

1 Covid-19 Infection: Prerequisites for New Areas of Research

2 Iskandar R. Mavlanov¹, ?bdurashid Kh. ?shirmetov², Ziyodulla I. Mavlanov³ and
3 Gavkhar J. Jarylkasimova⁴

4 ¹ Bukhara State Medical Institute

5 *Received: 13 December 2019 Accepted: 2 January 2020 Published: 15 January 2020*

6

7 **Abstract**

8 The pandemic of COVID-19 infection caused by severe acute respiratory syndrome
9 coronavirus (SARS-CoV-2) has posed a significant threat to global health. Now, we have
10 witnessed an unsurpassed increase in the number of clinical trials worldwide. In clinical trials
11 old and new drugs are tested as potential treatments either for their direct anti-viral activity,
12 or for their ability to provide management of respiratory and cardiovascular symptoms and
13 complications, characteristic of COVID-19. Despite the worsening trends of COVID-19, no
14 drugs are validated to have significant efficacy in clinical treatment of COVID-19 patients in
15 large-scale studies. Such a strategy is likely to give rise to a range of safety and efficacy
16 challenges that could be addressed through preliminary pharmaco-genetic research on
17 identification of risk groups for personification of therapy approach. Addressing the
18 personification of drug treatment COVID-19 becomes an urgent need to interpret the
19 conflicting results of clinical trials and establish the apparent efficacy of any particular drug.

20

21 **Index terms**— coronavirus, COVID-19, drugs, toxic and side effects, gene polymorphism, pharmacogenetics,
22 therapy personification.

23 has posed a significant threat to global health. Now, we have witnessed an unsurpassed increase in the
24 number of clinical trials worldwide. In clinical trials old and new drugs are tested as potential treatments either
25 for their direct anti-viral activity, or for their ability to provide management of respiratory and cardiovascular
26 symptoms and complications, characteristic of COVID-19. Despite the worsening trends of COVID-19, no drugs
27 are validated to have significant efficacy in clinical treatment of COVID-19 patients in large-scale studies. Such
28 a strategy is likely to give rise to a range of safety and efficacy challenges that could be addressed through
29 preliminary pharmaco-genetic research on identification of risk groups for personification of therapy approach.
30 Addressing the personification of drug treatment COVID-19 becomes an urgent need to interpret the conflicting
31 results of clinical trials and establish the apparent efficacy of any particular drug.

32 beginning of 2020, the number of publications on the problem of COVID-19 has grown from several tens
33 to several thousand and today it continues to increase [2]. Nevertheless, despite the sharp increase in relevant
34 information and the replenishment of our knowledge with new data about this infection, so far there are much
35 more questions than answers. A comprehensive analysis of the recent contradictory, and sometimes even opposing
36 opinions of scientists on this issue makes a deep understanding of not only the epidemiological process of
37 coronavirus infection, but also the pathophysiological processes associated with the expansion of the virus into the
38 body and, above all, with the response of the organism in the form of an immuno-inflammatory response to viral
39 aggression [3]. And this should be the basis of ongoing developments in the field of drug treatment of COVID-19
40 infection. Currently known mechanisms for the development of pathological processes in coronavirus infection
41 include: 1) multi-tissue expression of ACE2 receptors [4]; 2) a pronounced systemic increase in inflammatory
42 cytokines and mediators; 3) diffuse endotheliitis and 4) impaired iron metabolism homeostasis, leading to oxidative
43 stress and inflammatory response.

44 The SARS-CoV-2 virus was found to enter the host cells through the ACE2 receptor on the surface of cell
45 membranes, where it encounters an innate immune response that inhibits viral replication through expression of

46 interferon (IFN) -stimulated genes (ISGs) and the release of pro-inflammatory cytokines such as IL1b, IL-2, IL-7, TNF-a, GSCF, MCP1, etc. [5]. How coronavirus manages to evade the inhibitory function of ISG has not yet been fully resolved (it is only known that this virus has 8 proteins that can block interferon), but in the future the clinic of seriously ill with COVID-19 indicates an excessive immune response with such a huge amount of cytokines in the tissues that such a condition was described as a "cytokine storm". Moreover, an increase in the concentration of antiinflammatory cytokines such as IL10 and IL4was completely unexpected, which is considered unusual for the acute phase of a viral infection.

