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3

Abstract4

This bibliographic study covers Artificial Intelligence (AI)theory and its applications from the5

healthcare field and in particular from the discipline of pathology. This review includes basics6

of AI, supervised and unsupervised machine learning (ML), various supervised ML algorithms,7

and their applications in healthcare and pathology. Digital Pathology with Deep Machine8

Learning is more advantageous over traditional pathology that is based on ?physical slide on a9

physical microscope?. However, various implementation challenges of cost, data quality,10

multicenter validation, bias, and regulatory approval issues for AI in clinical practice still11

remain, which are also described in this study.12

13

Index terms— history of artificial intelligence (AI), AI in healthcare, deep learning (DL) in digital pathology14
(DP).15

1 Introduction16

he main objective of this paper is to describe the history of the evolution of Artificial Intelligence over time. The17
past two decades have shown tremendous progress in the application of artificial intelligence (AI) including in a18
few medical images based specialties of radiology, dermatology, ophthalmology, and pathology. First, we explore19
how AI began about 65 years back and its progression in various disciplines including healthcare/medicine20
and particularly pathology. Second, we review books available on AI in general as well as AI in medicine21
and in pathology. Next, we define the necessary terms in AI and various AI algorithms that are utilized to22
get acceptance by the physicians to assist patients in a more efficient fashion. After, we review AI literature23
pertinent to healthcare and pathology. Finally, the various challenges and barriers AI faces for use in pathological24
applications are then discussed.25

2 II.26

3 AI Theory in Textbooks27

In 1955 Artificial intelligence (AI) was termed by McCarthy et al. as the subdivision of computer science in28
which machine based methodologies were used to make predictions to imitate what human intellect may do in29
the identical situation. 1 The origin of Digital Pathology (DP) began in 1966, as Prewitt et al. photographed30
images from a microscopic field from a blood smear and then transformed the information into a matrix of31
optical density numbers for mechanized image investigation. 2 The AI field is built on statistics and Vapnik32
provides a more detailed description of the statistical learning theory in his two books. 3,4 In 2003, Russell and33
Norig introduced an idea of an intellectual agent that mechanically plans and performs a sequence of activities34
to attain a goal as a novel form of AI. 5 Good fellow et al.’s comprehensive textbook on the AI is written by35
some of the most innovative and prolific researchers in the field. 6 Kelleher explains how deep learning is useful36
in understanding big data and covers methodologies of Autoencoders, Recurrent neural networks, Generative37
Adversarial Networks, Gradient descent and Backpropagation. 738

4 a) AI books in medicine and pathology39

There are many excellent textbooks on AI’s applications in medicine including note taking, drug development,40
remote patient monitoring, surgery, laboratory discovery, and healthcare delivery. 8,9,10,11,12,13 In this section41
our emphasis is on review of the latest textbooks on AI in pathology. Sucacet et al. in Digital Pathology (DP)42
discuss how technology over a decade has seen tremendous growth in its applications. They observe that DP43
offers the hope of providing pathology consulting and educational services to underserved areas of the world that44
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8 AI RESEARCH IN PATHOLOGY

otherwise would not experience high level of services. 14 In Artificial Intelligence and Deep Learning in Pathology,45
Cohen observes how recent advances in computational algorithms, and the arrival of whole slide imaging (WSI)46
as a platform for combining AI, are assisting both diagnosis and prognosis by transforming pattern recognition47
and image interpretation. The book focuses on various AI applications in pathology and covers important topics48
of WSI for 2D and 3D analysis, principles of image analysis, and deep learning. 15 Holzinger et al. in their49
book describe why AI and Machine Learning (ML) is very promising in the disciplines of DP, radiology, and50
dermatology. They observe that in some cases Deep Learning (DL) even exceeds human performance and stress51
the importance that a human expert regardless should always verify the outcome. The authors cover ’biobanks,’52
which offer large collections of high quality and well labeled samples as big data is required for training and53
covering a variety of diseases in different organs. 16 Belciug in his book covers theoretical concepts and practical54
techniques of AI and its applications in cancer management. The author describes the impactful role of AI during55
diagnosis and how it can help doctors make better decisions including AI tools to help pathologists identify exact56
types of cancer and assist surgeons and oncologists. The book discusses over 20 cancer examples in which AI was57
used and in particular AI algorithms utilized for them. 17 III.58

