

1 Comparison between Threshold of Sourness Perception and 2 Blood Pressure for Resident Health Examination in Yakumo 3 Town

4 Naomi Katayama¹, Mayumi Hirabayashi², Akemi Ito³, Shoko Kondo⁴, Yui Nakayama⁵
5 and Takafumi Nakada⁶

6 ¹ Nagoya Women's University

7 *Received: 13 December 2019 Accepted: 4 January 2020 Published: 15 January 2020*

8 **Abstract**

9 Since Japan is a super-aged society, various problems are occurring for the elderly. The
10 nutritional problems of the elderly are complex, and measures currently took to solve the one
11 by focusing on malnutrition-related items. Therefore, in this study, we focused on the
12 sourness, which can identify the spoilage of food and could be expected to reduce salt. For 16
13 years, we have conducted research on taste and olfaction in Yakumo town in Hokkaido, Japan,
14 Where the population does not move much. In this report, we report on the results of the
15 taste test using TASTDISC (Sourness) in 2019 at Yakumo Town Resident Examination, which
16 has been ongoing since 2007. From the database, 298 participants (169 females and 129 males)
17 were selected from data in August 2019.

20 *Index terms*— sourness; gender; healthy elderly people; taste function; yakumo study.

21 **1 Introduction**

22 Since Japan is a super-aged society, various problems are occurring for the elderly. There are many older adults on
23 the waiting list to get into the welfare facilities, and many households forced to provide home care. The nutritional
24 problems of the elderly are complex, and measures currently took to solve it by focusing on malnutrition-related
25 items such as frail, sarcopenia, and locomotive syndrome. One of the causes of under nutrition is the phenomenon
26 of nutrient intake due to the difficulty of understanding the taste, loss of appetite, and reduction of the total
27 diet. Flavors, that is, matching both taste and smell, are need in a diet, and low thresholds for typical five tastes
28 (sweetness, saltiness, sourness, bitterness, and umami) affect health. Therefore, in this study, we focused on the
29 sourness, which can identify the spoilage of food and can expect to reduce salt.

30 **2 II.**

31 **3 Materials and Methods**

32 **a) Participants**

33 The participants were community dwellers who voluntarily participated in the Yakumo Study and had managed
34 their everyday life themselves. The Yakumo Study conducted since 1981 as a joint project between the town
35 of Yakumo in Hokkaido and the Nagoya University Graduate School of Medicine. Professionals in the fields
36 of epidemiology, internal medicine, orthopedics, neuropsychology, ophthalmology, otolaryngology, and urology
37 joined the Yakumo Study. The analyzed data were based on the database to 2019 from the neuropsychology and
38 otolaryngology teams.

39 problems are occurring for the elderly. The nutritional problems of the elderly are complex, and measures
40 currently took to solve the one by focusing on malnutrition-related items. Therefore, in this study, we focused

11 C) STATISTICAL PROCESSING RESULTS

41 on the sourness, which can identify the spoilage of food and could be expected to reduce salt. For 16 years,
42 we have conducted research on taste and olfaction in Yakumo town in Hokkaido, Japan, Where the population
43 does not move much. In this report, we report on the results of the taste test using TASTDISC (Sourness)
44 in 2019 at Yakumo Town Resident Examination, which has been ongoing since 2007. From the database, 298
45 participants (169 females and 129 males) were selected form data in August2019. The sourness test performed
46 using the sourness test paper with liquid TASTEDISC (Sanwa Chemical Laboratory Co., Ltd) which include
47 five different densities of Tartaric acid on a liquid with test paper namely:, 1(0.02%), 2(0.2%),3(2.0%), 4(4.0%),
48 5(8.0%). As a result, 17 males out of 129male participants (13.2%) and tenfemales of 169 female participants
49 (5.9%) had abnormal values in sour taste test (Tastedisc) results. The tolerance range (in this study, it called the
50 normal range) of sourness, blood pressure (systole, diastole), and body composition (BMI, body fat percentage,
51 abdominal circumference) compared with other values. As a result, there was no statistically significant difference
52 in the sourness threshold between the normal range of blood pressure, BMI, and others. However, there was a
53 statistically significant difference in the result of sourness between the normal range of body fat percentage and
54 the other one. And also, in female Naomi Katayama ?, Mayumi Hirabayashi ?, Akemi Ito ?, Shoko Kondo
55 ?, Yui Nakayama ¥, Takafumi Nakada §, Seiya Goto ?, Satofumi Sugimoto ?, Tadao Yoshida ?, Masaaki
56 Teranisi ?, Michihiko Sone £, Yasushi Fujimoto ?, Hironao Otake ?, Hirokazu Suzuki ?, Naoki, Saji ?,
57 Seiichi Nakata ?, Tsutomu Nakashima ?, Kenji Kondo ? & Takaki Miwa ?