53 Since ACE2 is detected in the greatest amount on the surface of the cell membranes of the pulmonary alveoli and blood vessels, apparently, therefore, the main place of aggressive exposure to the SARS-CoV-2 virus is the lungs. However, since this protein is also spread in other organs and systems, in particular, in the blood vessels of the kidneys, intestines, liver, heart, the developing pathological process leads in severe cases today convincingly indicates that humanity has faced a serious threat associated with the high prevalence of coronavirus infection [1]. The global importance of the COVID-19 pandemic problem for the world community also proves the exponential increase in the number of publications devoted to this problem. Since the T to rather rapid development of disorders in many organs, which turns into multiple organ failure.

61 In addition, it was shown that the protein sequences of the SARS-CoV-2 virus can form a complex with porphyrin and also affect heme in the 1-? chain of hemoglobin, leading to iron dissociation [6]. In turn, an increase in iron levels can contribute to the development of viral infections [7] associated with a number of respiratory diseases, including acute respiratory distress syndrome and pulmonary fibrosis.

65 Therefore, the COVID-19 virus for the most part only triggers the pathological process, and the further development of events will depend on the nature of the reaction of the body's defense systems, i.e. the body in response to viral aggression will fiercely fight against its own substrates of the body's compensatory systems, similar to the "cytokine storm" and the development of oxidative and other stress syndromes, much like sepsis or autoimmune diseases.

70 Apparently, the more severe course of this infection in people with concomitant chronic diseases, especially autoimmune genesis or using ACE2 in their pathogenesis, also indicates that the initially impaired immune balance in the body serves as an engine for the development of an inferior and perverse response in case of viral aggression and will determine the nature and severity of the course of the pathology [8]. In addition, recently revealed positive results from the use of basic anti-inflammatory drugs and the modified biological gene used to treat rheumatoid arthritis can also confirm this assumption.

76 Therefore, current evidence suggests that the pathogenesis of COVID-19-induced pneumonia closely resembles autoimmune / autoinflammatory syndromes, thereby supporting attempts to use antirheumatic drugs of a chemical or biological nature. However, a number of questions appear here. For example, as indicated by Caso et al. [9],emphasizing the similarities between COVID-19 and autoimmune / autoinflammatory syndromes, it remains to be determined whether a genetic predisposition can contribute to the variability of clinical phenotypes. Another important issue is the identification of triggers responsible for the development of lung damage and hyperinflammation in the late phases of COVID-19. Of course, a large amount of evidence indicates ACE2, used by SARS-CoV-2 for entry into the cell, however, whether there is direct relationship between the viral damage of ACE2 and the development of hyperinflammation with lung disorders is still not very clear. And the answer obtained can be quite significant, because if it is mediated, the number of viral load will play a smaller role compared with the body's genetic predisposition to a hyperinflammatory response. Based on the preliminary results available today that it is not possible to confirm the relationship between the progression of lung damage and activation of viral replication [10], apparently the last assumption will gather all the chances to reflect the real situation.

90 Since the reactions of the body's protective and adaptive systems to any aggression have individual characteristics and are genetically determined, belonging to a particular variant of the polymorphism of genes that control these body functions can be of limited value in predicting the likely response of the body to infection [11]. These markers include gene polymorphisms of the angiotensin-converting enzyme, tumor necrosis factor, interleukins, HLA systems and others. Such an approach to solving the problem would make it possible to determine in advance a predisposition to the severe course of coronavirus infection, form risk groups and their stratification, and also develop a new, scientifically based strategy and tactics for administering patients with this infection. Moreover, this would be a good help for the development in our country of such a direction as the development of gene modified biological preparations based on genomic, epigenomic and transcriptome approaches.

100 Such circumstances open up new horizons for the prevention and control of coronavirus infection in general.

101 There is currently no specific effective antiviral treatment for COVID-19. Based on in-vitro data and available information on safety and biological efficacy, the World Health Organization (WHO) prioritized several drugs for further research at COVID-19 and recommended them for evaluation in the context of the "Solidarity" 104 clinical trials (www.who.int/blueprint/prioritydiseases/key-action/novel-coronavirus/en). For this study, WHO 105 selected an experimental antiviral agent, remdesivir; used for the treatment of malarialchloroquine (or its chemical 106 counterpart, hydroxychloroquine); a combination of HIV drugslopinavir-ritonavir; and the same combination plus 107 beta interferon -the messenger of the immune system.