5 AI Basics59

In this section we cover Learning theory, important AI terminology, and algorithms for Machine Learning.60

6 a) Learning theory and machine learning61

Vapnik introduces the learning model from examples using three constituents of a) a creator of random vectors,62
b) a supervisor that yields an output vector for each input vector, and c) a learning machine qualified of applying63
a set of functions. The next step is the Risk Minimization Problem. So as to find the best obtainable estimate to64
the supervisor’s reply, one should measure the difference between the reply of the supervisor to a specified input65
and the answer offered by the learning machine. 18 In 2015, Deo’s review on ML found that only a few papers66
out of thousands applying ML algorithms to medical data have contributed meaningfully to clinical care unlike67
how ML has been impactful in other industries. 1968

7 E. Support Vector Machine or SVM:69

The SVM algorithm classifies available data by defining a hyperplane that best differentiates the presence of two70
groups.71

The differentiation for the two groups is maximized by growing the space on either side of the hyperplane and72
the hyperplane enclosed area with the greatest possible distance is then chosen for the evaluation. It finds an73
onlinear relationship using a kernel function but has tendency for overfitting. 27 F. Naive Bayes: Naive Bayes74
approach assumes that the features under evaluation are independent of each other. For simple tasks it can75
produce good results, but in general their performance is inferior to the other ML algorithms. 28 G. Decision76
Tree and Boosted Tree: A decision tree comprises a root, nodes, branches, and leaves. The node is where the77
characteristic is examined and the branch is where the result of this examined query is then assigned. The decision78
tree provides a set of guidelines that defines the passageway from the root all the way to the leaves. Gradient79
boosting machine uses weak predictors (a Decision tree) that are boosted, which provide a better performing80
model (a Boosted tree). This method can work with unbalanced data sets but may produce overfitting. 29 H.81
Random Forest or RF: Breiman provides how RFs are an effective tool in accurate prediction of classifiers and82
regressors as it avoids overfitting due to the Law of LargeNumbers. 30 However, it might be more time exhausting83
and less efficient vs. the nonparametric (SVM and k-NN) and parametric (logistic regression) modeling.84

IV.85

8 AI Research in Pathology86

In this section we cover research in topics of origins of image analysis, computational pathologist, machine87
learning in pathology, Digital Pathology, Convolutional Neural Network in pathology, and other AI in cancer88
applications. The pipeline comprised of three phases. First, their processing steps included a) separating the89
tissue from its background, b) partitioning the image into smaller regions with a consistent appearance recognized90
as superpixels, c) finding nuclei inside the superpixels, and d) constructing cytoplasmic and nuclear characters91
within the superpixels. Next, within every superpixel they estimated the size, shape, intensity, and texture of92
the superpixel and its neighbors. Afterwards, to create more biologically significant features, they categorized93
superpixels as either epithelium or stroma. They used an ML based approach of L 1 -regularized logistic regression,94
in which they hand-annotated superpixels from 158 photos and utilized those images to train the classifier. The95
resultant classifier composed of 31 characters achieved a categorization accuracy of 89% on detained data. The96
authors using a series of relational characters produced a set of 6,642 features per image. Predicting survival97
based on the images from patients who were alive 5 years after surgery and also from patients who had died at98
5 years after surgery they built the prognostic model. After constructing the model, it then was utilized to a99
verify set of breast carcinomaphotos which were not part of the model creation to categorize patients as either100
low or high risk of dying at 5 years. A bootstrap examination on the data set and for each of the 6,642 features101
the authors obtained a 95% Confidence Interval for the feature’s coefficient estimate. 32102
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9 c) Machine learning in pathology103

