

1 Therapeutic Drug Monitoring and Evaluation of Therapeutic
2 Effectiveness and Adverse Effects of Antiepileptic Drugs in Iraqi
3 Epileptic Patients

4 mohanad radeef¹ and Prof. Dr. Kassim Al-Shamma²

5 ¹ University of Baghdad, Iraq.

6 *Received: 6 August 2012 Accepted: 4 September 2012 Published: 15 September 2012*

7 **Abstract**

8 This study was designed to evaluate the therapeutic effectiveness and adverse effects of
9 carbamazepine, valproic acid, topiramate, and their combination in Iraqi epileptic patients.
10 Ninety epileptic patients were participated in this study, their age ranged from (1-45) years.
11 Seventy patients were previously diagnosed with epilepsy and received antiepileptic drugs for
12 at least six months before this study (retrospective groups). The remaining patients were
13 newly diagnosed with epilepsy (prospective groups). Twenty healthy subjects were selected to
14 be a normal group for the purpose of comparison. The results showed that 90

16 **Index terms**

17 — TDM, carbamazepine, valproic acid, topiramate, combination therapy, effectiveness, adverse
18 effects, liver function tests.

19 **1 I. INTRODUCTION**

20 epilepsy is a disorder that is best viewed as a symptom of disturbed electrical activity in the brain, which may
21 be caused by a wide variety of etiologies. It is a collection of many different types of seizures that vary widely
22 in severity, appearance, cause, consequence, and management. Seizures that are prolonged or repetitive can be
23 life-threatening. The effect of epilepsy on patients' lives can be significant and extremely frustrating (1) . Of
24 note is that seizures in many patients do not remit despite appropriate medication, and lifelong antiepileptic
25 drugs (AEDs) therapy is usually required for those with refractory epilepsy. This practice poses a medical
26 dilemma because prolonged AEDs therapy is often associated with a wide range of chronic adverse effects,
27 including metabolic and endocrine disturbances, behavioral or psychiatric problems, idiosyncratic reactions,
28 negative cognitive effects, and drug interactions (2) . Since AEDs have a narrow therapeutic index and complex
29 pharmacokinetic properties, wide fluctuations in their plasma concentration can lead to either toxic effects or
30 loss of therapeutic efficacy (3) .

31 Therapeutic Drug Monitoring (TDM) is a concept of individualization of therapy based on drug concentration
32 data, and application of pharmacokinetic and pharmacodynamic principles. It is not only a process of
33 measuring drug concentration levels in biological fluids, but putting them into service of an optimized individual
34 pharmacotherapy. The aim of TDM is to accomplish the optimal therapeutic drug response with minimal adverse
35 drug effects e.g. better pharmaceutical care of patients ??4, ??).

36 This study was designed to evaluate the therapeutic effectiveness and adverse effects profile of AEDs
37 carbamazepine, valproic acid, topiramate, and their combination through the assessment of the effect of these
38 drugs on the frequency of seizure attack and on liver function tests in Iraqi epileptic patients. Also the present
39 study was conducted to monitor and compare the serum levels of carbamazepine and valproic acid and to relate
40 these levels to therapeutic effectiveness and adverse effects profile.

41 Therapeutic Drug Monitoring and Evaluation of Therapeutic Effectiveness and Adverse Effects of Antiepileptic
42 Drugs in Iraqi Epileptic Patients courses of the study successfully. Seventy patients were previously diagnosed
43 with epilepsy and received AEDs for at least six months before this study (retrospective groups) and these

5 C) EXCLUSION CRITERIA :

44 patients had poorly controlled epilepsy. Their age ranged from 1 -45 years (mean \pm SEM = 18.85 ± 1.25), of
45 them 32 (45.71%) patients were male and 38 (54.28%) patients were female. The remaining patients were newly
46 diagnosed with epilepsy and did not receive any AED before this study (prospective groups). Their age ranged
47 from 2 -32 years (14.95 ± 2.11), of them 9 (45%) patients were male and 11 (55%) patients were female.

48 The previously diagnosed patients were recruited into the following retrospective groups: Group 1 : Includes
49 20 epileptic patients tested at baseline and after three months of treatment with carbamazepine (at dose 431.57 ± 16.75 mg/day) (mean \pm SEM).

51 Group 2 : Includes 20 epileptic patients tested at baseline and after three months of treatment with valproic
52 acid (at dose 492.10 ± 35.01 mg/day). Group 3 : Includes 10 epileptic patients tested at baseline and after three
53 months of treatment with topiramate (at dose 57.50 ± 7.49 mg/day).

54 Group 4 : Includes 20 epileptic patients tested at baseline and after three months of treatment with combination
55 therapy as following: i.

56 Sixteen patients receiving carbamazepine and topiramate (at dose 787.5 ± 67.00 mg/day and 73.43 ± 12.80
57 mg/day respectively). ii.

58 Two patients receiving carbamazepine and valproic acid (at dose 600.00 ± 199.99 mg/day and 800.0 ± 0.0
59 mg/day respectively). iii.

60 Two patients receiving valproic acid and topiramate (at dose 800.00 ± 0.0 mg/day and 50.0 ± 0.0 mg/day
61 respectively).

62 The newly diagnosed patients were recruited into the following prospective groups: Group 1 : Includes 10
63 epileptic patients tested at baseline and after three months of treatment with carbamazepine (at dose 400 ± 29.81 mg/day) (mean \pm SEM).

64 Group 2 : Includes 10 epileptic patients tested at baseline and after three months of treatment with valproic
65 acid (at dose 430 ± 29.99 mg/day).

67 2 b) Healthy Subjects

68 Twenty subjects who were apparently healthy selected for the purpose of comparison. These subjects were selected
69 from the medical staff and some relative volunteers, of them 9 were male (45%) and 11 were

70 3 d) Sample Collection And Preparation

71 Six mil liliters of venous blood sample were drawn from each patient in the morning at 8:30 -9:30 AM after 8-12
72 hours fasting by vein puncture, before starting drug treatment (as baseline sample) and then after 3 months of
73 treatment. Serum was used for the measurement of alanine aminotransferase (ALT), aspartate aminotransferase
74 (AST), alkaline phosphatase (ALP), γ -glutamyl transferase (GGT), and concentration of carbamazepine and
75 valproic acid. One blood sample was drawn from each healthy subject.

76 4 e) Serum Drug Determination

77 Concentrations of carbamazepine and valproic acid in this study were determined by using high performance liquid
78 chromatography with ultra violet detector (HPLC-UV). The HPLC system comprised the following: Waters 1500
79 series HPLC pump (USA), Waters 2487 dual λ absorbance detector (USA), and a computer with Waters Breeze
80 software as data collecting system. i. Determination of serum carbamazepine concentration:

81 ? Chrom atographic condition:

82 The chromatographic column C18 (4.6 mm \times 250 mm, 5 μ m) was used. Mobile phase was water, methanol,
83 and acetonitrile (45:45:10). The system operated at ambient temperature. The flow rate was 1.0 ml.min $^{-1}$. An
84 aliquot of 20 μ l was injected for HPLC analysis. Monitoring was performed at 254nm (6). female (55%). Their
85 ages were ranged from 1 -49 years (19.55 ± 4.50).

86 5 c) Exclusion Criteria :

87 -Diabetic patients.

88 Liver enzymes were measured in serum by colorimetric method using the kit from Randox, (UK) for ALT
89 & AST, Biomérieux, (France) for ALP, and Human, (Germany) for GGT. All the assays were performed on
90 spectrophotometer.

91 Stock solution of carbamazepine (200 μ g.ml $^{-1}$) was prepared in methanol in a 25ml brown glass flask volumetric
92 and stored at -20 $^{\circ}$ C. The carbamazepine working solutions at concentrations of (1.6 μ g.ml $^{-1}$, 3.125 μ g.ml $^{-1}$,
93 6.25 μ g.ml $^{-1}$, 10.0 μ g.ml $^{-1}$, 12.5 μ g.ml $^{-1}$, 15.0 μ g.ml $^{-1}$, and 25.0 μ g.ml $^{-1}$) were prepared by serial dilution
94 of carbamazepine stock solution with methanol ? Sample processing and extraction: An accurately sucked test
95 serum 0.2 ml and the extract (chloroform: ethyl acetate = 50:50) 2 ml was successively set into a centrifuge
96 tube on a vortex mixer for 5 min. After centrifuged at 4000 r.min $^{-1}$ for 10 min, the organic layer 1.5 ml was
97 transferred to another 5 ml centrifuge tube, and blow-dried with cold air in water bath at 60 $^{\circ}$ C. At last, 200
98 μ l mobile phase was added into the centrifuge tube and 20 μ l solution was injected for HPLC analysis (6) .

