely used measure since it ranks the individuals across SES, sensitive to changes in population distribution
151 across SES and they can assess relative and absolute socioeconomic inequality (Kakwani et al., 1997; Wagstaff et
152 al., 1991).

153 Even though concentration indices are relevant to show the extent of socioeconomic-related inequalities in
154 variables under study, but it cannot explain the factors that contribute to observed disparities. Therefore, the
155 study used the regression-based-decomposition methodology to decompose the concentration index to explain
156 the socio-economic inequality as vulnerability to protection from COVID-19. Since the regressed variable of the
157 study is continuous; therefore, the study used a $?? ?? = ? + ?? ?? ?? ??? + ?? ?? ?$ IV.

158 5 Results and Discussion

159 It is needless to mention that maintaining social distancing, constant of masks at public places, and hand
160 hygiene are some of the important means to curtail the spread of COVID-19 and protect the general population.
161 However, the most recent demographic and health data of the country paints a complex and discouraging picture
162 to ensure these behavioral changes. It is evident from Table 1 that nearly half of the households in the country
163 (49%) suffer from the problem of overcrowding with three or more people sleeping in a room. Proportions of
164 such households were significantly higher in rural areas (51%), and in the socially deprived and economically

165 marginalized communities (53%-56% scheduled caste/ scheduled tribe households; 55% Muslim households, and
 166 62% poorest households). The other two indicators adversely affecting social distancing in these communities
 167 are the location of the source of drinking water outside the household/dwelling/yard (35%) and no toilet facility
 168 within the household premises (38%). Despite all the structural interventions, people will move out for using these
 169 two facilities and hence, would be more vulnerable to adhering to the protocols of social distancing as the means
 170 of protection from the COVID-19. The pattern in this vulnerability to protection through social distancing is not
 171 uniform across different Indian states (Fig. ??). The proportion of households with household crowding was the
 172 highest in Uttar Pradesh (61%) followed by Maharashtra (58%), Bihar and Gujarat (56% each), Telangana (55%),
 173 Madhya Pradesh (54%), Andhra Pradesh (53%), Mizoram (51%), Delhi (48%), Odisha (47%) and Chhattisgarh
 174 (45%). Similarly, the proportion of households with the source of water located outside household/yard/plot
 175 was the maximum in Odisha (68%) followed by Chhattisgarh (65%) Jharkhand (64%), Madhya Pradesh and
 176 West Bengal (55% each) and Telangana (45%). Most of these states have a significant proportion of the tribal
 177 population living in remote rural areas, who are socially deprived, economically marginalized, have poor or
 178 no access to healthcare, and hence, may require special focus, particularly in the latter stages of community
 179 transmission of COVID-19 in India.

180 The second important means of protection from COVID-19 is the hand hygiene with well-stated guidelines
 181 about frequency and modalities to wash hands with soap or detergent and sanitize with alcoholbased hand
 182 sanitizers. The NFHS-4 (2015-16) data, however, portrays that despite over 96 percent of households having a
 183 designated place for handwashing, almost one-in-seven households did not have water available and over one-in-
 184 three households did not have soap or detergent at the place designated for handwashing. The proportion of such
 185 households was significantly higher in rural areas (18% and 49%), scheduled tribe households (30% and 58%), and
 186 those coming from the poorer households (20% and 53%) and poorest households (32% and 73%) respectively.
 187 Regional disparity in the proportion of households lagging in the basic facilities to ensure hand hygiene by its
 188 members demonstrates comparatively larger concentration of such households in the eastern part of the country
 189 (23% and 57%), comprising of Bihar, Chhattisgarh, Jharkhand, Odisha, and West Bengal (See Table 1). Fig. 2
 190 presents the percent of households whose members are highly vulnerable to ensuring hand hygiene as a means
 191 of protection from COVID-19 in different States/UTs. It portrays that people in Odisha (43%), Jharkhand
 192 (41%), Chhattisgarh (29%), Tripura (25%) and West Bengal (22%) were highly vulnerable to hand hygiene due
 193 to non-availability of water in their houses. Further, a substantial proportion of households in Odisha (65%),
 194 Jharkhand (64%), Tripura (51%), West Bengal (50%), Tamil Nadu (48%) and Madhya Pradesh (40%) did not
 195 have soap or detergent at the place designated for hand wash in their houses. Therefore, members of these
 196 households may be highly vulnerable in adopting hand hygiene practices to protect themselves from COVID-19
 197 in the third stage of transmission at the community level. Thus, all the agencies engaged in curtailing the chain
 198 of transmission and protecting people from COVID-19, especially in the third stage of transmission, should adopt
 199 suitable strategies to address the vulnerability of socially deprived and economically marginalized communities in
 200 protecting themselves. The aforementioned is possible by motivating them to adopt micro-level social distancing
 201 even within their households to the extent possible and developing a support system and creating an enabling
 202 environment to practice hand hygiene.