To achieve optimum Supervised Machine Learning Model Rashidi et al. proposed four questions: i) Does104
the endeavor tackle a necessity?, ii) Is enough data accessible which is appropriate type that scrutinized105
by clinical specialists?, iii) Which Machine Learning method to utilize?, and iv) Are the enhanced ML106
simulations appropriate and general enough when used with a new data set? The authors support a balanced107
approach using clinical trial data merged with real world data to optimize ML training. They recommend108
that pathologists/laboratorians must be sufficiently familiar with available modeling options in order to make109
meaningful contributions within the team. 33 Moxley-Wyles et al. introduce the basics of AI in pathology and110
discuss the future and challenges for the discipline with focuse on surgical pathology instead of cytology. The111
authors foresee AI’s potential to obtain derive novel biological insights by identifying subtle cell changes, which112
are not recognized by pathologists (using the Haematoxylin and Eosin (H&E) stain) that can predict specific113
mutations within the cell. Predictions using AI have been proven for Speckle-Type POZ Protein (SPOP) mutation114
in prostate cancer, BRAF in melanoma, and many mutations in lung adenocarcinoma. They observe that with115
robustly validated AI tools second opinions from other pathologists could become not necessary. The authors116
expect AI’s potential assistance in predicting outcomes of responses to treatments after regulatory approvals.117
However, in their opinion the use of Artificial Intelligence in diagnostic practice is rare due to some of the limits118
of Artificial Intelligence including regulatory and validation issues, as well as a high cost. 34 Li et al. used119
the fluorescence hyperspectral imaging technique to acquire spectral images for the early diagnosis of gastric120
cancer. They combined DL with spectral-spatial categorization techniques utilizing 120 fresh tissue specimens121
with an established diagnosis by histopathological assessments. The method was utilized to detect and extract122
the ’spectral + spatial’ characters to create an early cancer diagnosis model. It resulted in the accuracy of 96.5%,123
specificity of 96%, and sensitivity of 96.3% for non-precancerous lesion, precancerous lesion, and cancer groups.124
35125