108 Although clinical trials are still ongoing, negative actions are already being identified. So, in relation to

109 chloroquine, its well-known toxic and side effects began to appear, and its cardiototoxic effect in the form of
110 a change in heart rhythm has already led to deaths in Brazil, due to which a number of tests were stopped
111 (<https://www.nytimes.com/2020/04/12/health/chloroquine-coronavirus-trump.html>).

112 The very first test of a combination of lopinavir/ritonavir drugs in Wuhan (China) for 199 patients with
113 COVID-19 did not lead to statistically significant differences between the groups with and without these drugs,
114 which was explained by the possible too late treatment of severe patients [12]. Recently, developed by Gilead
115 Sciences specifically to combat the Ebola virus, the drug remdesivir showed excellent performance in vitro against
116 the SARS and MERS viruses. However, in practical terms, this drug was not able to effectively help patients
117 with Ebola virus during the 2019 outbreak in the Democratic Republic of the Congo, but some of its negative
118 manifestations (for example, nausea, vomiting, rectal hemorrhage and liver toxicity) were already known.

119 Of course, research is ongoing and final conclusions will be drawn later. Now the WHO International Clinical
120 Trials Registration Platform has already registered over 700 clinical trials of various drugs and treatments of
121 COVID-19 (<https://apps.who.int/trialsearch>).

122 As a result of the accumulation of knowledge on the pathophysiology of COVID-19, in addition to the use
123 of certain antiviral drugs, many medicinal substances that are commonly used to treat other autoimmune and
124 metabolic diseases have been proposed as possible treatment methods [13].

125 Currently, the number of ways to combat SARS-CoV-2 that are undergoing clinical trials has reached 62.
126 Moreover, fifteen procedures are based on the use of both known and new antiviral drugs: lopinavir and
127 ritonavir [14], arbidol, hydroxychloroquine, chloroquine, DAS181, remdesivir, azvudine, baloxavir, azithromycin,
128 amiodarone, verapamil, ivermectin, APN01, alvesco, CYNK001, virazole, as well as convalescence plasma
129 therapy and Yeliva. Whereas, the second line of treatment is based on the use of anti-inflammatory drugs and
130 immunomodulators, including glucocorticoids, tocolizumab, jactinib hydrochloride, leukin, lenzilumab, CD24Fc,
131 colchicine, tradipitant, siltuximab, anakinra, sarilumab, vazepal 1, IFX-1, leronlimab, aviptadil, fingolimod,
132 piklidenozon, selinexor, akalabrutinib, clazacizumab, zanubrutinib, gimsilumab, TJ003234, halidesivir, etc.

133 In addition, a test was undertaken of the following drugs used to treat pneumonia after a viral infection:
134 danoprevir + ritonavir, darunavir, ruxolitinib, bevacizumab, AiRuiKa ?, tofacitinib, deferoxamine and
135 meplazumab; as well as some drugs used to prevent organ failure, such as: valsartan, dapagliflozin, losartan [15].

136 If we consider drugs that are only offered for clinical trials, their number already exceeds one hundred,
137 they affect many other, including recently identified, pathogenetic links, they have a diverse mechanism of
138 action, they are well known and are already effectively used to treat many, including noninfectious diseases
139 (premarin, pioglitazone, melatonin, thalidomide, pirenadol, chlorpromazine, sildenafil, cyclosporine, ouabain,
140 bufalin, dapagliflozin, dapson, doxycycline, amantadine, vitamin D, etc.) [16].

141 On this background, as one of the important aspects of the problem of COVID 19 infection, in terms of
142 interpreting the conflicting results of clinical trials and quickly establishing the apparent effectiveness of a
143 particular drug, the issue of personifying its medical treatment becomes a question. This problem is associated
144 with the individual characteristics of the patient's body in the manifestation of the reaction to the drug, because
145 now there are enough examples when similar drugs in similar doses seemed to give different results in almost
146 identical clinical situations both in terms of effectiveness and safety. This is indeed a difficult question, because it
147 is associated with the functioning of a number of body systems that are involved in the processes of absorption,
148 adsorption, bioavailability, distribution, transportation, metabolism and elimination of drugs. Moreover, the
149 initial state of these systems and their full functioning regulates the formation of an adequate pharmacological
150 response to a specific drug.