58 The participants had been engaged in a variety of jobs, not only white-collar but also in agriculture, fishery,
59 and forestry. Therefore, this town can regard as representative of today's Japanese society. From the database,
60 297participants (168 females and 129 males) were selected form data in August 2019 (Table 1).

61 5 b) Assessment of sweetness taste identification

62 The sourness test performed using test paper with liquid TASTEDISC (Sanwa Chemical Laboratory Co.,
63 Ltd) which include five different densities of Tartaric acid on a liquid with test paper namely:, 1(0.02%),
64 2(0.2%),3(2.0%), 4(4.0%), 5(8.0%).

65 The inspection method is as follows. 1) Show participants the taste choice paper: Sweet, Salty, Sour, Bitter.
66 Taste something, but I don't know, No taste. 2) Hold the filter paper with tweezers. The sweetening solution
67 is dropped on the disc and moistened. 3) The moistened disc gently placed on the canaliculus chordae tympani
68 innervation area of the participant's tongue. The canaliculus chordae tympani innervation area is located 2 cm
69 left and right from the tip of it. 4) Instruct the user to answer one of the taste choice paper in 2~3 seconds
70 with the mouth open. 5) The examiner then removes the disc from the participant's tongue with tweezers. 6) If
71 a correct answer is not obtained, the test is continued using a solution having a higher concentration in order.
72 7) After gargling with water to prevent residual teste, perform the next taste test at intervals of 1 minute or
73 more. This method was in accordance with the test method of the teste test kit (TASTEDISC: Sanwa Chemical
74 Laboratory Co., Ltd).

75 6 c) Ethical review board

76 This study conducted with the approval of the Ethical Review Board (Nagoya women's university Ethics
77 Committee: 'hitoto mochiita kennkyuuni kansuru iinkai'). The approval number is 30-14.

78 7 d) Statistical processing

79 The test results were confirmed to be normal distribution by F-test. Data that were the tolerance range (in this
80 study, it called the normal range) distributed were compared with Student-t without correlation of parametric
81 test. The data that is not normally distributed was compared without correlated Mann-Whitney one of the
82 non-parametric test.

83 8 III.

84 9 Results

85 10 a) Participant's body composition and

86 Data on body composition and blood pressure of participants showed by age. The males showed in Table 2. And
87 the females are shown in Table 3. All data showed as averages by age. For both males and females, the mean
88 values of blood pressure for each one were in the normal range. Body fat percentage was higher in females than
89 in males, and BMI and body fat were almost tolerance range (in this study, it called the normal range) for both
90 males and females.

91 11 c) Statistical processing results

92 The sour test result was statistically processed. Table 5 and Table 6 show the results of the comparison of the
93 Sourness test results using TASTDISC with the tolerance range (in this study, it called the normal range) systolic
94 and diastolic blood pressure values and others. The results did not show a statistically significant difference in
95 either case. Table ?? shows the results of the comparison of the sourness test results using TASTDISC with

96 the tolerance range (in this study, it called the normal range) Body fat and other. The results showed that
97 there was a statistically significant difference between the normal Body fat range and the other. Participants
98 with a high body fat percentage were able to feel sourness at lower concentrations than those with right body
99 fat percentage. Table 9 and Table 10 shows the results of the comparison of the sourness test results using
100 TASTDISC with normal Waist circumference range and the other. In Japan, the tolerance range (in this study,
101 it called the normal range) waist circumference of the male is less than 85 cm (Table 9), and female is less than
102 90 Cm (Table10). The results did not show a statistically significant difference in the male cases. But, in female
103 cases, participants with a long waist circumference had a statistically significant lower sourness threshold than
104 those with short waist circumference.