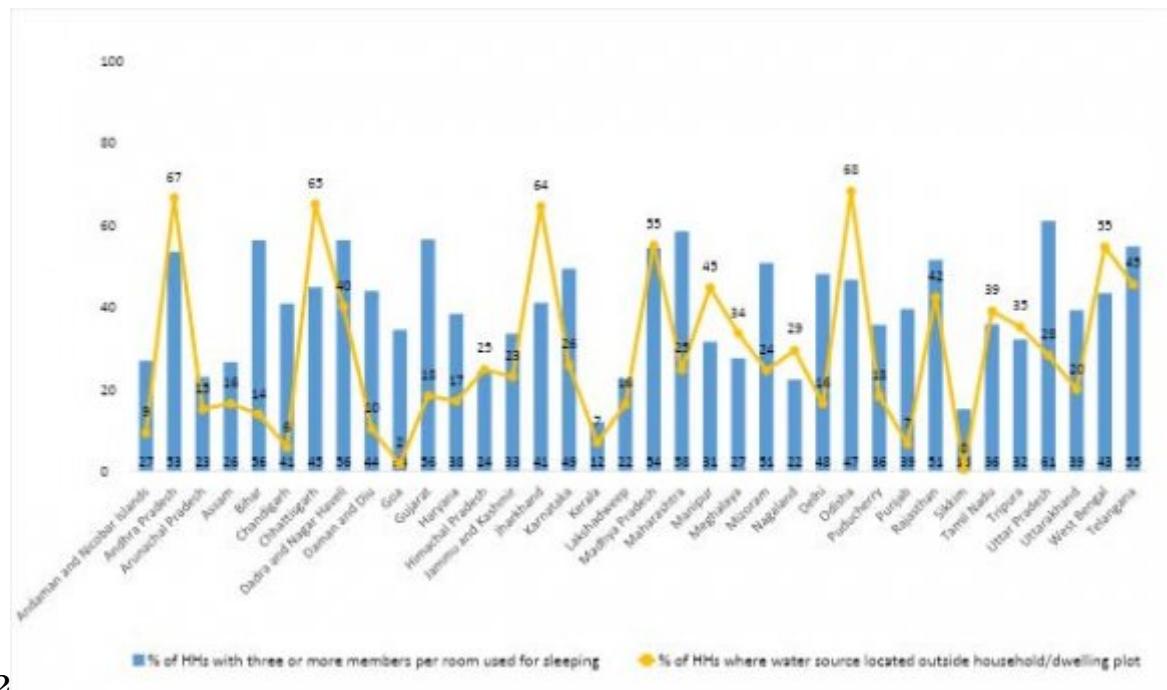
203 More refined effects of these predictors on the response variable, which are related to various guidelines to
 204 follow for containing the spread of COVID-19, can be obtained only after computing the adjusted effects of these
 205 predictors on response variables. Table 2 portrays the Logistic regression odds ratios for the adjusted effects
 206 of some selected socio-economic characteristics on the vulnerability to infection from COVID-19, India. As far
 207 as social distancing is concerned, people from the richest wealth quintile (OR=0.14; 95% CI= [1.14-1.15]) were
 208 much less likely to live in a crowded home compared to people from poorest wealth quintile. Compared to the
 209 urban area, where the term on the right-hand side represents income-related socio-economic inequality in the
 210 regressed variable that is not explained by systematic variation in x's by income. However, we are interested in
 211 the term on the right-hand side of the equation, which represents the contribution of each of the determinants
 212 to the Concentration Index CI(y). The availability of water at the place of hand wash is an important predictor
 213 of protecting from the vulnerability to infection. The richer people (OR=7.77; 95% CI= ??7.52-8.03]) had more
 214 water available at the place of hand wash in comparison to the poorest. The rural people had 18 percent less
 215 likelihood of water available to them at the place of hand wash. The people from other castes (OR=1.15; 95%CI=
 216 [1.11-1.17]) were more likely to face the problem of water unavailability at the place of hand wash in comparison
 217 to people from a scheduled caste. In comparison to the Hindus, Muslims (OR=1.24; 95% CI= [1.21-1.28]) were
 218 1.2 times more likely to have water available at the place of hand wash and the people from other religion
 219 (OR=1.34; 95% CI= [1.30-1.39]) were 1.3 times more likely to have water available at the place of hand wash.
 220 The central region people (OR=1.33; 95% CI= [1.30-1.37]) were more likely to have water available at their place
 221 of hand wash as compared to people from the eastern region. Similar was the case for people from southern
 222 region (OR=1.31; 95%CI= [1.30-1.37]). The people from the northeast region (OR=2.06; 95%CI= [1.99-2.13]),
 223 too, had water available to them more in comparison to people from the eastern region.

