

1 Hypolipidemic Effects of Diaceto-Dipropyl-Disulphide on Alloxan 2 Diabetic Rats

3 Dr. Veena G. Raiker¹ and Vickram²

4 1

5 Received: 14 March 2012 Accepted: 5 April 2012 Published: 19 April 2012

6

7 **Abstract**

8 Dyslipidemia is one of the major derrangement observed in type 2 diabetes mellitus which
9 further leads to various life threatening complications. Certain herbal disulphides/thiols are
10 known to cater a solution towards regulation of this diabetes mellitus induced dyslipidemia. It
11 is known that Diallyl Disulphide (DADS), a component of garlic extract possess hypolipidemic
12 activities and may have therapeutic applications, but the metabolite of DADS, acrolein is
13 toxic and poses certain disadvantages. Certain modified /altered disulphides, shown to possess
14 significant hypolipidemic action with lesser toxic effects. In the present study, we tried to
15 establish the hypolipidemic activities of Diaceto-Dipropyl-Disulphide (DADPDS), a synthetic
16 modified disulphide in alloxan diabetic rats. The results show a significant decrease in plasma
17 cholesterol (60

18

19 **Index terms**— Diaceto Dipropyl Disulphide, hypolipidemic, alloxan diabetes.

20 **1 Introduction**

21 diabetes mellitus is a systemic metabolic disease characterized by hyperglycemia, hyperlipidemia, hyper-
22 aminoacidemia and hypoinsulinemia that results from decrease in both insulin secretion and insulin action (1).
23 Dyslipidemia, a complication associated with diabetes mellitus leads to profound alteration in the concentration
24 and composition of lipid profile in the body which lead to the increase in the lipid concentration in the liver
25 cells (2) ??3)(4). It is evident that during diabetes the level of total lipids, triacylglycerol and total cholesterol
26 increases both in plasma and tissue significantly (2). There are many herbal products which are proved to
27 have the beneficial effect in significantly lowering the lipid levels during diabetes. Garlic's sulphur compounds
28 specifically, DADS (Diallyl Disulphide) is known to inhibit the lipogenic enzymes and reduces cholesterol and
29 triacylglycerol synthesis (5)(6)(7)(8). Apart from these known beneficial effects of garlic and its products, there
30 are reports that misuse or overuse of these may produce (9). Acrolein, the possible metabolite of DADS is thought
31 to be responsible for its toxic effects (10,11). It was thought that unsaturation of DADS may be responsible
32 for its toxic effects by giving rise to toxic product, acrolein and the hypolipidemic activity lies in its disulphide
33 nature. Few attempts were made in the past to prepare and use certain synthetic disulphides which mimic the
34 beneficial effects of DADS but devoid of any toxic effects (12). In the present study an attempt was made to
35 assess the hypolipidemic effect of Diaceto-dipropyl-disulphide (DADPDS), a synthetic, modified disulphide in
36 alloxan diabetic rats.

37 **2 II.**

38 **3 Materials and Methods**

39 All chemicals employed in the present study were of Analar grade (A.R). Alloxan was procured from Loba chemie
40 and thiopropanol (3-mercaptopropanol) from Sigma-Aldrich Company USA. This thiopropanol was used for
41 the preparation of Diaceto-dipropyldisulphide (DADPDS).

12 STATISTICAL EVALUATION

4 III.

5 Synthesis of Dadpds

5 grams of thiopropanol was treated with 1N iodine in potassium iodide solution drop by drop till a light yellow colour persists and the contents were dissolved in 100 ml diethyl ether. To this 10 ml ice cold acetyl chloride was added and mixed. The above mixture was kept at 10-15? C for 3 hours. The separated ether layer was washed twice with 25 ml portions of ice cold saturated sodium chloride solution. Later washed 4 times with 0.1N sodium hydroxide solution in saturated sodium chloride then washed once with 10 ml 0.1N sodium thiosulphate in saturated sodium chloride and finally washed once with 10 ml glass distilled water. Later the ether layer was clarified with anhydrous sodium sulphate and dried at 50-55?C for 30 minutes. The residue was Diaceto-Dipropyl-Disulphide. This was employed to feed rats in the present study.