105 **12 Discussion**

106 There are many reports in the past that the taste deteriorates with increasing age1). Also, the perceived
107 concentration of taste changes with temperature 2, 3). In this research, we focused on sourness, but there
108 are five basic tastes (sweet, salty, sour, bitter, and umami) 4, 5, 6). Also, there are various teste inspection
109 methods7). But this time, we used TASTDISC to get a taste of sourness. The cognitive threshold of sourness
110 examined for 298 participants (129 males and 169 females) in Yakumo-town, Hokkaido, Japan, where population
111 migration is low. As a result, 17 males out of 129male participants (13.2%) and ten females of 169 female
112 participants (5.9%) had abnormal values in sour taste test (Tastedisc) results. The tolerance range (in this study,
113 it called the normal range) of sourness, blood pressure (systole, diastole), and body composition (BMI, body
114 fat percentage, abdominal circumference) compared with other values. As a result, there was no statistically
115 significant difference in the sourness threshold between the normal range of blood pressure, BMI, and others.
116 However, there was a statistically significant difference in the one of sourness between the normal range of body
117 fat percentage and the other one. And also, in female cases, participants with a long waist circumference had a
118 statistically significant lower sourness threshold than those with short waist circumference. Sourness thresholds
119 were righter in participants with high body fat than in participants with low body fat. Our past sweet taste
120 data show that participants with heavy body fat have high sweetness perception thershoulds8). The sweetness
121 data was statistically significantly different from the sourness data this time. Although the result was similar,
122 in our past cognitive threshold of salty taste, there was no statistically significant item in the contents examined
123 for sourness this time9).In the future, we would like to inspect the bitterness and umami. And, we would like to
124 understand the actual taste sensation of the elderly by clarifying the differences between the five taste tests and
125 blood pressure, body composition, and eating habits. We would like to obtain underlying data for preparing a
126 diet suitable for the elderly to prevent malnutrition by grasping the taste of the elderly.
127 V.

128 **13 Conclusions**

129 We obtained sour test results, TASTDISC, at the time of health check-up in Yakumo Town, Hokkaido, where
130 population migration is low. From the database, 298 participants (169 females and 129 males) were selected
131 form data in August 2019. The sourness test performed using the sourness test paper with liquid TASTEDISC
132 (Sanwa Chemical Laboratory Co., Ltd) which include five different densities of Tartaric acid on a liquid with test
133 paper namely:, 1(0.02%), 2(0.2%), 3(2.0%), 4(4.0%), 5(8.0%). As a result, 17 males out of 129male participants
134 (13.2%) and ten females of 169 female participants (5.9%) had abnormal values in sour taste test (Tastedisc)
135 results. The tolerance range (in this study, it called the normal range) of sourness, blood pressure (systole,
136 diastole), and body composition (BMI, body fat percentage, abdominal circumference) compared with other
137 values. As a result, there was no statistically significant difference in the sourness threshold between the normal
138 range of blood pressure, BMI, and others. However, there was a statistically significant difference in the one
139 of sourness between the normal range of body fat percentage and the other range. And also, in female cases,
140 participants with a thick waist circumference had a statistically significant lower sourness threshold than those
141 with a short waist circumference. Sourness thresholds were lower in participants with high body fat than in
142 participants with low body fat. It is necessary to increase the number of participants and analyze the one in the
future.