99 6 ? Standard curve drawing :

100 Standard solutions (1.6 ?g.ml ?1 , 3.125 ?g.ml ?1 , 6.25 ?g.ml ?1 , 10.0 ?g.ml ?1 , 12.5 ?g.ml ?1 , 15.0 ?g.ml ?1 ,
101 25.0 ?g.ml ?1) 200 ?l were took into a centrifuge tube with plug respectively, and then they were blow-dried with
102 cold air in water bath at 60 ? C. Blank serum 200 ?l was added in the centrifuge tube above respectively, making
103 to the corresponding concentrations of standard serum. Serum was extracted according to the performance of
104 the sample processing and extraction. Take the concentration of standard solution as the abscissa, and take the
105 peak area value of standard substance as the vertical axis (6) . Drug concentration in the patient serum can be
106 calculated by this method. The standard curve of carbamazepine is shown in figure 1.

107 ii. Determination of serum valproic acid concentration: ? Chromatographic condition The chromatographic
108 column C18 (4.6 mm × 250 mm, 5 ?m) was used. Mobile phase consisting of acetonitrile and 0.05 M potassium
109 dihydrogen ortho phosphate (pH adjusted to 3 with ortho phosphoric acid) (45:55 v/v) was used. The system
110 operated at ambient temperature. The flow rate was 1.2 ml.min ?1 . An aliquot of 50 ?l was injected for HPLC
111 analysis. The eluate was monitored at dual wavelength of UV detector at 210 nm from 0 to 10min (7) .

112 7 ? Solutions preparation:

113 Stock solution of valproic acid (1000?g.ml ?1) and diazepam (1000?g.ml ?1) was prepared in methanol and
114 acetonitrile respectively in a 25ml brown glass flask volumetric and stored at -4 ? C. The valproic acid working
115 solutions at concentrations of (20.0 ?g.ml ?1 , 50.0 ?g.ml ?1 , 80.0 ?g.ml ?1 , 120.0 ?g.ml ?1 , and 150.0 ?g.ml ?1
116) were prepared by serial dilution of valproic acid stock solution with methanol from high to low. They were all
117 stored away from light at 4 ? C (7) .

118 8 ? Sample processing and extraction:

119 To 250?l serum sample, acetonitrile solution of diazepam equivalent to 2.5 ?g was added as internal standard and
120 shaken well. Then equivalent amount of (250?l) acetonitrile was added for protein precipitation and mixed on a
121 vortex mixer for 1 minutes and centrifuged at 4000 rpm for 20 min. 50 ?l of the supernatant was injected on to
122 HPLC column (7) .

123 9 ? Standard curve drawing :

124 Standard solutions (20.0 ?g.ml ?1 , 50.0 ?g.ml ?1 , 80.0 ?g.ml ?1 , 120.0 ?g.ml ?1 , and 150.0 ?g.ml ?1) 250 ?l
125 were taken into a centrifuge tube with plug respectively, and then they were blow-dried with cold air. Blank
126 serum 250 ?l was added in the centrifuge tube above respectively, making to the corresponding concentrations of
127 standard serum. 250 ?l of acetonitrile with 2.5 ?g diazepam solution was then set into each centrifuge tube on a
128 vortex mixer for 1 min, operated according to the performance of the sample processing and extraction. Plot the
129 peak height ratio between valproic acid and diazepam vs. concentration of the drug to construct the calibration
130 curve using the results from serum standard and serum blank (7) . Drug concentration in the patient serum can
131 be calculated by this method. The standard curve of valproic acid is shown in figure 2.

132 10 f) Statistical Analysis

133 All data were expressed as mean ± standard error means (SEM). Statistical analyses were carried out using paired
134 t-test to compare between mean values of parameters. P value < 0.05 was considered statistically significant.
135 Descriptive analysis was carried out by Microsoft Office Excel 2007 software.

136 11 III. Results

137 a) Efficacy Of Treatment With Carbamazepine, Valproic Acid, Topiramate, And Combination Therapy : i.
138 Retrospective groups:

139 Table (1) shows the frequency of seizure in retrospective groups receiving carbamazepine, valproic acid,
140 topiramate, and combination therapy after three months of treatment.

141 On the other hand, only (45%) of patients receiving combination therapy were seizure free, whereas the
142 remaining (55%) patients had poor seizure control after treatment.

143 ii. Prospective groups: Table (2) shows the frequency of seizure in prospective groups receiving carbamazepine
144 and valproic acid after three months of treatment. from high to low. They were all stored away from light at 4
145 ? C (6) .

146 12 Global Journal of

147 The data show that (90%) of the patients treated with carbamazepine mono-therapy did not have any seizure
148 attack after treatment, whereas, (75%) of patients treated with valproic acid mono-therapy did not suffer from
149 any seizure attack after treatment, and (60%) of the patients treated with the topiramate mono-therapy had an
150 excellent control of their seizures after treatment.

151 The data in this table show that all the patients treated with valproic acid did not suffer from any seizure b)
152 Therapeutic Drug Monitoring: i. Serum carbamazepine:

13 C) EFFECT OF TREATMENT WITH CARBAMAZEPINE, VALPROIC

153 Table ??3) shows serum carbamazepine concentration in prospective and retrospective groups receiving
154 carbamazepine as mono-therapy or in combination therapy after three months of treatment.

155 The data show that the mean of the values of serum carbamazepine after treatment was within normal
156 therapeutic range (10.75 ± 2.96 , 10.24 ± 1.82 , and 8.47 ± 0.99 $\mu\text{g}/\text{ml}$ in prospective, retrospective, and
157 retrospective with combination therapy respectively). No significant differences were observed among these
158 groups.

159 Table ??4) shows serum carbamazepine range in prospective and retrospective groups receiving carbamazepine
160 as mono-therapy or in combination therapy after three months of treatment.

161 About half of the patients (50%, 65%, and 50% in prospective, retrospective, and retrospective with
162 combination therapy respectively) had steady state serum concentration of carbamazepine within therapeutic
163 range of (4 -12 $\mu\text{g}/\text{ml}$) when the usual daily dose of carbamazepine was given (400.0 ± 29.81 mg/day prospectively
164 alone, 431.57 ± 16.75 mg/day retrospectively alone, or 777.77 ± 60.65 mg/day retrospectively combined with
165 another drug); however, this daily dose was sub-therapeutic (<4 $\mu\text{g}/\text{ml}$) for at least (20%, 15%, and 27.77% in
166 prospective, retrospective, and retrospective with combination therapy respectively). On the other hand, this
167 dose produced excessive serum concentrations (>12 $\mu\text{g}/\text{ml}$) in (30%, 20%, and 22.22% in prospective, retrospective,
168 and retrospective with combination therapy respectively). Figures (3 -5) show the chromatograms of drug-free
169 serum (blank), serum spiked by standard of carbamazepine, and serum spiked by carbamazepine in patient's
170 sample respectively. Retention time was 6.034 minutes for carbamazepine.

171 ii. Serum valproic acid: Table ??3) shows serum valproic acid concentration in prospective and retrospective
172 groups receiving valproic acid as mono-therapy or in combination therapy after three months of treatment.

173 The data show that the mean of the values of serum valproic acid after three months of treatment was within
174 normal therapeutic range (74.47 ± 17.11 , 71.01 ± 12.36 , and 67.27 ± 8.67 $\mu\text{g}/\text{ml}$ in prospective, retrospective,
175 and retrospective with combination therapy respectively). No significant differences were observed among these
176 groups.

177 Table (5) shows serum valproic acid range in prospective and retrospective groups receiving valproic acid as
178 mono-therapy or in combination therapy after three months of treatment.