6 IV.

7 Animals

Adult male albino rats weighing 150-200g randomly selected from Central animal house of the Basaveshwara Medical College, Chitradurga were employed for the present study. A commercial standard pellet diet (Amruth Rat Feed supplied by Pranav Agro D industries, Pune, India) and water was made available to animals ad libitum. Animals were maintained in a controlled environment (25±5 C?) with light-dark cycles in an experimental room simulating natural conditions. All the animals are cared according to the rules and regulations of the CPCS (Committee for the purpose of Control and Experiments on Animals), New Delhi and IAEC (Institutional Animal Ethical Committee) of Basaveshwara Medical College, Chitradurga.

V.

8 Induction of Diabetes Mellitus

The animals were fasted overnight and diabetes was induced by a single intraperitoneal injection of freshly prepared alloxan monohydrate (150 mg/kg body weight) (13,14) in sterile normal saline . The diabetes was confirmed by examining urine sample for sugar by using standard urine glucose strips (Qualigens). The rats whose urine showed a positive test for glucose for 3 consecutive days were labelled as diabetic. The treatment with DADPDS was started on 5 th day after alloxan injection and was considered as first day of treatment.

9 VI.

10 Grouping

The rats were divided into 3 groups comprising 6 rats in each group as follows.

a) Group 1 erved as normal rats maintained on normal lab diet and water ad libitum and were received 30ml of normal saline per kg body weight daily for 30 days. b) Group 2 as diabetic control rats maintained on normal lab diet and water ad libitum and were received 30ml/kg body weight normal saline daily for 30 days.

11 c) Group 3

Served as DADPDS treated diabetic rats. The group consists of alloxan diabetic rats, maintained on normal lab diet and water ad libitum, and was received 100mg/kg body weight of DADPDS as 30ml suspension daily for 30days.

After the stipulated period, the rats of group 1, 2 and 3 were sacrificed by anaesthetizing. Blood samples were collected using heparin as an anticoagulant. Liver tissue was procured, blotted smoothly to remove blood stains and kept individually in clean dry glass beaker with aluminium foil cover at 0-4? C for further usage. Blood samples were centrifuged at 3000 rpm for 5 mins, the separated plasma was employed for estimation of lipid parameters -total cholesterol (15) and triacylglycerol (16). A part of the liver tissue was homogenized with 9 parts of chloroform-methanol mixture (1:1, v/v) for 5 mins using Potter Elvejhams tissue homogenizer and the mixture was centrifuged at 3000 rpm for 5 minutes. The supernatant was employed for the estimation of lipid parameters -total cholesterol (15) and triacylglycerol (16).

Another part of liver was homogenised with 9 parts of 5% cold TCA for 5 mins, and extract was employed for estimation of thiobarbituric acid reactive substances (TBARS) (17). A third part of liver tissue was homogenized with 9 parts of cold phosphate buffer (pH -7.4) for 5 mins and centrifuged at 3000 rpm for 5 minutes and the supernatant was used for the estimation of total thiol groups (18).

VII.

12 Statistical Evaluation

Results obtained in the present study are expressed as their Mean ± SD. The data entry was carried out using Microsoft Office Excel and statistically analysed and probability (p value) was calculated by students't' test.

94 13 VIII.

95 14 Results

96 It is seen from the table and from the graphs given that there is a significant raise in plasma cholesterol ($p<0.001$),
97 plasma triacylglycerol ($p<0.001$), liver tissue cholesterol($p<0.001$), liver tissue triacylglycerol ($p<0.001$), and liver
98 TBARS levels($p<0.001$) in group 2 as compared to group 1 whereas levels of liver tissue total thiol group were
99 significantly lowered($p<0.05$) in group 2 as compared to group 1. Further it is evident from the table and graphs
100 that there is a significant decrease in plasma cholesterol ($p<0.001$), plasma triacylglycerol ($p<0.001$), liver tissue
101 cholesterol ($p<0.001$), liver tissue triacylglycerol ($p<0.001$) and in liver tissue TBARS levels ($p<0.001$) in group
102 3 as compared to group 2 , whereas , a moderate raise in liver tissue total thiol groups observed in group -3 rats
103 compared to group-2 rats (refer table -1, graphs 1-6).