1

	40's	50's	60's	70's	80's
Participants					
Male (129)	10	24	49	39	6
Female (168)	23	40	65	38	3
Total (297)	33	64	114	77	9

Figure 1: Table 1 :

13 CONCLUSIONS

2

	Number	Age	Height	Weight	Waist	BMI	Body fat rate	Systolic blood pressure	Dyastolic blood pressure
			cm	g	cm	kg/m ²	%	mmHg	mmHg
Average of 40's Male	10	45.5	170.1	74.2	84.8	25.7	23.7	136.8	80.9
Average of 50's Male	24	54.8	168.0	71.3	86.7	25.4	24.4	131.0	81.3
Average of 60's Male	49	64.8	167.3	68.9	86.5	24.6	24.7	138.3	83.1
Average of 70's Male	40	73.0	164.7	66.2	84.6	24.4	23.7	145.5	79.7
Average of 80's Male	6	84.8	159.1	63.5	87.4	25.1	24.3	134.7	66.2
Total average of Male	129	64.9	166.4	68.7	85.8	24.8	24.2	138.9	80.8

Figure 2: Table 2 :

3

	Number	Age	Height	Weight	Waist	BMI	Body fat rate	Systolic blood pressure	Dyastolic blood pressure
			cm	g	cm	kg/m ²	%	mmHg	mmHg
Average of 40's Female	23	45.2	158.0	57.2	76.7	22.8	33.2	122.3	70.1
Average of 50's Female	40	54.3	155.5	56.4	76.8	23.3	33.4	131.6	77.4
Average of 60's Female	66	64.5	153.8	55.7	77.7	23.5	33.9	137.1	77.0
Average of 70's Female	37	72.8	150.6	52.8	76.2	23.3	33.1	140.1	74.7
Average of 80's Female	3	82.0	147.4	49.6	78.1	22.9	31.1	149.0	77.0
Total average of Female	169	61.6	154.0	55.3	77.0	23.3	33.4	134.7	75.7

Figure 3: Table 3 :

4

(n=298)	Normal	Observation	Consultation
	0.02%, 0.20%	2.0%, 4.0%	8.0% ormore
Male 40's (n=10)	6	4	0
Male 50's (n=24)	10	10	4
Male 60's (n=49)	24	17	8
Male 70's (n=40)	16	21	3
Male 80's (n=6)	1	3	2
Male total (n=129)	57	55	17
Female 40's (n=23)	16	6	1
Female 50's (n=40)	20	19	1
Female 60's (n=66)	26	34	6

Figure 4: Table 4 :

5

	Systolic blood pressure (mmHg)	Tastedisc test result (Normal=1, Ovservation = 2,
Less than 120	120	Systolic blood pressure?
	or	Less than 120
	more	blood pressure
Average±Standard deviaton	108.934±19.003	120 or more
? test	P=0.0001**	P=0.010*
Unpaired student- <i>t</i> or <i>U</i> test		
Mann-Whaitny test	P=0.0001**	P=0.821
P<0.05 , ** P<0.01		

Figure 5: Female 70's (n=37) 14 21 2 Female 80's (n=3) 2 1 0 Female total (n=169) 78 81 10
TastediscTable 5 :

7

Figure 6: Table 7

6

	Diastolic blood pressure (mmHg)	Tastedisc test result (Normal=1, Ovservation = 2,
Less than 90	90 or	Diastolic blood pressure Less
	more	than 90
Average±Standard deviaton	73.984±8.903	1.640±0.628
? test	P=0.291	P=0.173
Unpaired student- <i>t</i> or <i>U</i> test	P=0.0001**	P=0.919
Mann-Whaitny test		
P<0.05 , ** P<0.01		

Figure 7: Table 6 :

13 CONCLUSIONS

7

	BMI(kg/m/m/)		Saltiness test result (Normal=1, Ovservation = 2, Consu)	
	Less than 25.0	2.50	BMI Less than 25.0	BMI
		or		2.50 or
		more		more
Average±Standard devi-	27.548±2.143	32.993±2.439±0.637		1.557±0.638
ation				
? test		P=0.0001**	P=0.501	
Unpaired student-t ^{1/2} ?"				
test				
Mann-Whaitny test		P=0.0001**	P=0.101	
P<0.05 , ** P<0.01				

Figure 8: Table 7 :