179 About half of the patients (40%, 50%, and 75% in prospective, retrospective, and retrospective with
180 combination therapy respectively) had steady state serum concentration of valproic acid within therapeutic range
181 of ($50 - 100$ $\mu\text{g}/\text{ml}$) when the usual daily dose of valproic acid was given (430.0 ± 29.99 mg/day prospectively
182 alone, 492.10 ± 35.01 mg/day retrospectively alone, or 800.0 ± 0 mg/day retrospectively combined with another
183 drug); however, this daily dose was sub-therapeutic (<50 $\mu\text{g}/\text{ml}$) for at least (30%, 30%, and 25% in prospective,
184 retrospective, and retrospective with combination therapy respectively). On the other hand, this dose produced
185 toxic serum concentrations of valproic acid (>100 $\mu\text{g}/\text{ml}$) in (30% and 20% in prospective and retrospective groups
186 respectively), while no patient developed toxic concentration when valproic acid administered with another AED.
187 Figures (6 -8) show the chromatograms of drug-free serum (blank), serum spiked by standard of valproic acid,
188 and serum spiked by valproic acid in patient's sample respectively. Retention time was 1.344 and 7.093 minutes
189 for valproic acid and internal standard of diazepam respectively.

190 13 c) Effect Of Treatment With Carbamazepine, Valproic

191 Acid, Topiramate, And Combination Therapy On Liver Function: i. Serum (ALT) :

192 Table (6) shows the serum ALT in retrospective groups. The baseline values of ALT in all groups were
193 significantly higher than the healthy subjects' values. These values after three months of treatment were
194 significantly higher than the baseline values and the healthy subjects' values. The percent increase between
195 the baseline values of serum ALT and after three months values were ranged from 19.28% to 28.81%.

196 Table (7) shows the serum ALT in prospective groups. The values of ALT were significantly increased in
197 patients receiving carbamazepine for three months when compared with their baseline values and also with the
198 healthy subjects' values. While, no significant increase in ALT values after treatment with valproic acid as
199 compared with their values at baseline. However, there were significant increases in values of serum ALT at
200 baseline and after three months values when compared with the values of healthy subjects. The percent change
201 between the baseline values of serum ALT and after three months values was 85.07% for carbamazepine and
202 17.88% for valproic acid.

203 ii. Serum (AST):

204 Table (8) shows the serum AST in retrospective groups. The baseline values of AST in all groups were
205 significantly higher than the healthy subjects' values. These values after three months of treatment were attack
206 after treatment, whereas only two patients exhibited one attack per month after treatment with carbamazepine.

207 healthy subjects' values. The percent increase between the baseline values of serum AST and after three
208 months values were ranged from 29.72% to 43.91% .

209 The percent change between the baseline values of serum AST and after three months values was 25.17% for
210 carbamazepine and 42.58% for valproic acid.

211 iii. Serum (ALP) : Table (10) shows the serum ALP in retrospective groups. The baseline values of ALP in
212 patients treated with valproic acid and in those treated with combination therapy showed significant increases
213 when compared with the values of healthy subjects; whereas, no significant differences in the those values were
214 existed between carbamazepine and topiramate groups of patients when compared with the values of the healthy

215 subjects. However, these values after three months of treatment in all groups were significantly higher than the
216 healthy subjects and baseline values. The percent increase between the baseline values of serum ALP and after
217 three months values were ranged from 17.68% to 21.23%.

218 **14 iv. Serum (GGT):**

219 Table (12) shows the serum GGT in retrospective groups. The GGT values after three months of treatment with
220 carbamazepine, valproic acid, and combination therapy were significantly higher than their values at baseline
221 level; whereas, no significant increase in GGT values in patients receiving topiramate therapy was observed.

222 These values after three months of treatment with carbamazepine, topiramate, and combination therapy
223 showed significant increase as compared with the values of the healthy subjects; whereas, no significant increase
224 in GGT values was observed in patients receiving valproic acid therapy.

225 At baseline, the values of GGT in the group of patients receiving carbamazepine and the group receiving
226 combination therapy showed a significant increase when compared with the healthy subjects' values. On the
227 other hand, no significant increases in the level of GGT in patients receiving valproic acid and in those receiving
228 topiramate therapies were found. The percent increase between the baseline values of serum GGT and after three
229 months values were ranged from 7.82% to 29.71%.

230 **15 d) Adverse Effects Associated With The Treatment With**

231 Carbamazepine, Valproic Acid, Topiramate, And Combination Therapy i. Retrospective Groups ii. Prospective
232 Groups Table (15) shows the adverse effects associated with the treatment in prospective groups after three
233 months of treatment. Different types of adverse effects were observed in both groups and their incidences
234 were varied between these groups. The following adverse effects were reported more frequently in both groups:
235 headache, fatigue, and loss of appetite.

236 **16 IV. Discussion**

237 **17 Efficacy Of Treatment**

238 Controlling seizures with minimal adverse effects and maintaining the patient's ability to perform daily activities
239 are the critical measures of treatment efficacy. In this study, the efficacy of the AED therapy was measured in
240 terms of the number of seizures Table (14) shows the adverse effects associated with the treatment in retrospective
241 groups after three months of treatment. Different types of adverse effects were observed in all groups and the
242 incidence of these effects was varied among these groups. The combination therapy had the higher rate of
243 incidence of these effects than the other groups; whereas, topiramate had the lower rate of incidence. The
244 following adverse effects were reported more frequently among the groups: headache, fatigue, loss of appetite,
245 weight gain, and weight loss.

246 Table (9) shows the serum AST in prospective groups. The values of AST were significantly increased in
247 patients receiving valproic acid for 3 months as compared with the baseline values and with the healthy subjects'
248 values. While, the carbamazepine's group of patients showed a significant increase in values of serum AST when
249 compared with the healthy subjects' values only without significant increase in these values when compared with
250 their baseline values. Both groups showed a significant increase in the value of AST at baseline level when
251 compared with the healthy subjects' values.

252 Table (11) shows the serum ALP in prospective groups. There were no significant increases in the serum level
253 of ALP in both groups between baseline values and after three months values. However, there were significant
254 increases in these values at baseline and after three months of treatment in both groups when compared with the
255 values of the healthy subjects. The percent change between the baseline values of serum ALP and after three
256 months values was 27.99% for carbamazepine and 24.00% for valproic acid.

257 Table (13) shows the serum GGT in prospective groups. The values of GGT after three months of treatment
258 with carbamazepine were increased significantly when compared with these values at baseline and with the values
259 of the healthy subjects. While, no significant changes in the values of GGT were observed in valproic acid treated
260 patients when compared with baseline and with the healthy subjects' values. The percent change between the
261 baseline values of serum GGT and after three months values was 56.74% for carbamazepine and 33.14% for
262 valproic acid.

263 experienced by the patients throughout the follow up period of three months. Seizure counts are the only
264 reasonable and standard way to evaluate efficacy of treatment (8) .

265 As shown in tables (1), 48 (68.57%) patients in retrospective groups became seizure free, while 22 (31.42%)
266 experienced different rate of seizure attack during that period. In group treated with carbamazepine, 90% of
267 patients were seizure free after three months of therapy, whereas 75% of patients on valproic acid were seizure
268 free. 60% of patients received topiramate became seizure free after treatment. On the other hand, only 45%
269 of patients on combination therapy were seizure free. Thus, in retrospective groups, carbamazepine showed an
270 excellent control of seizures followed by valproic acid and topiramate mono-therapy, whereas the combination
271 therapy was associated with poor control of seizures.

272 Whereas in table (2), 18 patients (90%) in prospective groups became seizure free and only two (10%) patients
273 experienced a single seizure attack during the study period. In group treated with carbamazepine, 80% of patients
274 were seizure free and only 20% of patients had a single seizure attack per month, whereas all the patients (100%)
275 on valproic acid became seizure free after treatment. Thus, in prospective groups, valproic acid has a slightly
276 better control of seizures than carbamazepine.

277 In general, mono-therapy is the ideal strategy for seizure control, and approximately 50% to 70% of all patients
278 with newly diagnosed epilepsy can be maintained on one drug (9,10) . After failure of the first mono-therapy, only
279 14 to 20% of patients with seizures will be successfully controlled with any alternative single drug; however, many
280 less respond if the first drug was ineffective (11) . This later group represents part of the approximately 20%
281 to 30% of people with persistent seizures and chronic epilepsy even with medical treatment. Overall, persistent
282 seizures are more common in patients with frequent seizures, multiple types of seizures, abnormal neurologic
283 findings, a brain lesion, onset in the first year of life, or abnormal EEG findings (12) . Combining AEDs
284 with different mechanisms of action to achieve freedom from seizures may be advantageous (perhaps allowing
285 synergistic drug effects), although this approach is as yet unproven and typically results in complex and additive
286 side effects (13) . Unfortunately, after failing mono-therapy trials, less than 10% of patients have complete control
287 of seizures with dual therapy (14,1) .