104 15 IX.

105 16 Discussion

106 Dyslipidemia which is a common abnormality associated with diabetes mellitus may be resulting from insulin
107 deficiency (19) , a similar picture may be seen in alloxan diabetic rats as it is known that alloxan induce
108 profound β -cell damage of islets of Langerhans leading to insulin deficiency (20,21). Earlier it is shown by C .S.
109 Yadav (2)that in alloxan diabetic rat , the lipid levels both in liver and plasma rise by about 48 -55% . The
110 results depicted in table-1 agrees with this and there is an increase of 58% and 18% respectively in plasma total
111 cholesterol and triacylglycerols and also an increase of Many herbal extracts have been employed as lipid lowering
112 substances since long time. Garlic (*Allium sativum*) and its extracts are the best known for their hypolipidemic
113 actions (5). The hypolipidemic effects of garlic has been attributed to its principle organosulphur compound,
114 Diallyl disulphide (DADS) which is known to inhibit HMG CoA reductase and possibly reduce plasma/tissue
115 cholesterol levels (22)(23). But the over use of garlic may induce many toxic effects (10) due to acrolein a possible
116 metabolite of DADS.

117 In order to overcome this harmful effect of DADS certain synthetic disulphides with lesser to moderate
118 hypolipidemic benefits been employed by earlier workers (24). DADPDS, a low molecular weight acetylated
119 disulphide been employed for its hypolipidemic actions in alloxan diabetic rats in the present study. A 100 mg/kg
120 body weight dosage of this disulphide shows a significant hypolipidemic effect ($p<0.001$) and hypocholesterolemic
121 ($p<0.001$) effect (refer table -1 and graphs 1-6). DADPDS is a disulphide, similar to any other disulphide,
122 undergoes reduction to its component thiols by utilizing NADPH (25) as shown below:

123 17 R-S-S-R + 2NADPH 2R-SH + 2NADP

124 Hence decreases cellular NADPH levels thereby causing a decrease in lipid and cholesterol synthesis as it is known
125 that HMG CoA reductase, the key enzyme of cholesterol biosynthesis as well as glycerol - β -dehydrogenase requires
126 NADPH , thus a reduction in the cellular NADPH could decrease cholesterol as well as triacylglycerol synthesis.
127 Further it is known that DADS is an inhibitor of HMG CoA reductase and decreases the activity of this enzyme
128 hence induces hypocholesterolemia (26).

129 DADPDS, a synthetic disulphide employed in the present study which is similar to DADS, a small molecular
130 weight disulphide may induces hypocholesterolemia in alloxan diabetic rats probably by inhibiting HMG CoA
131 reductase (refer table ??).Thus causing a decrease in plasma as well as liver tissue cholesterol(refer table-1, graph
132 1 & 3).

133 It is also known that many lipogenic enzymes are thiol enzymes (25)and the results of present study given in
134 table 1 shows that in group 3 the total liver tissue thiol groups has significantly raised ($p<0.05$) as compared to
135 group 2.

136 Suggesting that DADPDS improve the cellular thiol group status probably by reducing the free radical levels
137 by acting as a freeradical scavenging agent (refer table ?? , graph 5 & 6).

138 Thus it may be concluded that DADPDS at the dosage employed in the present study has a definite
139 hypolipidemic and hypocholesterolemic action in alloxan diabetes rats. ^{1 2 3 4}

¹© 2012 Global Journals Inc. (US)

²© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US) Hypolipidemic Effects of Diaceto-Dipropyl-Disulphide on Alloxan Diabetic Rats

³© 2012 Global Journals Inc. (US) Hypolipidemic Effects of Diaceto-Dipropyl-Disulphide on Alloxan Diabetic Rats

⁴June 2012

1

Figure 1: 1 .