9

	Waist (cm)		Salttness test result (Normal=1, Ovservation = 2, Consu)	
	Less than 85.0	85.0	Waist Less than 85.0	Waist
		or		85.0 or
		more		more
Average±Standard devi-	78.327±4.478	91.603±4.731±0.668		1.712±0.716
ation				
? test		P=0.334	P=0.286	
Unpaired student-t ^{1/2} ?"		P=0.0001**	P=0.677	
test				
Mann-Whaitny test				
P<0.05 , ** P<0.01				
	Waist (cm)		Salttness test result (Normal=1, Ovservation = 2, Consu)	
	Less than 90.0	90.0	Waist Less than 90.0	Waist
		or		90.0 or
		more		more
Average±Standard devi-	75.729±7.477	93.733±4.335±0.595		1.250±0.452
ation				
? test		P=0.0019**	P=0.142	
Unpaired student-t ^{1/2} ?"			P=0.039*	
test				
Mann-Whaitny test		P=0.0001**		
P<0.05 , ** P<0.01				

Figure 9: Table 9 :

10

Figure 10: Table 10 :

144 .1 Acknowledgements

145 This study was supported by the research aid of Choju-iryō-kenkyū-kaihatsuhi 30-14 and the Japanese Society
146 of Taste Technology, 2019.

147 [Katayama et al.] 'Comparison between threshold of saltiness perception and blood pressure for resident health
148 examination in Yakumo Town (2020) Adv'. Naomi Katayama , Akemi Ito , Mayumi Hirabayashi , Shoko
149 Kondo , Yui Nakayama , Takafumi Nakada , Seiya Goto , Satofumi Sugimoto , Tadao Yoshida , Masaaki
150 Teranisi , Michihiko Sone , Yasushi Fujimoto , Hironao Otake , Hirokazu Suzuki , Seiichi Nakata , Tsutomu
151 Nakashima , Kenji Kondo , Takaki Miwa . *Nutr Food Sci* 181 (02) p. .

152 [Katayama et al.] 'Comparison between threshold of sweetness perception and blood pressure for resident health
153 examination in Yakumo Town (2020) Adv'. Naomi Katayama , Mayumi Hirabayashi , Akemi Ito2 , Shoko
154 Kondo , Yui Nakayama , Takafumi Nakada , Seiya Goto , Satofumi Sugimoto , Tadao Yoshida3 Masaaki
155 Teranisi , Michihiko Sone , Yasushi Fujimoto , Hironao Otake , Hirokazu Suzuki , Seiichi Nakata , Tsutomu
156 Nakashima , Kenji Kondo , Takaki Miwa . *Nutr Food Sci* 182 (03) p. .

157 [Klimacka-Nawrot and Suchecka ()] 'Methods of Taste Sensitivity Examination'. Ewa Klimacka-Nawrot , Wanda
158 Suchecka . *Wiad Lek* 2008. 61 (7-9) p. .

159 [Barry G Green and Andrew ()] 'Stimulus-Dependent Effects of Temperature on Bitter Taste In Humans'.
160 Kendra Barry G Green , Andrew . *Chem Sense* 2017. 42 (2) p. .

161 [Sergi et al. ()] 'Taste Loss in the Elderly: Possible Implications of Dietary Habits'. Giuseppe Sergi , Giulia
162 Bano , Simona Pizzato , Micola Veronese , Enzo Manzato . *Clin Rev Food Sci Nutr* 2017. 57 (17) p. .

163 [Iwatsuki and Nakajima ()] 'Taste Receptors in Multiple Organs'. Ken Iwatsuki , Chiemi Nakajima . *Clin
164 Calcium* 2018. 28 (7) p. .

165 [Iwata et al. ()] 'Taste Transductions in Taste Receptor Cells: Basic Tastes and Moreover'. Shusuke Iwata ,
166 Ryusuke Yoshida , Yuzo Ninomiya . *Curr Pharm Des* 2014. 20 (16) p. .

167 [Barry G Green et al. ()] 'The Effect of Temperature on Umami Taste'. Cynthia Barry G Green , Kendra Alvarado
168 , Danielle Andrew , Nachtigal . *Chem Sense* 2016. 41 (6) p. .

169 [Isabella et al. ()] 'Umami as an Alimentary Taste. A New Perspective on Taste Classification'. E Isabella , Djin
170 Gie Hartley , Russell Liem , Keast . *Nutrients* 2019. 11 (1) p. 182.