288 The results gained in this study are in agreement with the results of the other studies. In a study conducted by
289 Ripple T. et al. (2011) to evaluate the effectiveness and safety of AEDs in patients with epilepsy. They reported
290 that carbamazepine had advantages in epilepsy control over newer AEDs as a class, and valproic acid provided
291 epilepsy control similar to newer AEDs (15) . Kowalik A. et al. (2008) studied the effect produced by the
292 conversion from carbamazepine or oxcarbamazepine to topiramate in 140 adolescents and adults with epilepsy.
293 They reported that a seizure reduction of ? 50% was achieved in 91% of patients in the last scheduled period
294 (week 12-26); 62% of patients entering that period remained seizure free (16) . A retrospective review of 1,617
295 seizure free patients revealed that 21% were on poly-therapy and the remaining patients were on mono-therapy
296 (17) .

297 18 Therapeutic Drug Monitoring

298 The data in table (3) showed that the mean of the values of the serum concentrations of carbamazepine and
299 valproic acid after 3 months of treatment in all groups were within normal therapeutic range when the usual daily
300 doses of carbamazepine and valproic acid were given. However, and as shown in table (4), about half of patients
301 taking usual daily doses of carbamazepine had the therapeutic level of drug. While, the remaining patients
302 had their serum levels of carbamazepine either in sub-therapeutic or in toxic level. The lowest concentration of
303 carbamazepine in these patients was 1.8 μ g/ml whereas the highest concentration was 27.6 μ g/ml.

304 Carbamazepine has complex physicochemical properties, short half life and narrow therapeutic index. A
305 variety of drugs could inhibit its metabolism and increasing the risk of accumulation. Erythromycin and other
306 macrolides were well recognized to cause significant elevation of carbamazepine concentration (18) . Large inter-
307 individual differences in apparent plasma half life linked to auto induction and narrow therapeutic range make
308 this drug suitable for monitoring ??19) .

309 As shown in table (5), therapeutic level of valproic acid was also found in about half of patients taking
310 usual daily doses of valproic acid. The remaining patients had their serum levels of valproic acid either in sub-
311 therapeutic or in toxic level. The lowest concentration of valproic acid in these patients was 22.6 μ g/ml whereas
312 the highest concentration was 162.3 μ g/ml.

313 Valproic acid is an inhibitor of certain CYP enzymes and as such can cause drug-drug interactions, including
314 with other AEDs such as carbamazepine. However, valproic acid was devoid of enzyme inducing properties, but a
315 risk of interaction still existed as an inhibitor of oxidative and non oxidative drug metabolism. As a result plasma
316 level of it fluctuates during chronic treatment. Metabolites of valproic acid contribute to both antiepileptic and
317 toxic effects. Considering all these effects, therapeutic monitoring of valproic acid is also quite useful ??19,20) .

318 So, TDM of carbamazepine and valproic acid in this study did not show a wide fluctuation in the serum level
319 of each drug as higher proportion of patients taking these drugs individually or combined with other AEDs had
320 their serum drug level within therapeutic range, and the toxic and sub-therapeutic levels were not quite high.
321 However, poor correlation was found between the serum concentration of carbamazepine and valproic acid and
322 their therapeutic effects. It is suggested that monitoring of both drugs would be helpful when their toxicity and
323 efficacy are doubtful.

324 Studies on the effect of TDM on outcome in terms of complete seizure control and/or best compromise between
325 improved seizure control and adverse effects are scarce (21) . In randomized controlled trial conducted by Jannuzzi
326 et al. (2000) on the impact of TDM included 180 newly diagnosed patients with epilepsy who were about to start
327 treatment with carbamazepine, valproic acid, phenytoin, phenobarbital, or primidone. Patients were randomized
328 to either treatment with dosage adjusted on clinical grounds alone, or treatment with dosage adjusted to achieve
329 serum concentrations within predefined target ranges. After a follow-up of up to 24 months, there were no
330 significant differences between the two groups with respect to patients achieving 12-month remission (60% in the
331 TDM group vs. 61% in the control group), patients were remaining seizure-free since initiation of treatment, time
332 to first seizure or to 12-month remission, or frequency of adverse effects. Hence, this study could not demonstrate
333 an effect of routine use of TDM on the clinical outcome of early treatment of patients with epilepsy (22) . Subash

334 V. et al. (2011) were reported that there was poor correlation between daily dose and therapeutic levels of
335 valproic acid after six months of treatment of epileptic children with valproic acid (7) . Imad A. (1992) tried to
336 find the relationship between serum carbamazepine concentration and clinical effect in 111 epileptic patients. He
337 reported that the therapeutic monitoring did not make management of epilepsy easy, but it could improve its
338 therapeutic effect with avoidance of toxicity (23) .

339 TDM is particularly useful in determination of drug levels and identification of therapeutic failure due to
340 under dosage, and "even in the presence of optimal dosage" for identification of serious toxicity, inter individual
341 pharmacokinetic variability (rapid or slow metabolism of drug) and detection of pharmacokinetic interactions
342 (24) .

343 One of the most common cause of lower concentration of drug than expected for the prescribed dose in this
344 study is poor patient compliances. Poor compliance is a bigger issue in this set up, which mainly belongs to rural
345 population, due to poor socioeconomic conditions, illiteracy and dependence on free supply of drugs from public
346 hospitals. Assessing compliance on clinical grounds alone can be difficult especially in patients with infrequent
347 seizures or easy to treat epilepsy (25) . Compliance can be improved by limiting to a minimum the number of
348 daily doses and by regular monitoring of the drug level ??19) .

349 Toxic levels of carbamazepine and valproic acid were documented in this study and they may be attributed
350 to the significant intra-and inter-individual pharmacokinetic variability of both agents (26,27) . Also, drug levels
351 may be found within the toxic range in patients with uncontrolled seizures as such patients tend to be prescribed
352 increased doses.

353 19 Effect On Liver Function

354 As shown in tables (6 and 8), there was a significant elevation in the activity of ALT and AST in all retrospective
355 groups after three months of treatment. Such elevation where also observed in prospective groups as data in tables
356 (7 and 9) showed that the activity of ALT showed a significant elevation after treatment with carbamazepine
357 with a non significant elevation in those treated with valproic acid, and there was a significant elevation in AST
358 activity after treatment with valproic acid with a non significant elevation with carbamazepine. However, these
359 elevations are usually less than twice the upper limit of normal in all groups.

360 ALT and AST are an excellent marker of hepatocellular injury. Several drugs may cause raised aminotransferase
361 enzymes, and among them are the AEDs (28) , and mild alterations of aminotransferases can occur without clinical
362 significance (29) .

363 In table (10), the activity of ALP in all retrospective groups showed a significant elevation after three months
364 of treatment, whereas in table (11), the activity of ALP in prospective groups showed a non significant elevation
365 after treatment as compared with baseline values. The results regarding GGT activity showed that there was a
366 significant elevation in all retrospective groups after treatment except the group treated with topiramate which
367 showed a non significant elevation {table (12)} . While in table (13), the activity of GGT in prospective groups
368 showed a significant elevation after treatment with carbamazepine and a non significant elevation after treatment
369 with valproic acid when compared with baseline values. Again, these elevations are usually less than twice the
370 upper limit of normal in all groups.

371 It has been mentioned that ALP is the most frequently used biochemical marker of bone formation, and
372 increased values were documented both in adults and in children receiving AED therapy in most studies. The
373 reported incidence of this elevation ranges from 19-56% (30) . Carbamazepine is considered to increase vitamin
374 D metabolism, and risk of bone disease. Decreased vitamin D levels in subjects on carbamazepine might result
375 in increased blood levels of ALP (31) . GGT is a sensitive test of hepatobiliary disease; its usefulness is limited
376 by lack of specificity. Medications like carbamazepine may also cause a mild rise in GGT (28) . GGT would
377 confirm hepatic source for a raised ALP. However, hepatic enzymes (GGT and ALP) elevations are frequent and
378 do not have necessarily a pathological meaning (29) .