10 d) Digital Pathology (DP)126

Hartman et al. numerate how DP is more advantageous over traditional pathology based on’ physical slide127
on a physical microscope.’ This tool development did benefit from 24 public challenges based publications in128
specific pathological diagnostic tasks. However, there is a true disconnect between the types of organs studied in129
these public challenges and the large volume of specimens typically available in clinical practice. Even though130
disciplines of dermatology and gastrointestinal collect a majority of samples in pathology laboratories, so far131
there are no pathology based dermatology public challenges while only a few in regards to the gastrointestinal132
field. This mismatch is the key reason there being a limit on the wider adoption of AI in pathology field. 36 Niazi133
et al. have developed the generation of synthetic digital slides that can be used for educational purposes to train134
future pathologists. Their Conditional Generative Adversarial Networks approach contains two main components135
of the generator and the discriminator. The generator creates fake stained images, while the discriminator tries136
to catch them. Their approach of distinguishing between 15 real and 15 synthetic images yielded an accuracy137
of 47.3% amongst three pathologists and two image analysts. The authors do see a role for AI in quality138
assurance by improving the pathologist’s performance with the use of intelligent deep learning and AI tools. 37139
DP involving the slide digitization process in some instances does create artifacts that are ’Out-Of-Focus’ or140
OOF. OOF is typically noticed after a careful review which requires a whole-slide rescanning, as the manual141
screening for OOF affecting only parts of a slide isnot feasible. Kohlberger et al. developed a ConvFocus using142
a refined semi-synthetic OOF information production process and was assessed using seven slides covering three143
dissimilar tissue and three dissimilar stain types and then was digitized. For 514 separate regions representing144
37.7K 35 ?m × 35 ?m image patches, and 21 digitized ”z-stack” Whole Slide Images containing known Out-145
Of-Focus patterns, ConvFocus scored Spearman rank coefficients of 0.81 and 0.94 on two separate scanners,146
and it replicated the expected Out-Of-Focus patterns from z-stack scanning. More importantly the authors147
observed a decrease in the accuracy with increasing OOF. 38 Hartman et al. investigated a US healthcare148
organization with 20+ hospitals, 500 outpatient sites, international affiliations of one hospital in Italy and a lab149
in China. The organization employs 100+ pathologists, does consultations by telepathology from the Chinese150
lab, and uses Digitized Pathology scanned over 40,000 slides. Their conclusion for attainment of successful151
DP is performing a combination of pre-imaging adjustments, integrated software, and post-imaging evaluations.152
39 Parwani observed that to attain DP in a lab requires an essential alteration in how tissue is handled and153
the workflow is harmonized, and the laboratory has attained a digital workflow. It is more than making the154
workflow to digital and acquiring WSI scanners. He numerates a key advantage the digital workflow provides155
of reduction in errors in DP and obtaining a second opinion. 40 In DP problems of color variations do arise in156
tissue appearance due to the disparity in preparation of tissues, difference in stain reactivity between different157
batches and different manufacturers, user and/or protocol dissimilarity, and the use of scanners from diverse158
vendors. Khan et al. present a novel preprocessing approach to histopathology image stain normalization using159
representation derived from color deconvolution based on non-linear mapping of a source image to a target image.160
A method of color deconvolution obtains stain intensity values when the stain matrix, which describes how the161
colour is changed by the stain intensity is made available. Instead of using the standard stain matrices, which162
might be unsuitable for a specified image, they recommend the utilization of a colour based classifier incorporating163
a new stain colour descriptor to compute image explicit stain matrix. 41 Janowczyk et al. developed a tutorial164
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11 E) CONVOLUTIONAL NEURAL NETWORK (CNN) IN PATHOLOGY

on focusing on the critical components needed by DP experts in automating tasks of grading or investigating165
clinical hypothesis of prognosis prediction. The authors examined seven use cases of (i) nuclei segmentation, (ii)166
epithelium segmentation, (iii) tubule segmentation, (iv) lymphocyte detection, (v) mitosis detection, (vi) IDC167
detection, and (vii) lymphoma classification, and demonstrated how DL can be applied to the most common168
image analysis tasks in DP using open source framework Caffe. They further subdivided the seven tasks into169
three categories of detection (mitotic events, lymphocytes), segmentation (nuclei, epithelium, tubules), and tissue170
classification (IDC, lymphoma subtypes), as the approaches used are similar within each analysis category. With171
over 1200 DP images used during evaluation produced the following: (i) nuclei subdivision with F score of 0.83,172
(ii) epithelium subdivision with F score of 0.84, (iii) tubule subdivision with F score of 0.83, (iv) lymphocyte173
detection with F score of 0.90, (v) mitosis recognition with F score of 0.53, (vi) invasive ductal cancer recognition174
with F score of 0.77, and (vii) lymphoma categorization with categorization accuracy of 0.97. In many of these175
cases the results are excellent versus seen from the modern feature-based categorization approaches. 42 To176
guide surgical decisions further, intraoperative frozen sections are useful for rapid pathology-based diagnosis.177
However, the quality of frozen sections is lower compared to formalin fixed paraffin embedded tissue 43 and that178
they must be diagnosed within 20 min of receipt. In current clinical practice, thyroid nodule surgeries are the179
most common in requiring intraoperative consultations. However, using traditional approach the sensitivity for180
diagnosing thyroid nodules from frozen sections is around 75%. 44 Li et al. investigated for the first time if a181
’patch-based diagnostic system’ with DL methodology can diagnose thyroid nodules from intraoperative frozen182
sections. They approached the problem as a three-category classification problem of benign, uncertain, and183
malignant classes. In order to reduce the overall time cost, they applied tissue localization first in the whole slide184
diagnosis to locate thyroid tissue regions. This rule-based system considered the conservative diagnosis manner of185
the practical thyroid frozen section diagnosis. Their computerized diagnostic technique demonstrated a precision186
of malignant and benign of thyroid nodules of 96.7% and, 95.3% respectively, and 100% sensitivity for the unsure187
category. Moreover, the methodology resulted in diagnosis of a typical Whole Slide Image in less than one min. 45188
Paeng’s presentation covers limitations of pathology and relative advantages of DP of reproducibility, accuracy,189
and workload reduction. Key applications of DP are a) Tumor proliferation score prediction -breast resection,190
and b) Gleason score prediction -prostate biopsy. The author’s method scored the best in Tumor Proliferation191
Assessment Challenge. He achieved Gleason score prediction of 83% for core-level performance and discussed192
overcoming: how to handle gigapixel images, how to handle quality variation between slides, and how to handle193
ambiguous ground-truth. 46194