224 6 ?

225 The availability of soap or detergent at the place of hand wash as an indicator of hand hygiene portrays that
 226 the richer people were more likely to maintain hand hygiene (OR=10.64; 95% CI= ??10.41-10.88]), as compared

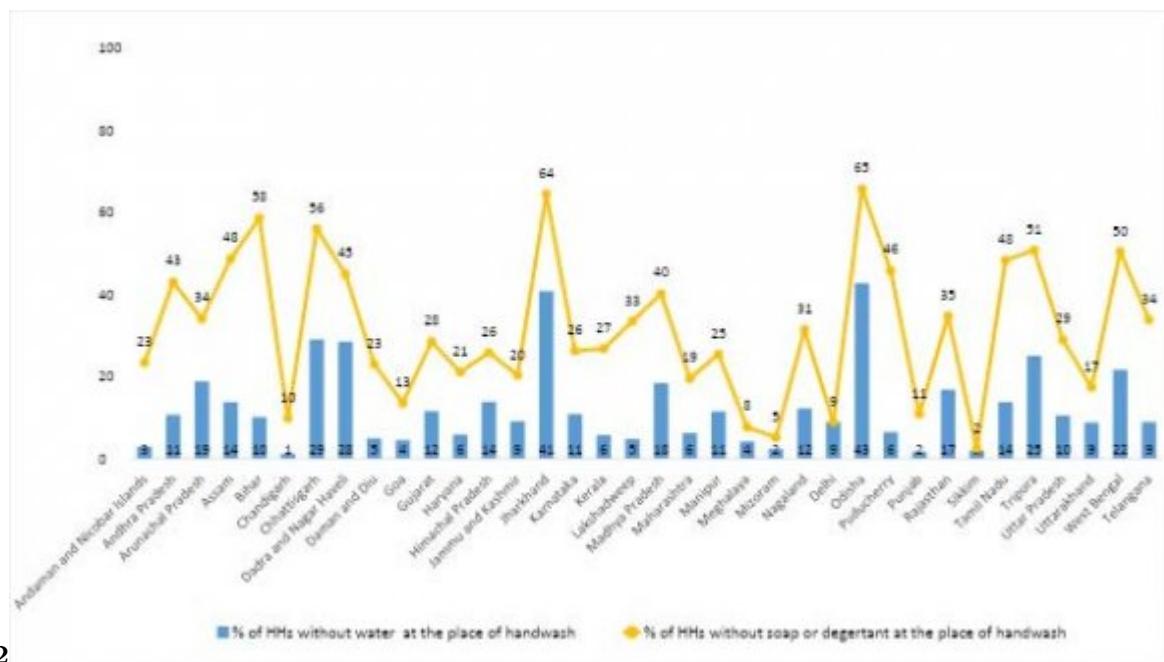
227 to the poorest. The rural people (OR=0.71; 95% CI= [0.70-0.73]) were 29 percent less likely to maintain hand
228 hygiene as compared to urban people. In comparison to people from scheduled caste, people from other castes
229 (OR=1.22; 95%CI= [1.19-1.25]) were more likely to maintain proper hand hygiene. In comparison to Hindus,
230 Muslims (OR=1.13; 95% CI= ??1.11-1.16]) were more likely to maintain hand hygiene. The northern region
231 people (OR= 2.24; 95% CI= [2.19-2.29]) were more likely to maintain hand hygiene as compared to the eastern
232 region people. The people from the southern region (OR=0.90; 95%CI= [0.89-1.93]) were 10 percent less likely
233 to maintain hand hygiene as compared to people from the eastern region. Those from the north-eastern region
234 (OR=2.24; 95%CI= [2.19-2.29]) were more likely to maintain hand hygiene as compared to people from the
235 eastern region.