379 There is controversy regarding the exact mechanism for increased enzyme activities in treatment with AEDs.
380 Some studies conclude that increase occurs due to enzyme induction along with liver cell damage (32) , while
381 other studies maintain that increase is due to enzyme induction and is mostly mild and clinically insignificant
382 ??33) . The results in this study indicate that the AEDs used in this study may cause an asymptomatic rise
383 in liver function tests in both retrospective and prospective groups that does not signify liver dysfunction and
384 does not require action, in addition to that, none of the patients suffered from liver disease, thus, mild increase
385 (less than five times the upper limit of normal (34)) found in enzyme levels may only reflect enzyme induction
386 and not hepatocellular damage. Also the results indicate that the short duration of treatment in prospective
387 groups produced approximately the same effect on liver enzyme activities as the long duration of treatment in
388 retrospective groups. The change in enzyme activities produced by the combination therapy is not significantly
389 different from those produced by mono-therapy.

390 Enzyme induction is one reported iatrogenic effect leading to elevated hepatic serum enzyme levels in patient
391 populations that are not directly indicative of hepatic injury. This has been well documented, especially for
392 AEDs (35) . Hepatic enzyme induction by AEDs in asymptomatic patients was cited by Wall et al. (1992)
393 in a study of 206 adults and children. Of these, serum GGT was elevated in 74.6%, ALP in 29.7%, and ALT
394 in 25.2% (36) . Of 242 patients administered AEDs, 40 exhibited high levels of serum GGT and nearly all
395 cases indicated hepatic microsomal enzyme induction as measured by antipyrine half-life, leading Hirayanagi et

21 V. CONCLUSIONS

396 al. (1991) to conclude that, in these patients, elevated serum GGT did not necessarily indicate hepatocellular
397 damage (37) . Similar studies with AED therapy indicated ALT elevations up to three times and AST elevations
398 up to two times the upper limit of normal in more than onequarter of the patient population. These were not
399 considered clinically significant but instead were attributed to enzyme induction. Liver biopsies in similar patients
400 undergoing long-term antiepileptic therapy showed no signs of chronic liver damage (35) .

401 20 Adverse Effects

402 As shown in tables (14 and 15) carbamazepine was responsible for the incidence of adverse effects in 80% of
403 patients in retrospective group and 50% of patients in prospective group, and the number of types of these effects
404 occurred in retrospective group was higher than that types occurred in prospective group. This may be probably
405 due to long duration of treatment in retrospective group (i.e. more than six months versus only three months
406 in prospective group). The common adverse effects documented in both groups were headache, blurred vision,
407 fatigue, and loss of appetite. Most of the patients (8 out of 11) in both groups with carbamazepine level in toxic
408 range showed these adverse effects. Neurological adverse effects are common with high doses of carbamazepine,
409 particularly when the plasma concentration exceeds 9 µg/ml (38) .

410 In retrospective group treated with valproic acid mono-therapy, 75% of patients had adverse effects, whereas,
411 60% of patients in prospective group receiving valproic acid showed adverse effects and the number of types
412 of these effects occurred in retrospective group was higher than the types that occurred in prospective group.
413 Again, the duration of treatment may be responsible for this. The most common adverse effects documented
414 in both groups were headache, fatigue, ataxia, and loss of appetite. Only 4 out of 7 patients in this study
415 with valproic acid level in toxic range showed these adverse effect. CNS adverse effects are more common when
416 plasma concentrations of valproic acid exceed 100 µg/ml although some patients may have plasma concentrations
417 of 150 µg/ml or higher without adverse effects (38) . 80% of patients were suffered from adverse effects after
418 three months of treatment with topiramate mono-therapy; however, it was associated with the incidence of the
419 lower number of adverse effects when compared with other treatment options. The most common adverse effects
420 documented were CNS-related effects including headache, fatigue, and loss of appetite. Whereas combination
421 therapy was responsible for the incidence of a wide range of adverse effects in 85% of patients in retrospective
422 group that received combined AEDs. This is due to the fact that when seizures are poorly controlled; AEDs
423 are used in combination, leading to potential pharmacokinetic or pharmacodynamic interactions, causing more
424 adverse effects than might occur when the AED is taken as mono-therapy. Combination therapy can result in
425 additive or sometimes supra-additive adverse effects (39) . The most common adverse effects documented were
426 headache, fatigue, loss of appetite, blurred vision, and weight loss.

427 However, these adverse effects were considered to be mild to moderate in nature and did not require
428 discontinuation of the medications and the patients can tolerate them. Ripple T. et al. (2011) reported that
429 carbamazepine had more adverse effects than newer AEDs, and there were adverse events that occurred more
430 commonly with valproic acid. However, these effects did not significantly increase the risk of withdrawals (15)
431 . Also, like what was reported by other researchers, the results from this study showed that there was no
432 relationship between serum levels of carbamazepine or valproic acid and their adverse effects as these effects
433 occurred over a wide range of serum drug level (40)(41)(42) .

434 A few number of patients in this study did not show any adverse effects after treatment especially in children.
435 There is a fact that some adverse effects, such as diplopia or dizziness, may be difficult in children or nonverbal
436 children and adults who are unable to describe their symptoms to caregivers (43) ; in addition, some adverse
437 effects (like weight change) are insidious because of the slow and incremental increase in severity or impact over
438 time (39) .

439 21 V. Conclusions

440 ? Carbamazepine was more effective in mono-therapy in retrospective groups than other treatment options;
441 whereas, valproic acid in prospective groups was slightly more effective than carbamazepine in controlling seizures.
442 ? Mono-therapy with AED should always be attempted first in treatment-naïve patients as the advantages include
443 excellent control of seizure, fewer adverse drug reactions, easier administration and decreased cost, while the
444 combination therapy was associated with a poorer seizure control and higher incidence of adverse drug reactions.
445 ? Poor correlation was found between the serum concentration of carbamazepine and valproic acid and their
446 therapeutic effects; therefore, TDM of both drugs will be useful only when individuals are nonresponsive to
447 treatment or vulnerable to adverse reactions with standard doses. ? AEDs significantly increase levels of liver
448 enzymes activity; however, these alterations are mostly mild and clinically insignificant and do not justify routine
449 testing. ? AEDs in this study have been shown to be well tolerated with mild to moderate adverse effects in
450 nature. However, no relationship between serum levels of carbamazepine or valproic acid and their adverse effects
451 was observed as these effects occurred over a wide range of serum drug level. ??———— ??————