11 e) Convolutional Neural Network (CNN) in pathology195

Hegde et al. for histopathology images introduced ’SMILY’ (Similar Medical Images Like Yours) which is a DL196
based reverse image search tool. Their tool follows the steps of: a) Create a database of image patches and a197
numerical portrayal of each patch’s image fillings called the embedding, b) Calculate the embedding utilizing a198
CNN, c) SMILY calculates the embedding of the selected query image and matches it in a proficient manner with199
those in the database, and in the last step d) SMILY yields the k most similar patches, where k is customizable.200
To create the database the authors used images from TCGA with the evaluations utilizing127K image patches201
from 45 slides while the question set included 22.5K patches from additional 15 slides. The CNN algorithm,202
instead of using large, pixelannotated datasets of histopathology images, was trained using a dataset of images of203
people, animals, and manmade and natural objects. In the assessment of prostate specimens for finding similar204
histologic features, SMILY scored 62.1% on average which is, considerably higher than the random search results205
score of 26.8% with p -value< 0.001. SMILY’s score for histologic feature match, when queried from multiple206
organs, was appreciably higher than random with the score of 57.8% vs. 18.3% with p-value < 0.001.The authors207
claim that SMILY can be used as a general purpose tool in multiple applications of diagnosis, research, and208
education even though it will have lower accuracy than an application specific tool. 47 Autoencoder (AE) use209
in breast cancer: An AE can be described as an ANN with a symmetric construction in which middle tiers210
encode the entered data and then aim to construct a form of its input onto the yield tier and avoids using a211
direct copy of the data along with the network. 50 Macías-García et al. developed a structure to process DNA212
methylation to obtain meaningful data from pertinent genes regarding breast cancer recurrence and tested it using213
The Cancer Genome Atlas (TCGA) data portal. The method is based on AEs to preprocess DNA methylation214
and generate AE features to characterize breast cancer recurrence and demonstrated how it improved recurrence215
prediction. 51 AI in cervical cancer: Out of half million annual cervical cancer cases in the world about 80%216
occur in low and middle income nations. Hu et al. followed over 9,000 women ages 18 to 94 from Costa Rica217
over period of seven years from 1993 to 2000 identifying cancers up to 18 years. They developed a DL based218
visual evaluation algorithm based on digitized cervical images taken with a fixed focus camera (cervicography),219
which did automatically identify cervical precancer or cancer. The DL method recognized cumulative precancer220
and cancer cases with higher AUC of 0.91compared to the original cervigram interpretation with AUC of 0.69 or221
conventional cytology with AUC of 0.71. The authors therefore recommend use of automated visual evaluation222
of cervical images from contemporary digital cameras. 52 AI in prostate cancer: Ström et ??,’ ’Luminal B,’223
’HER2enriched,’ and ’Basal-like.’ The authors examined 3 cohorts of main breast carcinoma specimens totaling224
436 (up to 28 years of survival) and scored them for ER, PR, HER2, and Ki67 rank by Digital Image Analysis225
(DIA) and manually. DIA approach beat manual scoring in both sensitivity and specificity for the Luminal B226