236 Further, it is evident from Figure-3 that household crowding was concentrated mostly among poor households
237 [Concentration Index: -0.14], whereas, hand wash with the use of soap or detergent was prominent among rich
238 households [Concentration Index: 0.23]. Therefore, it is essential to decompose the contribution of different
239 predictors in the overall value of CIs. Table 3 provides the results of decomposition analysis for the estimated
240 contribution of selected background characteristics in the economic inequalities of household crowding, as a
241 proxy of vulnerability to social distancing and availability of soap or detergent for hand-washing as a proxy of
242 maintaining hand hygiene. The value of absolute contribution indicates the extent of inequality contributed
243 by the explanatory variable. A negative value of the concentration index indicates a larger concentration of
244 variable under study in poorer households. In the case of household crowding, it is evident that crowding is
245 more concentrated amongst the poor than in rich households. Urban as the place of residence explains about
246 35 percent of the gap of economic inequality in terms of household crowding, whereas belonging to Scheduled
247 Caste/Scheduled Tribe explains about 28 percent of the gap pertained by economic inequality between rich and
248 poor. Additionally, possession of the Below Poverty Line (BPL) card explains about 28 percent of inequality.
249 The location of water sources outside the house/plot/yard explains about 17 percent of the gap for economic
250 inequality for household crowding. The western region of India narrowed down the gap between rich and poor.


251 On the other hand, the availability of soap or detergent for handwashing, which is an essential component
252 of maintaining hand hygiene was much more concentrated in richer households than among poorer households.
253 Around 47 percent of inequality was explained by urban place of residence, whereas the Scheduled caste/Scheduled
254 tribe explained 11 percent of the gap. About 11 percent of the gap in economic inequality for the availability
255 of soap or detergent for handwashing was explained by the location of the water source which was outside the
256 house. About 12 percent K and 9 percent of inequality were explained by the southern and western region of
257 India to explain the gap between rich and poor in terms of use of soap and detergent for handwashing. These
258 findings indicate that all the efforts to curtail the COVID-19 transmission chain may not be effective once the
259 period of lockdown is over, which we cannot extend for an indefinite period. However, these structural barriers
260 will restrain people in following the stringent measures of social distancing, which is mandatory in the absence
261 of any vaccination or other forms of proper treatment.