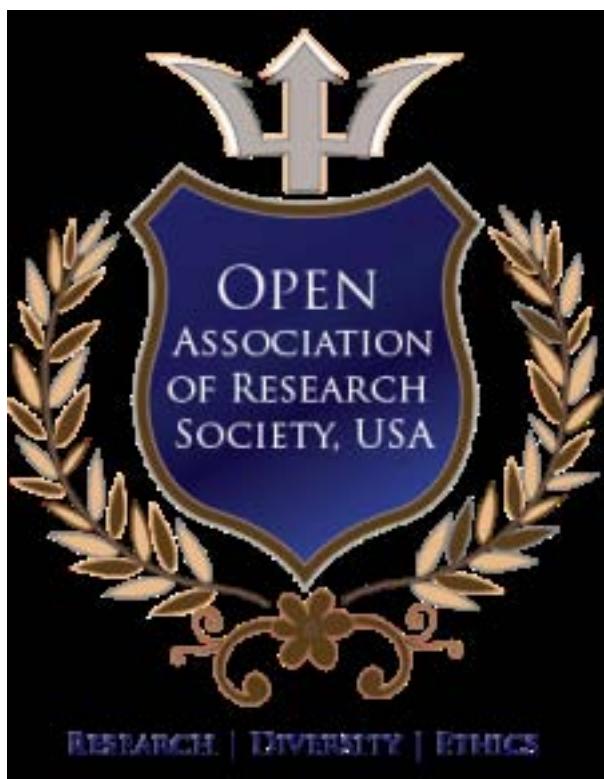
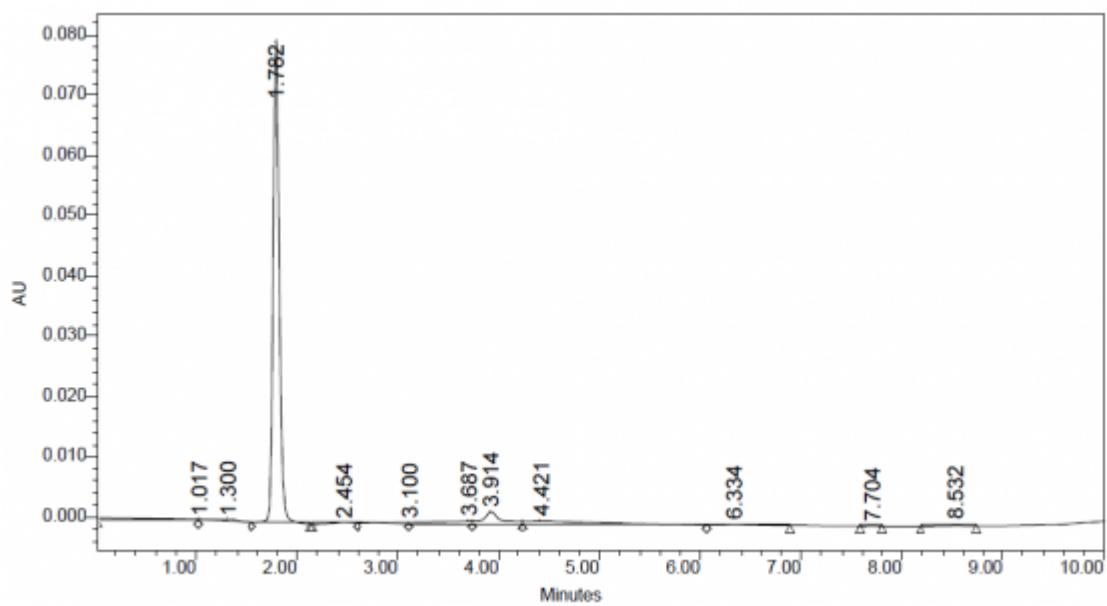
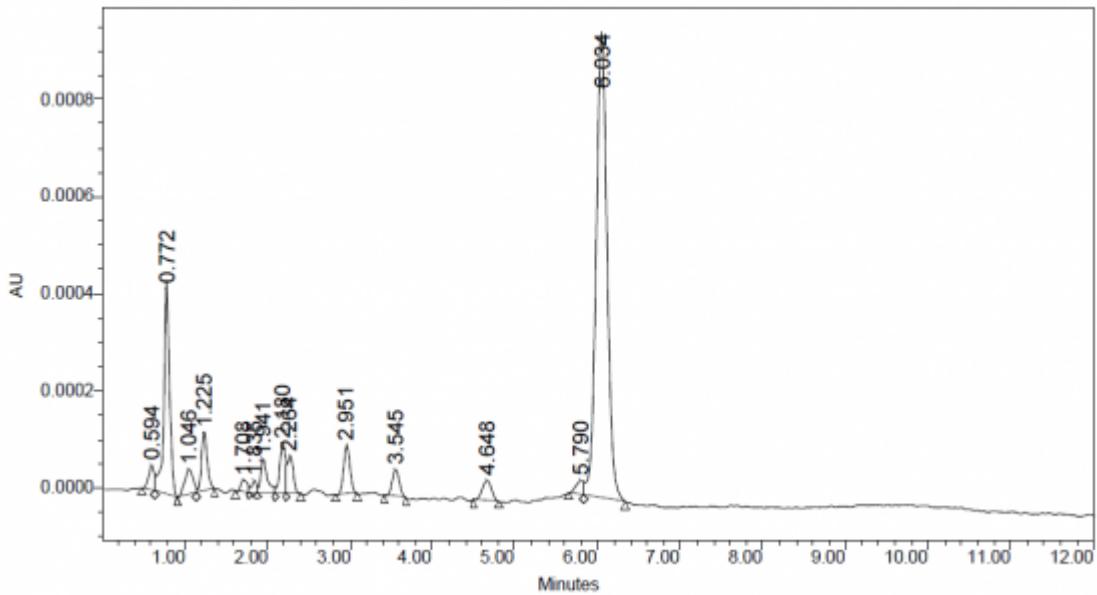




Figure 1:

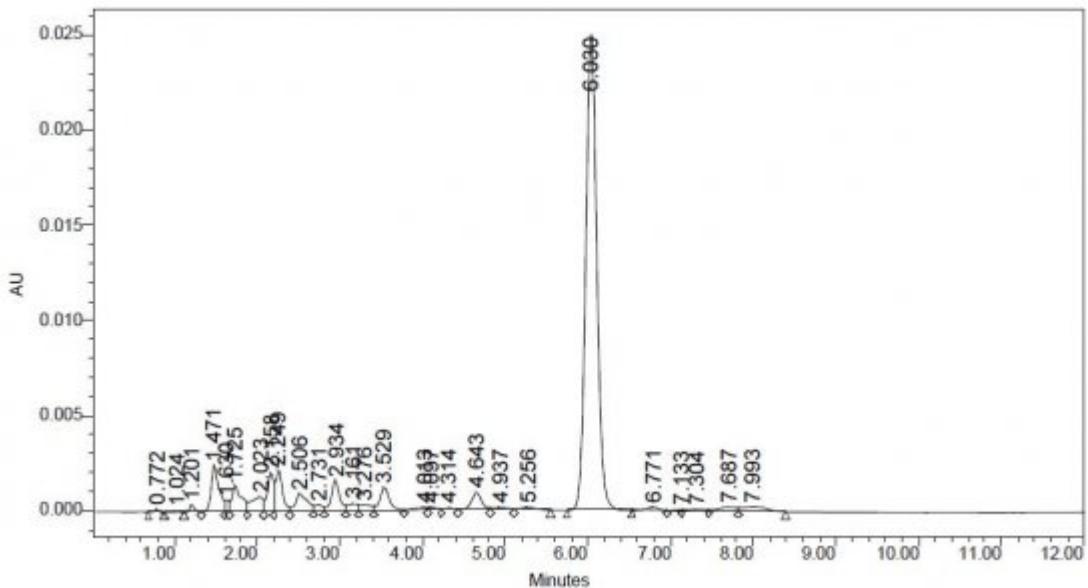

2249

Figure 2: 2 24 Table 9 :

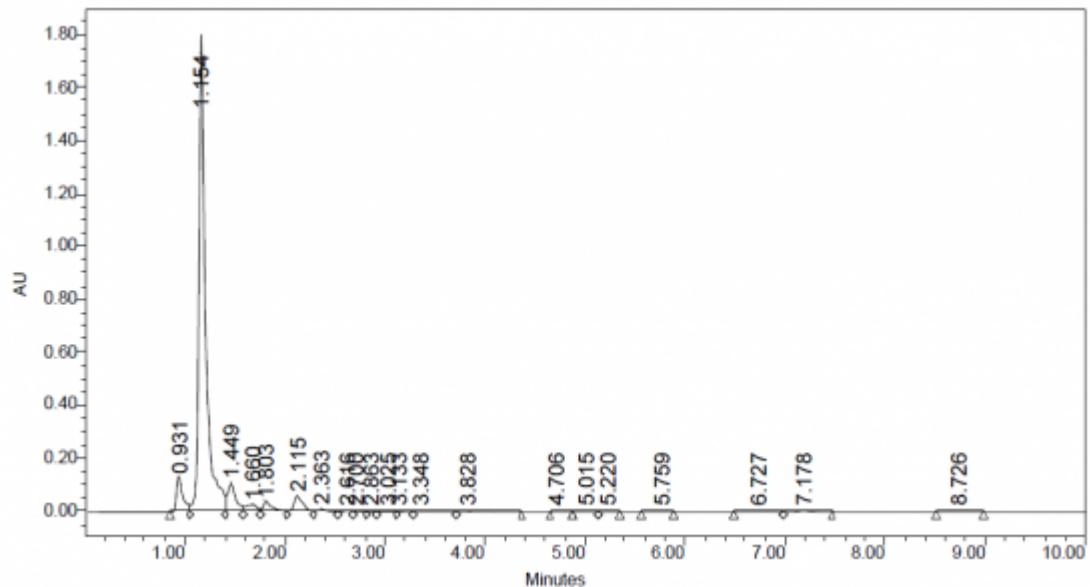

11

Figure 3: Table 11 :