4 10.34257/GJMRKVOL21IS2PG23



subtype, and achieved slightly superior concordance and Cohen’s ? agreement in reference with PAM50 gene227
expression assays. The manual biomarker and DIA approaches were close in comparison of each other for Cox228
regression hazard ratios. In addition DIA faired superior in terms of Spearman’s rank-order correlations, and229
prognostic value of Ki67 scores in terms of likelihood ratio thus adding appreciably more prognostic information230
to the manual scores. The authors concluded that overall the DIA approach was clearly a better substitute to231
the method of manual biomarker scoring. 48 A manual process identifying the existence and degree of breast232
carcinoma by a pathologist is serious for patient administration for tumor staging, including an assessment of233
treatment response, but it is subject to variability between inter-and intra-reader. As a decision support tool234
any computerized technique needs to be robust to data acquisition from different sources, different scanners, and235
different staining/cutting approaches. Cruz-Roa et al.’s CNN approach trained the classifier using 400 exemplars236
from various sites and using TCGA data to validate it with 200 cases. Their approach attained a Dice coefficient237
of 75.9%, a PPV of 71.6%, and a NPV or of 96.8% regarding the evaluation for pixel-by-pixel in reference with238
manually annotated regions of invasive ductal carcinoma. 49 resulting networks were tested with independent239
1,631 biopsies from 246 men from STHLM3 for the presence, extent, and Gleason grade of malignant tissue and240
an exterior data from 73 men of 330 biopsies. They also compare drating performance by 23 pathology experts241
on grading 87 biopsies. The AI networks attained an AUC of 0?997 for differentiating between benign and242
malignant biopsy cores on the independent dataset and 0?986 on the external verification data between benign243
and malignant. The correlation found between carcinoma length predicted by the Artificial Intelligence networks244
and given by the pathology experts was 0?96 for the impartial data and 0?87 for the external verification dataset.245
The AI methodology for allotting Gleason grades attained a mean pairwise kappa of 0?62which was within the246
range of values for the pathology experts of 0?60-0?73. The authors recommend using the AI approach resulting247
in reduction of the evaluation of benign biopsies and automating the work of determining cancer length in the248
cases of positive biopsy cores. This AI approach by standardizing grading can be utilized as a second opinion in249
cancer assessment. 53 AI in stomach and colon cancer: Iizuka et al. in their study utilized biopsy histopathology250
WSIs of stomach and colon trained CNNs and RNNs to classify them into adenocarcinoma, adenoma, and non-251
neoplastic. They gathered datasets of stomach and colon consisting of 4,128 and 4,036 WSIs, respectively which252
were then manually annotated by pathologists. The authors using millions of tiles extracted from the WSIs253
then trained a CNN based on the Inception-V3 architecture for each organ to categorize a tile into one of the254
three classification tags. Next they summed the projections from all the tiles in the WSI to acquire a final255
categorization using two approaches of a RNN and a Max Pooling. The models were successfully evaluated256
on three independent test sets each and achieved Area Under the Curves (AUCs) for gastric adenocarcinoma257
and adenoma was 0.97 and 0.99 respectively, and for colonic adenocarcinoma and adenoma of 0.96 and 0.99258
respectively. Further they evaluated the stomach model versus a collection of pathology experts and medical259
scholars that were not part of labeling the teaching set utilizing an investigation set of 45 images (15 WSI of260
adenoma, 15 of adenocarcinoma, and 15 of nonneoplastic lesions). The categorization time for Whole Slide Image261
using the educated model ranged from 5-30 seconds. The average accuracy of diagnoses achieved by pathologists262
was 85.9%, medical school students was 41.2%, while the stomach model achieved an accuracy of 95.6% in a 30263
sec assessment. 54 AI in lung cancer: Kriegsmann et al.’s evaluation of CNNs included the classification of the264
very usual lung carcinoma subtypes of pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma265
(SqCC), and small-cell lung cancer (SCLC). To validate the appropriateness of the outcomes, skeletal muscle266
was also integrated in the investigation, as histologically the difference between skeletal muscle and the three267
tumor entities is unambiguous. They assembled a group of 80 ADC, 80 SqCC, 80 SCLC, and 30 skeletal muscle268
specimens. TheInceptionV3, VGG16, and Inception ResNetV2 architectures were qualified to categorize the four269
entities of interest.InceptionV3 based on the CNN model produced the highest classification accuracy and hence270
was used for the classification of the test set. The final model received an image patch categorization accuracy of271
88% in the training as well as in the verification set. In the test set they achieved image patch and patient-based272
CNN classification results of 95% and 100%. 55 To predict carcinoma in WSIs, Kanavati et al. trained a deep273
learning CNN founded on the EfficientNet-B3 design, using transfer learning and weakly-supervised learning274
to calculate carcinoma using a training dataset of 3,554 WSIs from a sole medical establishment. The model275
was then applied to four independent test sets from distinct hospitals in order to validate its generalization on276
unseen data. The authors obtained excellent results that did show differentiation amongst lung cancer and non-277
neoplastic with an elevated Receiver Operator Curve based AUCs on impartial investigation of four sets of 0.98,278
0.97, 0.99, and 0.98, respectively. Out of two methodologies to train the simulations of ’fully supervised learning’279
and ’weakly supervised learning,’ the last performed always superior with an improvement of 0.05 in the AUC280
on the experiment sets. 56 V.281