262 7 V. Conclusions and Recommendations

263 Today the world is growing through an unprecedented crisis. Many countries were taken unaware and have failed
264 terribly in containing the spread of the COVID-19. Initially, these countries did not recognize the gravity of
265 the situation but, within a few weeks, realized the unimaginable economic and human costs of the COVID-19
266 pandemic. India is a vast and diverse country both demographically and geographically, and hence, handling
267 such a crisis is a huge challenge in itself. This deadly virus has no boundaries, and it transmits from one human
268 to another and often silently since the infected persons with no visible symptom also transmit the virus to others.
269 Hence, India should educate and make the masses aware of the preventive measures and ensure that each one
270 should religiously follow those before it goes completely out of hand. This pandemic has been an eye-opener
271 and has taught us many a lesson. An important one being that we should learn to coexist with nature and not
272 exploit it to the extent that we have to pay a huge price which may be no less than our existence. Despite all the
273 efforts to curtail the chain of transmission of COVID-19, a large section of the population especially in resource
274 poor settings in urban areas will find it difficult to adopt the prescribed preventive measures. India is home
275 to 53 million-plus urban agglomerations where a substantial proportion of the population lives in slums under
276 deplorable living conditions and often face various forms of social exclusions. The large urban agglomerations
277 need to have a micro-plan for each slum under its jurisdiction and actively work for reducing their socioeconomic
278 vulnerability that impede them from maintaining the preventive measures.


279 The need of the hour is to adopt suitable strategies to address the vulnerability of socially deprived and
280 economically marginalized communities to protect themselves by motivating them to adopt microlevel social
281 distancing even within their households to the extent possible, developing a support system and creating enabling
282 environment to practice hand hygiene. Another strategy to curtail the chain of transmission may be decongesting
283 urban slums in all the 53 million-plus urban agglomerations by arranging temporary shelter homes outside cities
284 and developing adequate quarantine facilities. Further, increasing the use of technology to track the mobile
285 population suffering from COVID-19, putting them in quarantine, and strengthening testing facilities following a
286 community based randomized sampling design are perhaps some of the key strategies to minimize the vulnerability

7 V. CONCLUSIONS AND RECOMMENDATIONS

2

Figure 1: 2 ?

142

Figure 2: Figure 1 : 4 Figure 2 :