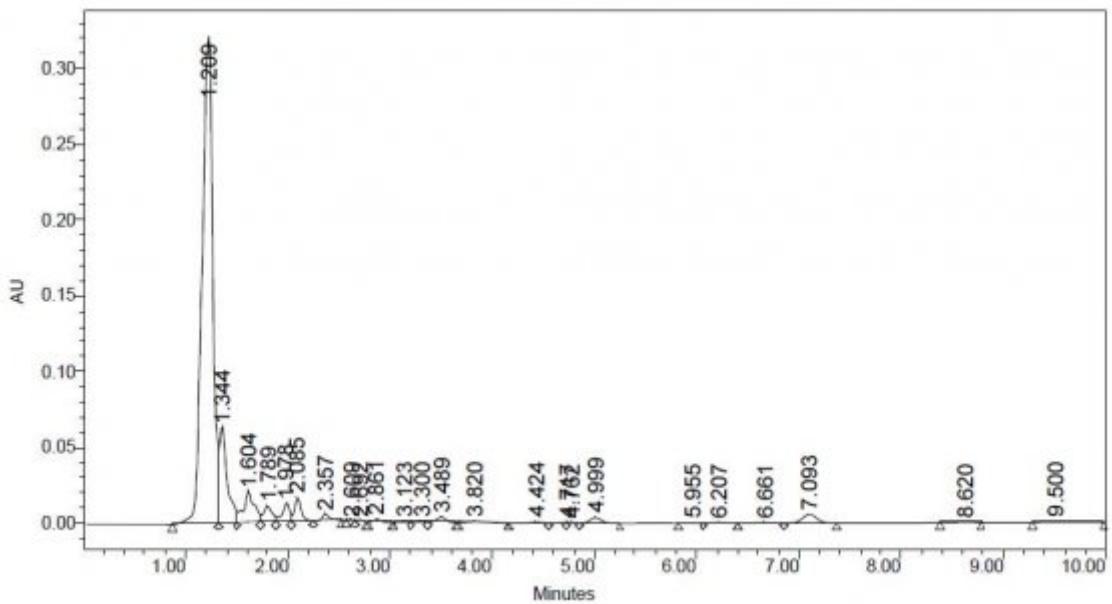

12

Figure 4: Table 12 :

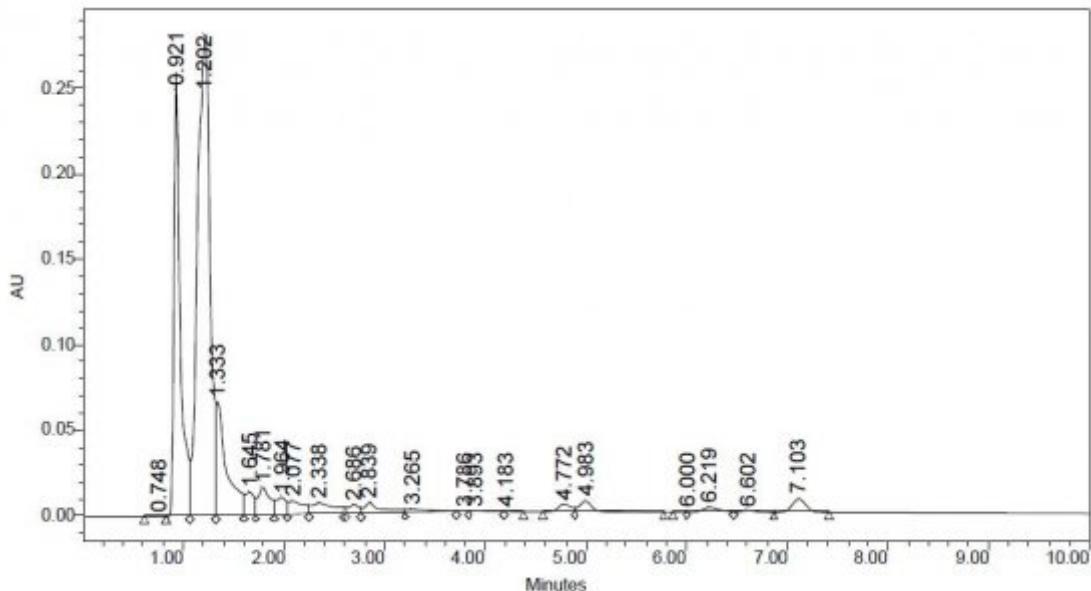

13

Figure 5: Table 13 :

1

Figure 6: Figure 1 :

3

Figure 7: Figure 3 :

4. Bauer, L.A(2008) Applied Clinical Pharmacokinetics. 2nd ed. McGraw Hill, USA. 3-51.

ILAE Commission on Therapeutic Strategies.
Epilepsia; (49): 1239-1276.

ear 2012 ear 2012
Y
Medical Research Volume XII
Issue VIII Version I
Global Journal of

[Note: YEach value represents the mean \pm standard error of mean. * $P \leq 0.05$ significant difference from baseline values. a $P \leq 0.05$ significant difference from healthy subjects values. b $P \leq 0.05$ significant difference from healthy subjects values.]

Figure 8:

7

Number of Prospective groups patients	SERUM ALT (U/L)		% change
	Baseline	After 3 months	
-	-	-	-

Figure 9: Table 7 :

Healthy subjects	20	7.00	±	—
		0.51		
Carbamazepine	10	6.70	±	12.40 ± 85.07%
		1.25		1.57 *a
Valproic acid	10	12.30	±	14.50 ± 17.88%
		1.11 b		2.05 a

Each value represents the mean ± standard error of mean.

* P < 0.05 significant difference from baseline values.

a P < 0.05 significant difference from healthy subjects values.

b P < 0.05 significant difference from healthy subjects values.

Retrospective groups	Number of patient	SERUM AST (U/L)		
		Baseline	After 3 months	% change

Figure 10: Table 8 :

454 ?? ?? ?? 1 (5%)
 455) Diplopia 1 (5%) 1 (10%) 2 (10%) 1 (5%) Ataxia 12 (60%) 7 (70%) 6 (30%) 14 (70%) Headache 2 (10%) 1 (10%)
 456 _____Chest pain ?? ?? ?? _____ Parasthesia Table ??4
 457 : Adverse effects in retrospective groups after three months of treatment. The data were expressed as number
 458 (n) and percentage (%).

459 .1 (15%) -

460 Table ??5 : Adverse effects in prospective groups after three months of treatment. The data were expressed as
 461 number (n) and percentage (%).

462 [Pharmacotherapy and Hill] , Principles Pharmacotherapy , Usa Hill . p. .

463 [Acta Neurol Scand] , *Acta Neurol Scand* 117 p. .

464 [Iranian Journal of Basic Medical Sciences Autumn] , *Iranian Journal of Basic Medical Sciences Autumn*

465 [Psychopharmacol Bull] , *Psychopharmacol Bull* 37 (Supplement 2) p. .

466 [Semiological seizure classification] , *Semiological seizure classification* 39 p. . (Epilepsia)

467 [Luders et al. ()] , H Luders , J Acharya , Baumgartner . 1998.

468 [Barbara et al. ()] , Marie A Barbara , G Terry , L Patrick , M . 2008.

469 [Kimberly et al. ()] , A P Kimberly , S P Jay , A M Tracey . 2009.

470 [Pastalos ()] 'A comparative pharmacokinetic study of conventional and chewable carbamazepine in epileptic
 471 patients'. P N Pastalos . *Br J Clin Pharmacol* 1990. 29 p. .

472 [Jannuzzi et al. ()] 'A multicenter randomized controlled trial on the clinical impact of therapeutic drug
 473 monitoring in patients with newly diagnosed epilepsy'. G Jannuzzi , P Cian , C Fattore , G Gatti , A
 474 Bartoli , F Monaco , E Perucca . *Epilepsia* 2000. (41) p. .

475 [Cramer et al. ()] 'Adverse effects of antiepileptic drugs: a brief overview of important issues'. Joyce A Cramer ,
 476 Scott Mintzer , James Wheless , Richard H Mattson . *Expert Rev. Neurother* 2010. 10 (6) p. .