151 Perhaps this is the basis of the preliminary conflicting results of research conducted under the "Solidarity"
152 program. After all, it is known that remdesivir is a prodrug [17], which means that its action will be fully
153 manifested only after its metabolism inside the cell, and the extent of readiness of the enzymes metabolizing it
154 before taking the drug is not established. The lopinavir / ritonavir complex is a protease inhibitor used in the
155 combination therapy of immunodeficiency in a person infected with HIV. Since lopinavir inhibits the cleavage of
156 the gag-pol protein, while ritonavir inhibits the cleavage of the precursor of this protein and at the same time
157 the metabolism of lopinavir through the P-450 cytochrome system (CYP3A4), to increase the concentration of
158 lopinavir, these drugs are always prescribed together as a complex. However, depending on the initial state of the
159 metabolizing enzymes, both toxic properties and insufficient effectiveness of these drugs may occur. The same
160 can be noted for chloroquine, which has been used worldwide for more than 70 years as an antimalarial drug.

161 It is known that the above systems that regulate the fate of drugs in the body, like other components, are
162 genetically controlled. Enzymes carrying out transmembrane transport of drugs, their efflux from the cell, as well
163 as biotransformation and elimination from the body are carried out by expression of the corresponding genes, in
164 particular glycoproteins of the MDR1 type, a family of cytochrome isoforms. The candidate genes responsible for
165 the pharmacokinetics of drugs have numerous mutant variants that contribute to the formation of an appropriate
166 response of the body to drugs.

167 Based on the experience of prescribing antiretroviral drugs for the treatment of HIV infection, some of which
168 are effective against COVID-19, the question of preliminary pharmacogenetic studies has long been raised. So,
169 the effectiveness of a number of drugs widely used in HIV infection is very dependent on the single nucleotide
170 polymorphism of the HLA system genes, cytochrome P-450 and glycoprotein carriers, for example: for abacavir
171 -HLA B * 5701, HLA-DR7 and HLA-DQ3 genotypes [18], for nevirapine -HLA-DRB1 * 01: 01, HLA-cw8

172 / HLA-B14, ABCB1 (MDR1) 3435C> T, cytochrome P-450: CYP3A4 \5, CYP2D6 and CYP2B6; for the
173 efavirenz, CYP2B6 516G> T, 983T> C, 785A> G and 21563C> T, CYP2A6 -48T> G. A similar CYP3A5 gene
174 polymorphism is closely associated with faster clearance of indinavir, an antiretroviral drug from the class of
175 protease inhibitors that is currently undergoing clinical trials against COVID-19, like other drugs of this class:
176 lopinavir, ritonavir and darunavir.

177 Extensive information on the pharmacogenetics of almost all currently used drugs, the activity of pharmacogenetic
178 metabolizing enzymes and individual body parameters that determine the effectiveness of the used drugs is
179 well reflected in many publications [19]. Therefore, we believe that the study of the variants of carriage of the
180 polymorphic diversity of these genes from the standpoint of the efficacy and safety of the pharmacotherapy of
181 COVID-19 infection would significantly increase the effectiveness of therapeutic measures for this pathology. And
182 the accumulation of data on preliminary pharmacogenotyping of people from the perspective of the possible choice
183 of certain drug groups for the treatment of this pathology would contribute to personalization and significantly
184 reduce the risk of side effects.

185 The above mentioned points, in our opinion, is a definite prerequisite for planning a vector of scientific research
186 in the future. Of course, it is premature to talk about conducting such scientific research now, at the height of
187 the epidemic, but we believe that there is a need to conduct such research in the future, the results of which will
188 serve as a theoretical foundation for the development of effective platforms for the prevention and control of not
189 only coronavirus, but also with any other infections. ¹