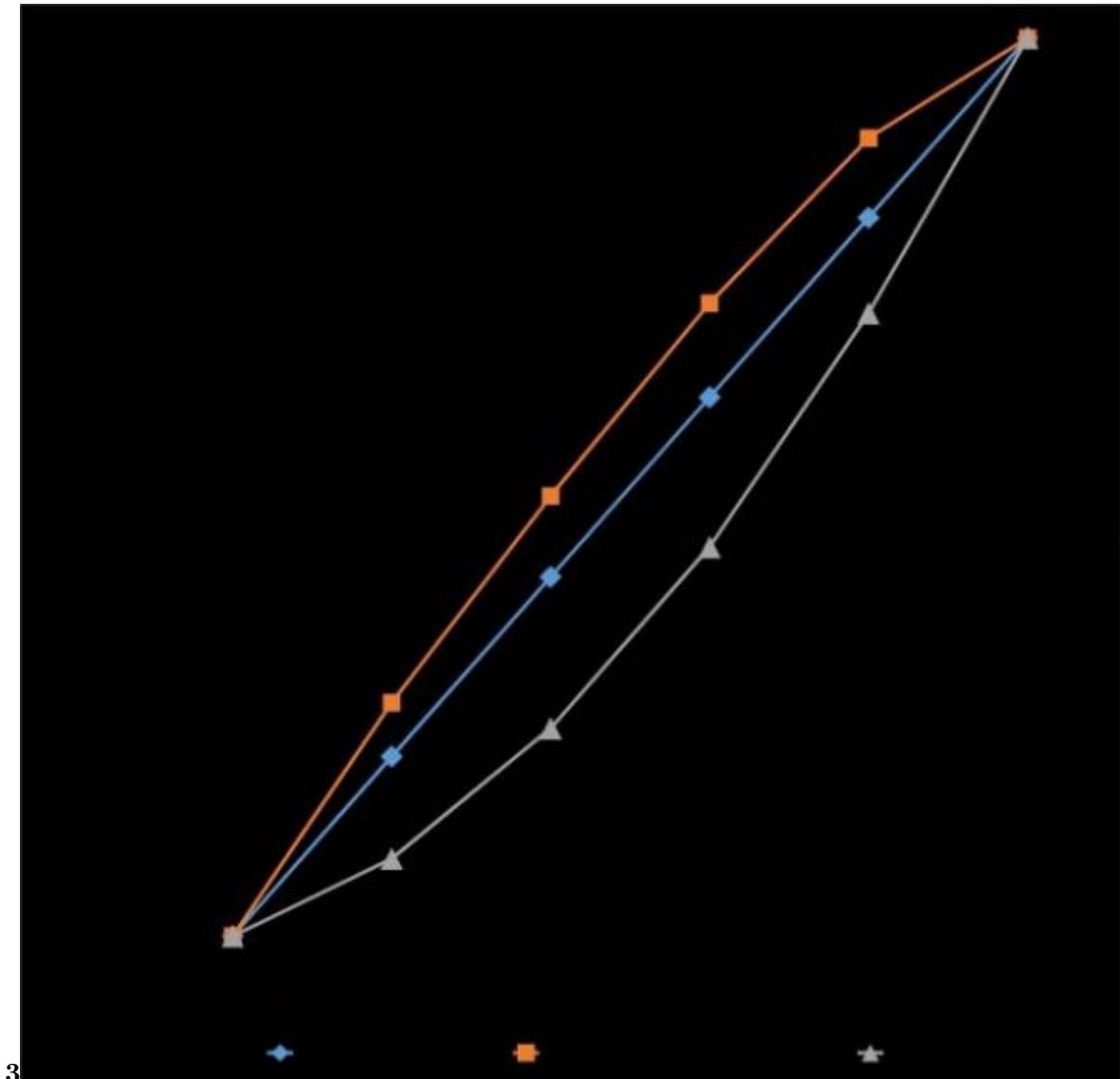


Figure 3: Figure 3 :

7 V. CONCLUSIONS AND RECOMMENDATIONS

???? ?? rural people (OR=0.67; 95%CI= [0.67-0.69]) were less ?? ?? ?? likely to live in a crowded home. People from non-SC/ST ?? and OBC caste category (OR=0.65; 95%CI= [0.64-0.67]) and the other backward castes (OR=0.86; 95%CI= [0.85-0.88]) were 35 percent and 14 percent, less likely to live in crowded setup respectively as compared to those from Scheduled Caste. In comparison to the Hindu family, the Muslim family (OR=1.63; 95%CI= [1.61-1.67]) were more likely to live in a crowded setting. Also, people from other religions (OR=1.09; 95%CI= [1.07-1.12]) were 9 percent more likely to live in crowded spaces. The people from northern region (OR=1.67; 95%CI= [1.64-1.70]) were 67 percent more likely to live in a crowded setting as compared to people from the eastern region and those from the western region (OR=2.00; 95%CI= [1.96-2.04]) were twice more likely to live in a crowded setting as compared to eastern region people. These findings are consistent with the reported number of positive coronavirus cases in India, in the absence of population-based testing, which is disproportionately higher in million-plus cities in the country with a larger concentration in Mumbai, Delhi, Ahmedabad, Indore, Bhopal, Jaipur, Agra, Lucknow among others. The situation is further threatening with a larger number of COVID-19 hotspots centered on slum pockets in these million-plus cities.