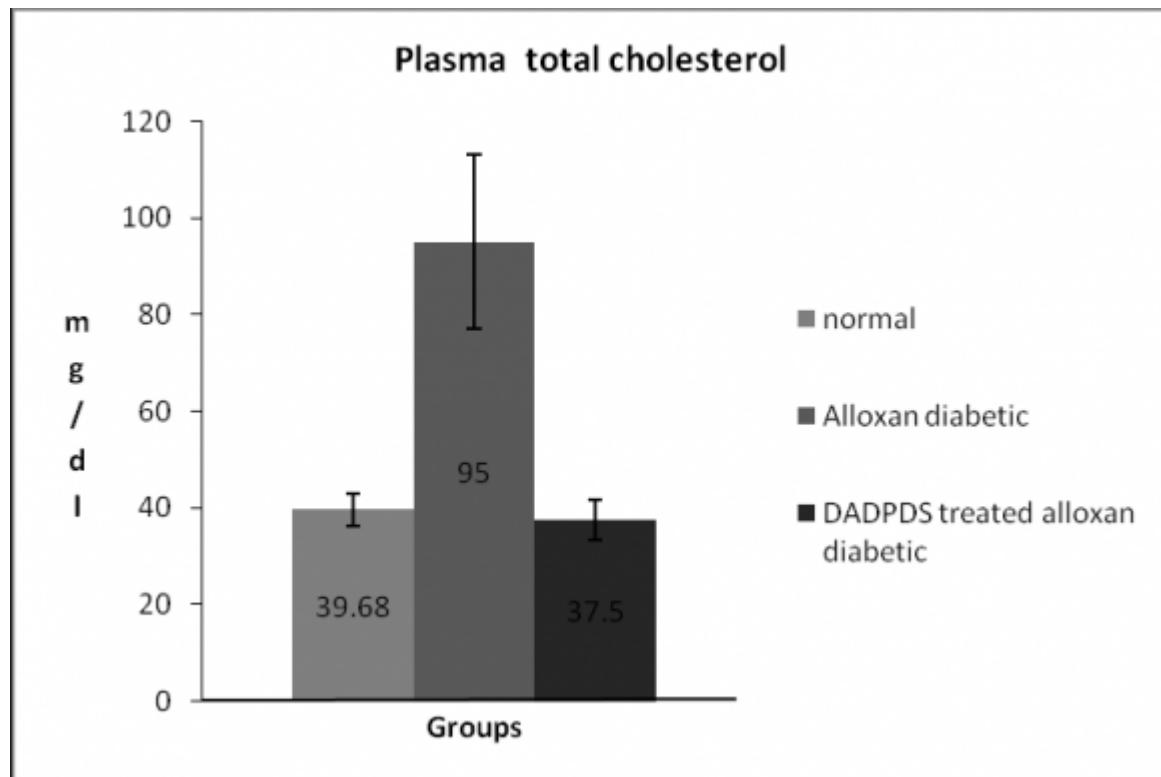


Figure 2:

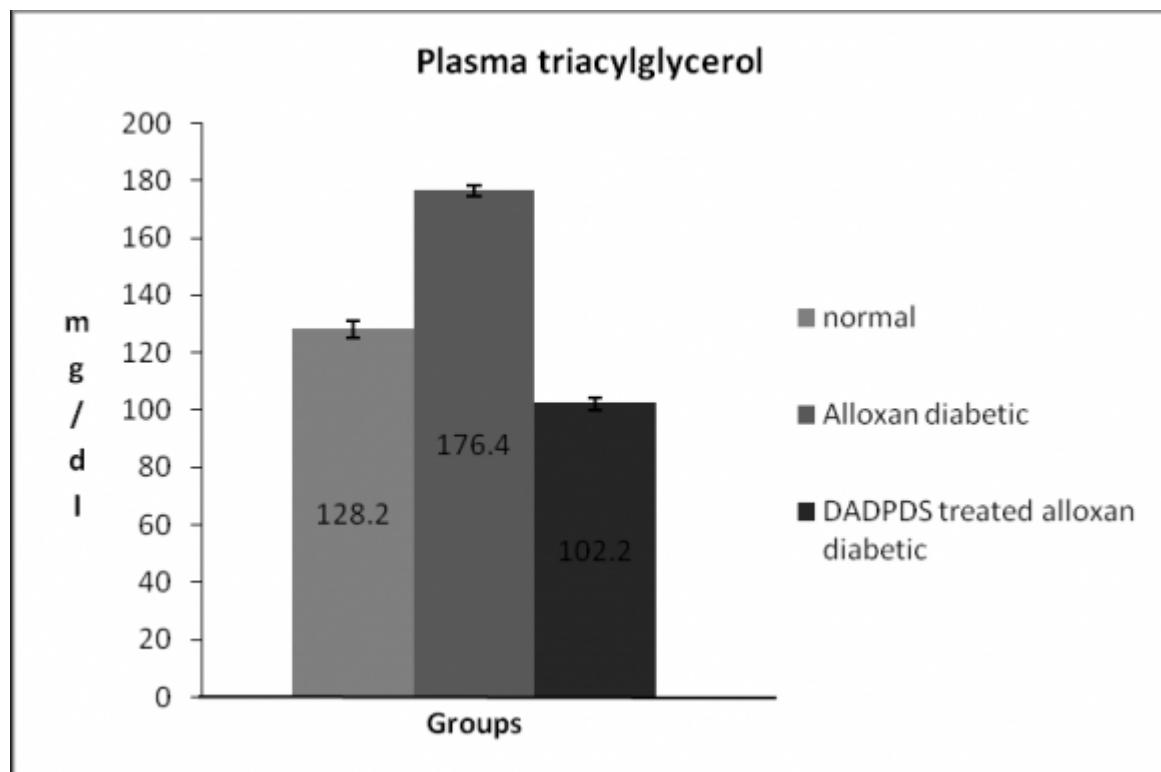


Figure 3:

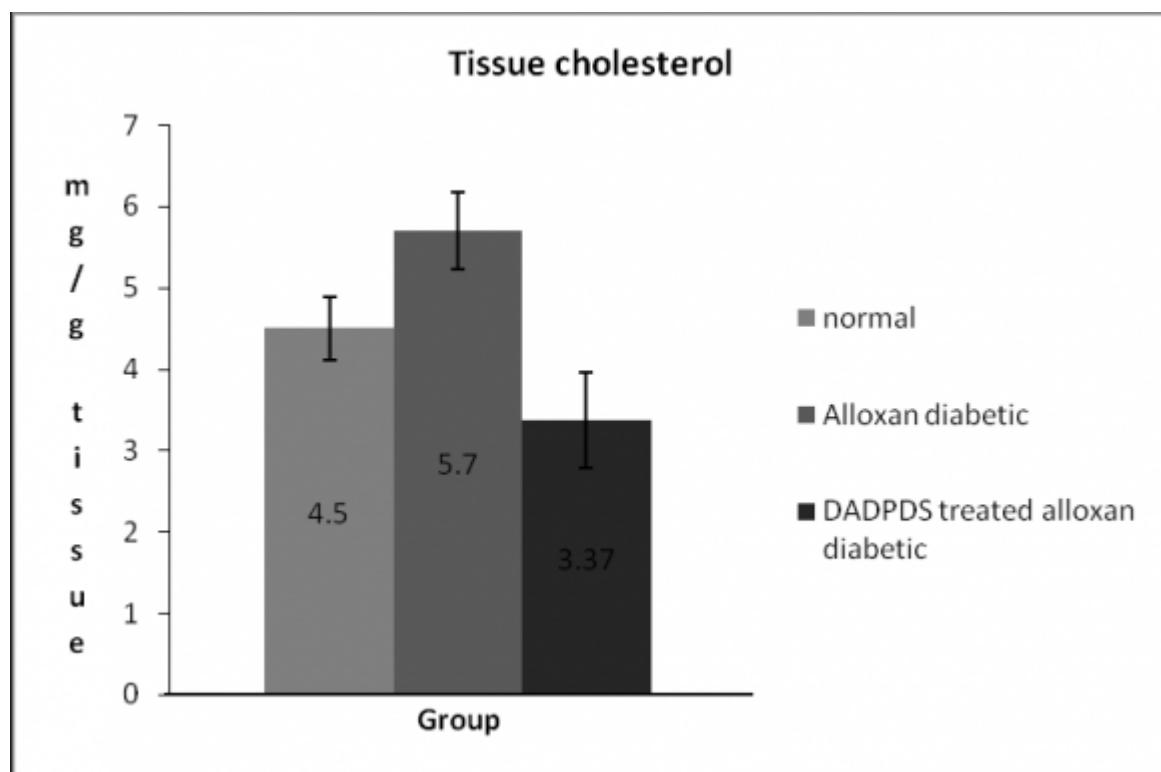


Figure 4:

1

Groups	TOTAL CHOLESTEROL		TRIACYLGLYCEROL		Liver TBARS μmol/MDA/g	Liver total SH GROUP mg/g T
	Plasma mg/dl	Tissue mg/g T	Plasma mg/dl	Tissue mg/g T		
NORMAL RATS	39.68		128.2			0.94
GROUP 1 (n=6)	± 3.40	4.50 2.83	± 0.39	16.64 2.15	4.26 1.26	± 0.11
ALLOXAN DIABETIC RATS GROUP 2 (n=6)	95.0*** 18.10	± 0.48	176.4*** 2.0	26.8*** 2.0	13.84*** 1.40	0.81* 0.06
DADPDS TREATED ALLOXAN DIABETIC RATS GROUP 3 (n=6)					± 1.6	

Figure 5: Table 1 :