12 AI -Regulation282

The FDA’s vision is that with suitable regulatory oversight, Software as a Medical Device (SaMD) based on283
AI-ML will deliver safe and effective software functionality that will be able to improve the quality of patient284
care. Their guidance for software modifications focuses on the risk to patients resulting from the software change.285
For a traditional application three classes of software alterations that might necessitate a premarket submission286
include: a) a change that introduces a novel risk or changes an existing risk that can produce significant harm,287
b) an alteration to risk controls to avoid substantial harm, and c) a modification that considerably affects clinical288
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13 AI -ISSUES TO BE RESOLVED

functionality of the device. For SaMD, any modifications would require a premarket submission to the FDA289
when the AI/ML software changes significantly, the alteration is to the device’s envisioned use, or the alteration290
introduces a key change to its algorithm. The FDA to date has approved several AI/ML-based SaMD algorithms291
that are locked before marketing and algorithm modifications will possibly require an FDA pre-market assessment292
for the modifications beyond the initial approval. However, K the SaMD has the capability to constantly learn,293
as the alteration or modification to the algorithm is recognized after the SaMD has learned from real world294
experience might provide a significantly dissimilar output in contrast to the output originally approved for a295
specified set of inputs. Therefore, the AI/ML tools require a new, Total Product Life Cycle (TPLC) regulatory296
approach. 57 VI.297