Figure 4:

Background Characteristics		Vulnerability to maintain Social Distance		% of HHs having water source located outside with three or more members per	% of HHs having water source located outside with three or more members per
Place of Residence	room used for sleeping	HH/ plot	dwelling	within HH	within HH
Urban	43.5		20.4		10.5
Rural	51.3		42.9		54.1
Caste/Tribe					
SC	55.7		41.9		50.5
ST	53.4		59.9		65.6
OBC	49.3		33.1		40.4
Others	41.2		24.6		19.8
Religion					
Hindu	48.3		37.0		42.5
Muslim	55.2		25.7		24.1
Others	39.0		27.8		20.9
Wealth Quintile					
Poorest	62.2		56.9		88.1
Poorer	56.8		47.4		62.7
Middle	52.6		37.7		35.4
Richer	44.6		23.7		7.8
Richest	27.1		9.7		0.4
Region					
North	52.7		25.8		37.8
Central	51.7		39.3		57.6
East	48.1		43.8		51.5
North East	27.5		21.0		8.7
West	55.9		22.4		33.1
South	41.3		38.0		31.3
India	48.6		35.1		38.9
Covariates	Household crowding as a barrier in ensuring social distancing				Available

	OR	CI with 95%	OR
Wealth Index			
Poorest®			
Poorer	0.71*	0.70	0.73
Middle	0.52*	0.51	0.53
Richer	0.34*	0.34	0.35
Richest	0.14*	0.14	0.15
Place Of residence			
Urban			

7 V. CONCLUSIONS AND RECOMMENDATIONS

1

2.1
1.4
6.5

Figure 6: Table 1 :

3

Variables		Household Crowding			Use of soap and detergent for Handwashing		
		Elasticity	CI	Absolute contribution to	Percent contribution	Elasticity	CI
Urban place of residence		-0.032	0.427	-0.014	34.7	0.125	0.427
SC/ST group	caste	0.047	-0.236	-0.011	27.6	-0.054	-0.236
Muslim religion		0.028	0.001	0.000	0.0	0.002	0.001
Non-Hindu/non-Muslim religion		-0.011	0.239	-0.003	6.8	0.008	0.239
Possession of BPL card		0.053	-0.213	-0.011	28.1	-0.034	-0.213
Water source	outside house/plot	0.061	-0.114	-0.007	17.3	-0.108	-0.114
Western Region	0.044		0.132	0.006	-14.3	0.079	0.132
Northern Region	0.054		0.067	0.004	-9.0	0.095	0.067
Southern Region		-0.025	0.215	-0.006	13.8	0.060	0.215
North-eastern Region		0.015	-0.192	0.003	-7.0	0.006	-0.192
Central Region		0.004	-0.185	-0.001	2.0	0.019	-0.003
Explained CI				-0.040	100		0.112
Actual CI				-0.145			0.230
Residual				-0.105			0.118

Figure 7: Table 3 :

287 of Indian population to COVID-19. Finally, India needs to address the vulnerability of its socially deprived and
288 economically marginalized community in large cities to have a successful COVID-19 containment strategy. ¹

¹© 2020 Global Journals Socio-Economic Vulnerabilities to COVID-19 in India: Swimming against the Tide

7 V. CONCLUSIONS AND RECOMMENDATIONS

289 [Bedford et al.] , J Bedford , D Enria , J Giesecke , D L Heymann , C Ihekweazu , G Kobinger .

290 [Iips ()] , Icf Iips . *National Report of the National Family Health Survey-4* 2017. p. .

291 [Bajpai (2020)] -000-coronavirus-tests-in-2-weeks-can-india-reallybe-sure-2197038, I D Bajpai . <https://www.ndtv.com/blog/with-1> March 18, 2020. (Can India Stop A Pandemic From Becoming Pandemonium? NDTV. accessed on 29 March 2020)

294 [Singhal ()] 'A review of coronavirus disease-2019 (COVID-19)'. T Singhal . *The Indian Journal of Pediatrics* 2020. p. .

296 [Singh and Adhikari ()] *Age-structured impact of social distancing on the COVID-19 epidemic in India*, R Singh , R Adhikari . 2020.