¹Covid-19 Infection: Prerequisites for New Areas of Research

190 [] , 10.1016/j.autrev.2020. <https://doi.org/10.1016/j.autrev.2020>
191 [(2020)] , %2010.1016/S2214-109X(20)30113-3. March 24. 2020. (Published Online)
192 [Rivellese et al. ()] ‘ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia’ F
193 Rivellese , ? Prediletto , W Harvey , Q Mary . %2010.1016/j.autrev.2020.102536. <https://doi.org/10.1016/j.autrev.2020.102536> *Autoimmunity Reviews* 2020. 19.
194
195 [Li et al. ()] ‘Clinical observation and management of COVID-19 patients’ T Li , H Lu , W Zhang . *Emerg
196 Microbes Infect* 2020. 9 (1) p. .
197 [Harapan et al. ()] ‘Coronavirus disease 2019 (COVID-19): A literature review’ H Harapan , N Itoh , A Yufika
198 . *Journal of Infection and Public Health* 2020. 13 p. .
199 [Li et al. ()] ‘Coronavirus infections and immune responses’ G Li , Y Fan , Y Lai . *J Med Virol* 2020. 92 p. .
200 [Favallia et al. ()] ‘COVID-19 infection and rheumatoid arthritis: Faraway, so close!’ E G Favallia , F Ingegnolia
201 , O De Lucia . *Autoimmunity Reviews* 2020. 19 p. 102523.
202 [Liu and Li ()] *COVID-19: Attacks the 1-Beta chain of hemoglobin and captures the Porphyrin to inhibit
203 human Heme metabolism*, W Liu , H Li . 10.26434/chemrxiv.11938173.v7. <https://doi.org/10.26434/chemrxiv.11938173.v7> 2020.
204
205 [Ali et al. (2020)] ‘Critical role for iron accumulation in the pathogenesis of fibrotic lung disease’ M K Ali , R
206 Y Kim , A C Brown . 10.1002/path.5401. *J Pathol* 2020 Feb 21.
207 [Qin et al. ()] ‘Dysregulation of immune response in patients with COVID-19 in Wuhan’ C Qin , L Zhou , Z Hu
208 . 10.1093/%20cid/%20ciaa248. <https://doi.org/10.1093/cid/ciaa248> *China Clin Infect Dis* 2020.
209 [Majumder and Mandl ()] ‘Early in the epidemic: impact of preprints on global discourse about COVID-19
210 transmissibility’ M S Majumder , K D Mandl . %2010.1016/S2214-109X(20)30113-3. *Lancet Glob Health*
211 2020.
212 [Varga et al.] ‘Endothelial cell infection and endotheliitis in COVID-19’ Z Varga , A J Flammer , P Steiger .
213 *Lancet* 2020 p. .
214 [Prompetchara et al. ()] ‘Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS
215 and MERS epidemic’ E Prompetchara , C Ketloy , T Palaga . *Asian Pac J Allergy Immunol* 2020. 38 p. .
216 [Wessling-Resnick ()] ‘Iron homeostasis and the inflammatory response’ M Wessling-Resnick . *Annu Rev Nutr*
217 2010. 30 p. .
218 [Liu et al. ()] ‘Learning from the past: possible urgent prevention and treatment options for severe acute
219 respiratory infections caused by 2019-nCoV’ W Liu , J S Morse , T Lalonde . *Chembiochem* 2020.
220 [Dalamaga et al. (2020)] *S. 19 treatment regimens?Metabolism*, M Dalamaga , I Karampela , C Mantzoros .
221 10.1016/j.metabol.2020.154260. 2020 May 8.
222 [Totura and Baric ()] ‘SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of
223 interferon’ A L Totura , R S Baric . *Curr Opin Virol* 2012. 2 p. .
224 [McCloskey and Heymann ()] ‘SARS to novel coronavirus: old lessons and new lessons’ B McCloskey , D L
225 Heymann . *Epidemiol. Infect* 2020. 22 p. e22.
226 [Pedersen and Ho ()] ‘SARS-CoV-2: a storm is raging’ F Pedersen , Y C Ho . 10.1172/JCI137647. <https://doi.org/10.1172/JCI137647> *J. Clin. Invest* 2020.
227
228 [Hoffmann et al. ()] ‘The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and
229 the cellular protease TMPRSS2 for entry into target cells’ M Hoffmann , H Kleine-Weber , N Krüger . *bioRxiv*
230 2020. p. .
231 [Drakesmith and Prentice ()] ‘Viral infection and iron metabolism’ H Drakesmith , A Prentice . *Nat Rev
232 Microbiol* 2008. 6 p. .