477 [Ripple et al. ()] 'Agency for healthcare research and quality. Chapters available at:
 478 www.effectivehealthcare.ahrq.gov'. T Ripple , M Jennifer , J Olivia . EHC082-EF. *J Nepal Med Assoc*
 479 December (2011. 2008. AHRQ Publication No. 47 (11) p. . (Therapeutic drug monitoring of antiepileptic
 480 drugs)

481 [Mattson (ed.) ()] *Antiepileptic drug monotherapy in adults: Selection and use in new-onset epilepsy*, R H
 482 Mattson . Levy RH., Mattson RH., Meldrum BS. (ed.) 2008.

483 [Antiepileptic Drugs] *Antiepileptic Drugs*, (Philadelphia, PA) Lippincott Williams & Wilkins. p. . (5th ed)

484 [Patsalos et al. ()] 'Antiepileptic drugs-best practice guidelines for therapeutic drug monitoring: A position paper
 485 by the subcommission on therapeutic drug monitoring, 5. Pokrajac M'. P N Patsalos , D J Berry , Bfd
 486 Bourgeois . *Pharmacokinetics-handbook*, (Belgrade) 2008. 2008. (3rd ed. Biro Graf)

487 [Engel ()] 'Classification of the international league against epilepsy: Time for reappraisal'. J Engel . *Epilepsia*
 488 1998. 39 p. .

489 [Hussein et al. (2010)] 'Correlation between serum level of antiepileptic drugs and their side effects'. Abbashar
 490 Hussein , Amira Abdulgalil , Faroug Omer . *Oman Medical Journal* 2010. January. 25 (1) p. .

491 [Haina et al. (2009)] 'Determination of carbamazepine in human serum by RP-HPLC'. Z Haina , Z Jinchao , Y
 492 Huizhi , Jixue Baiquan Ch , Li . *Modern Pharmaceutical Research* 2009. Oct. 2 (2) p. .

493 [Deutsch et al. ()] 'Differential but infrequent alterations of hepatic enzyme levels and thyroid hormone levels
 494 by anticonvulsant drugs'. J Deutsch , G Fritsch , J Golles , H J Semmelrock . *Arch Neurol* Verma NP.,
 495 Haidukewych D. (ed.) 1986. 1994. Apr. 51 (4) p. . (Effects of anticonvulsive drugs on the 33)

496 [Anju et al. (2005)] 'Effect of carbamazepine on serum lipids and liver function tests'. A Anju , K Manish , M
 497 M A Faridi . *Indian Pediatrics* 2005. September. 42 (17) p. .

498 [Misra et al. ()] 'Effect of carbamazepine therapy on vitamin D and parathormone in epileptic children'. A Misra
 499 , A Aggarwal , O Singh , S Sharma . *Pediatr Neurol* 2010. (43) p. .

500 [Kwan and Brodie ()] 'Effectiveness of first antiepileptic drug'. P Kwan , M J Brodie . *Epilepsia* 2001. 42 p. .

501 [French ()] 'Efficacy and tolerability of the new antiepileptic drugs. II: Treatment of refractory epilepsy: report
 502 of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the
 503 American Academy of Neurology and the'. J A French . *American Epilepsy Society* 2004. p. 1261. (Neurology)

504 [Limdi and Hyde ()] 'Evaluation of abnormal liver function tests'. J K Limdi , G M Hyde . *Postgrad Med J* 2003.
 505 79 p. .

506 [Imad and Thanoon (1992)] *Evaluation of carbamazepine therapeutic monitoring. A thesis for master of science*
 507 *degree, college of medicine*, A-J Imad , Thanoon . September (1992. (university of Mosul)

508 [Garg et al. ()] S K Garg , M C Gupta , S S Handu , V K Bhargava . *Therapeutic drug monitoring of antiepileptic*,
509 2000.

510 [Goldman and Ausiello ()] L Goldman , D Ausiello . *Cecil medicine*, (Saunders, USA) 2008. 426. (23rd ed)

511 [Mauricio et al. ()] 'Hepatic enzymes' level during chronic use of anticonvulsant drugs'. H Mauricio , O H Carlos
512 , P Paulo , B B Arlete , C Arthur . *Arg Neuropsiquiatr* 1995. 53 (4) p. .

513 [Besag and Berry ()] 'Interactions between antiepileptic and antipsychotic drugs'. F M Besag , D Berry . *Drug
514 Safety* 2006.

515 [Kowalik et al. ()] A Kowalik , W Rimpau , H Adam . *on behalf of the TOPMAT-EPY-405 investigators*, 2008.

516 [Wall et al. ()] 'Liver function tests in persons receiving anticonvulsant medications'. M Wall , J Baird-Lambert
517 , N Buchanan , G Farrell . *Seizure* 1992. (1) p. .

518 [Tan et al. ()] 'Longterm antiepileptic drug therapy contributes to the acceleration of atherosclerosis'. T Y Tan
519 , C H Lu , H Y Chuang . *Epilepsia* 2009. 50 p. .

520 [Brodie and French ()] 'Management of epilepsy in adolescents and adults'. M J Brodie , J A French . *Lancet*
521 2000. 356 p. .

522 [Mohsen et al. ()] F Mohsen , H Amir , V Naser , H Mohammad , R Mahmood , M Naghme , A Tamara , Sh
523 . *Therapeutic Drug Monitoring of Valproic Acid in Patients with Monotherapy at Steady State*, 2009.

524 [Novel Treatment of Epilepsy Humberto Foyaca Sibat ()] 'Novel Treatment of Epilepsy'. *Humberto Foyaca Sibat*
525 2011. p. . (1st ed. InTech publishing)

526 [Optimizing antiepileptic treatment JCOM (October)] 'Optimizing antiepileptic treatment'. *JCOM* October.

527 [Willmore et al. (ed.) ()] *Pediatric Epilepsy: Diagnosis and Therapy*, L J Willmore , J W Wheless , J M Pellock
528 . Pellock JM., Bourgeois BFD., Dodson WE., Nordli DR. Jr., Sankar R. (ed.) 2008. LLC, NY, USA: Demos
529 Medical Publishing. p. . (Adverse effects of antiepileptic drugs)

530 [Devane ()] *Pharmacokinetics, drug interactions and tolerability of valproic acid*, C L Devane . 2003.

531 [Dipiro et al. ()] *Pharmacotherapy, A pathophysiologic approach*, J T Dipiro , Robert , R L Talbert . 2011. (8th
532 ed. McGraw Hill, USA. (section6): chapter 65)

533 [Stephen and Brodie ()] 'Seizure freedom with more than one antiepileptic drug'. L J Stephen , M J Brodie .
534 *Seizure* 2002. (11) p. .

535 [David and Amacher ()] 'Serum transaminase elevations as indicators of hepatic injury'. E David , Amacher .
536 *Regulatory Toxicology And Pharmacology* 1998. 27 p. .

537 [Green and Flamm ()] 'Technical review on the evaluation of liver chemistry tests'. Richard M Green , Steven
538 Flamm . *Gastroenterology* 2002. (123) p. .

539 [Hirayanagi and Fujii ()] 'The significance of serum g-glutamyl transpeptidase (g-GTP) elevation caused by
540 antiepileptic drug(s)'. N Hirayanagi , E Fujii , TeshirogiT . *Nippon Ika Daigaku Zasshi* 1991. 58 p. . (Using
541 the antipyrine metabolic capacity as a parameter of microsomal enzyme activity)

542 [Kiran et al. ()] 'Therapeutic drug monitoring for antiepileptic drugs using HPLC: An experience at a tertiary
543 care hospital in India'. D Kiran , B Piyush , Veena Singh , G Rakesh , D Ghalaut , PS . *Neurology Asia* 2010.
544 15 (3) p. .

545 [Subash et al. ()] 'Therapeutic drug monitoring of valproic acid in pediatric epileptic patients'. V K Subash , Y
546 Radhika , G Vijayakumar , Ravikumar Ch . *International Bulletin of Drug Research* 2011. (1) p. .

547 [Tomson et al. ()] 'Therapeutic monitoring of antiepileptic drugs for epilepsy'. T Tomson , M Dahl , E Kimland
548 . *Cochrane Database Syst Rev* 2007a. 1 p. D002216.