298 [Ryu et al. ()] 'An interim review of the epidemiological characteristics of 2019 novel coronavirus'. S Ryu , B C Chun , K S Epidemiology . *Epidemiology and health* 2020. p. 42.

300 [Zhou et al. ()] 'Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan'. F Zhou , T Yu , R Du , G Fan , Y Liu , Z Liu , L Guan . *China: a retrospective cohort study. The Lancet*, 2020.

302 [Singh et al. (2020)] *COVID-19 / Is India's health infrastructure equipped to handle an epidemic*, P Singh , S Ravi , S Chakraborty . <https://www.brookings.edu/blog/up-front/2020/03/24/is-indias-health-infrastructure-equipped-to-handle-an-epidemic> 24 March 2020. March 2020.

306 [Ungchusak ()] 'COVID-19: Towards controlling of a pandemic'. K Ungchusak . *The Lancet* 2020.

307 [Wagstaff et al. ()] 'COVID-19: what has been learned and to be learned about the novel coronavirus disease'. A Wagstaff , P Paci , E ; Y Van Doorslaer , P N Lagniton , S Ye , E Li , R H Xu . <https://data.worldbank.org/indicator/SH.MED.BEDS.ZS> *International Journal of Biological Sciences* 1991. 2020. 33 (5) p. 1753. (On the measurement of inequalities in health)

311 [Khan and Fahad ()] 'Critical Review of the Present Situation of Corona Virus in China'. N Khan , S Fahad . Available at SSRN 2020. 3543177.

313 [JHU Coronavirus 2019-nCoV, CSSE. Coronavirus 2019-nCoV Global Cases by Johns Hopkins CSSE] <https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6> JHU Coronavirus 2019-nCoV, CSSE. *Coronavirus 2019-nCoV Global Cases by Johns Hopkins CSSE*,

317 [News (2020)] Hthc News . <https://www.hsph.harvard.edu/news/hsph-in-the-news/the-latest-on-the-coronavirus> The latest on the coronavirus, 2020. April 2020.

319 [Bhatia ()] *Public engagement is key for containing COVID-19 pandemic*. *The Indian journal of medical research*, R Bhatia . 2020.

321 [Kakwani et al. ()] 'Socioeconomic inequalities in health: References measurement, computation, and statistical inference'. N Kakwani , A Wagstaff , E Van Doorslaer . *Journal of econometrics* 1997. 77 (1) p. .

323 [Cohen and Kupferschmidt ()] *Strategies shift as coronavirus pandemic looms*, J Cohen , K Kupferschmidt . 2020.

324 [Prem et al. (2020)] *The effect of control strategies that reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China. Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working and Jit, Mark and Klepac, Petra, The Effect of Control Strategies that Reduce Social Mixing on Outcomes of the COVID-19 Epidemic*, K Prem , Y Liu , T W Russell , A J Kucharski , R M Eggo , N Davies , . Klepac , P . 2020. 3/9/2020. Wuhan, China.

329 [Guo et al. ()] 'The origin, transmission, and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status'. Y R Guo , Q D Cao , Z S Hong , Y Y Tan , S D Chen , H J Jin , Y Yan . *Military Medical Research* 2020. 7 (1) p. .

332 [Liu et al. ()] 'The reproductive number of COVID-19 is higher compared to SARS coronavirus'. Y Liu , A A Gayle , A Wilder-Smith , J Rocklöv . *Journal of travel medicine* 2020.

334 [The Weather Company (2020)] <https://weather.com/en-IN/india/news/news/2020-03-24-indias-steps-comprehensive-robust-to-contain-coronavirus-who> The Weather Company, March 2020. (accessed on 28 March 2020)

337 [Chowell et al. ()] 'Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study'. G Chowell , F Abdirizak , S Lee , J Lee , E Jung , H Nishiura , C Viboud . *BMC medicine* 2015. 13 (1) p. 210.