140 .1 Global Journal of Medical Research Volume XII Issue V Version I
141 [Biochem. Int] , *Biochem. Int* 15 p. .
142 [Henry et al. ()] , Richard J Henry , Donald C Connan , W James , Winkalman . *Clinical Chemistry -Principles*
143 and Practice 1974. 1974. Harper Row Publishers. p. . (2 nd Edn)
144 [Gilbert and Stewart ()] , H F Gilbert , M L Stewart . *J. Biol Chem* 1981. 256 p. .
145 [Fenwick and Hanley ()] , G Fenwick , A Hanley . *CRC Critical Reviews in Food Science and Nutrition* 1985. 23
146 p. .
147 [Kashinath and Joseph (2009)] 'A Study On Garlic Toxicity'. R T Kashinath , P K Joseph . *Journal of Advance*
148 *Researches in Biological Sciences* Dec.2009. 1 (2) p. .
149 [Imada ()] *Abst. I world Congress on health significance of garlic & garlic constituents*, Osama Imada . 1990.
150 Washington.
151 [Sharma et al. ()] 'Antihyperglycemic, Antihyperlipidemic and Antioxidative potential of prosopis cineraria
152 Bark'. Nidhi Sharma , Veena Garg , Arpita Paul . *Ind Jclin .Biochem* 2010. 25 (2) p. .
153 [Yu-Yanyeh and Liu ()] 'Cholesterol Lowering Effect of Garlic Extracts and Organosulfur copounds: Human and
154 Animal studies'. Lijuan Yu-Yanyeh , Liu . *Journal of nutrition* 2001. p. .
155 [Arky and Kozak ()] 'Clinical correlates of metabolic derrangements of diabetes mellitus'. R A ; G P Arky ,
156 Kozak . *Complications of diabetes mellitus*, (Philadelphia) 1982. W B Saunders. p. .
157 [Henry (ed.) ()] *Clinical diagnosis and management by laboratory methods*, J Henry . saunders WB (ed.) 1984.
158 17 p. 1433.
159 [Varley et al. ()] 'Determination of Blood Cholesterol'. H Varley , . A Gowenloch , M Bell . *Practical Clinical*
160 *Biochemistry* 1991. 1 p. . (5 th edn)
161 [Gebhardlt and Beck ()] 'Differential inhibitory effects of garlic -derived organosulfur compounds on cholesterol
162 biosynthesis in primary rat hepatocytes cultures'. R & Gebhardlt , H Beck . *Lipids* 1996. 31 p. .
163 [Umesh et al. (2004)] 'Effects Of Sodium-orthovanadate and Trigonella foenum-graecum seeds on hepatic and
164 renal lipogenic enzymes and lipid profile during alloxan diabetes??? in'. C S Umesh , K Yadav , Moorthy , Z
165 Najma , Baquer . *J. Bio sci* March 2004. 29.
166 [Kashinath ()] *Hypolipidemic effects of disulphides in rats fed high lipid diet and or ethanol*, R Kashinath . 1993.
167 Bangalore university. (Ph.D thesis)
168 [Qureshi ()] 'Influence of minor plant constituents on porcine hepatic lipid metabolism: impact on serum lipid'.
169 A Qureshi . *Atherosclerosis* 1987. 64 p. .
170 [Qureshi ()] 'Inhibition of cholesterol and fatty acid biosynthesis in liver enzymes and chicken hepatocytes by
171 polar fractions of garlic'. A Qureshi . *Lipids* 1983a. 18 p. .
172 [Colowick ()] 'Joslin's Diabetes Mellitus'. Kaplan Colowick . *Enzymes in Lipid Metabolism in*, 19. 2005. 1957 p.
173 . (14 th Edn B. I Publications)
174 [Nadiger et al. ()] 'Malonyldialdehyde levels in different organs of rat subjected to acute alcohol toxicity'. H A
175 Nadiger , S R Marcus , M Chandrakala , D D Kulkarni . *Ind J clin.Biochem* 1986. 1 p. .
176 [Ashok and Chougale ()] 'Optimization of Alloxan Dose is Essential to Induce Stable Diabetes for prolonged
177 period'. D Ashok , Chougale . *Asian Journal of Biochem* 2007. 296 p. .
178 [Sochor et al. ()] *Regulation of enzymes of glucose metabolism and lipogenesis in diabetic rat liver by thyroid*
179 *hormones*, S Sochor , N Z Baquer , M R Ball , P Mclean . 1987.
180 [Reynolds ()] E F Reynolds . *Martindale The Extra Pharmacopeia. Acrolein. 12322a, 13 th Edition*, (London)
181 1993. Pp 1331. The Pharmaceutical Press.
182 [Ziegler ()] 'Role of reversible oxidationreduction of enzyme thiols-disulfides in metabolic regulation'. D Ziegler
183 . *Ann. Rev .Biochem* 1985. 54 p. 314.
184 [Qureshi ()] 'Suppression of avian hepatic lipid metabolism by solvent extracts of garlic: impact on serum lipids'.
185 A A Qureshi . *J. Nutr* 1983b. 113 p. .
186 [Szkudelski ()] 'The Mechanism of Alloxan and Streptozotocin Action in B cells of the Rat pancreas'. Szkudelski
187 . *physiol .Res* 2001. 50 p. .
188 [Altan ()] 'The pharmacology of diabetic complications'. V M Altan . *Current Medicinal Chemistry* 2003. 10 p. .
189 [Yeh and Yeh ()] Yu- , Yan Yeh , Shaw-Mei Yeh . *Garlic Reduces Plasma Lipids by Inhibiting Hepatic Cholesterol*
190 *and Triacylglycerol synthesis*, 1994. 29 p. .