13 AI -Issues to be Resolved298

Over the last 100 years both The Covid19 and The Spanish Flu pandemics have shown their disproportionate299
impacts on patients of low income and racial minorities. A combination of diagnostics bias and sample bias300
have been the culprit for the global healthcare disparities. Evans argues that present diagnostic tools often fail301
patients who do not fit the prospects of the majority. 58 Even though there is an active effort to involve females302
in clinical study samples there are many treatment and drug advices that are founded on findings taken from303
the samples of Caucasian males. The author proposes, going forward, to decode the present and reshape existing304
practices before implementing AI to avoid existing biases and further increasing health disparities. 59 Colling et305
al. propose a UK-wide strategy for AI and DP. If the requirements of proper slide image management software,306
integrated reporting systems, improved scanning speeds, and high-quality images for DP systems are achieved307
then it will provide time and cost saving benefits over the traditional microscope based pathology approach and308
reduce problem of inter-observer variation. The successful introduction of AI and DP tools to the healthcare309
system will need proper regulatory approved and evidence based validation, and a lowering of the resistance310
to collaborate between academic and industry developers. 60 Robertson et al.’s work discusses the limitations311
of deep learning as it works well in supervised learning but not for unsupervised learning. The deep learning312
approach is not suitable for the discovery of novel biomarkers, as it being an unsupervised learning problem. If313
the model is educated only by means of images attained from imaging equipment from a single merchant then314
it may fail to react acceptably to images acquired from the equipment of another merchant. They observe the315
challenges to having a full digital workflow, a must for deep learning, due to the high costs and the dependence316
on solid IT support systems. 61 Typically, training of DL models requires many of annotated samples that317
belong to dissimilar categories. However, in reality it can be hard to collect a balanced dataset for training318
because of the fact that certain ailments have a low prevalence causing problem of data. Studies have shown that319
many models that perform well on balanced datasets do not when it comes to their imbalanced counterparts.320
62 Most of medical image datasets possess this imbalance problem. One-class classification, which emphases on321
learning a model using examples from only a single given class, is used as an approach to overcome the problem322
of imbalance. Gao et al. proposed a novel method which allows DL models to leverage the concept of imaging323
complexity to optimally learn single-class-relevant inherent imaging features. They then compared the effects of324
perturbing operations used on images to realize imaging intricacy to boost feature learning, and allowing their325
method outperforming four advanced methods. 63 Tizhoosh et al. explore problems that must be solved in326
order to exploit opportunities for the AI promises in computational pathology. The challenges discussed include:327
i) Lack of labeled or annotated data can be overcome by using active learning applied to labeling with public328
datasets, ii) Pervasive variability: infinite number of patterns due to presence of several tissue types (connective329
tissue, nervous tissue, epithelium, and muscle) required by AI algorithms to be learned, iii) Non-Boolean nature330
of diagnostic tasks as binary language of ’yes’ or ’no’ can be possible in only easy pathological cases but is rarity331
in the clinical practice, iv) Dimensionality obstacle: Use of ”Patching” (divide an image into small tiles) as WSI332
sizes typically are larger than 50Kx 50K pixels, v) Turing test dilemma: A machine can be as intelligent as a333
human and Turing test for DP is explicitly not known, vi) Uni-task orientation of weak artificial intelligence as334
Deep ANNs are designed to perform only one task requiring independently training multiple AIs for tasks of335
classification, segmentation, and search, vii) Affordability of required computational expenses for adoption of DP336
is a challenge due to high costs of acquisition and storage of gigapixel histopathological scans, viii) Adversarial337
attacks (Targeted manipulation of a very small number of pixels inside an image can mislead the network) as338
negligible presence of artifacts produce misdiagnosis, ix) Lack of transparency and interpretability which is not339
acceptable to the physicians as there is a lack of explanation on why AI made a specific decision in reference340
to histopathology scans, and x) Realism of AI as the pathology community has yet to buy in fully due to its341
issues related to ease of use, financial return, and trust. The authors describe multiple opportunities of: a)342
Deep features -Pretraining is better using Transfer learning instead of training a new network from scratch, b)343
Handcrafted features (such as gland shape and nuclear size)-Do not forget computer vision as it can be applied344
in DP to attain high identification accuracies, c) Generative frameworks: Learning to see and not judge as345
Generative models, focus on acquiring to reproduce data instead of making any decision such as pulmonary disease346
categorization and for functional MRI analysis, d) Unsupervised learning: When we do not need annotations in347
selforganizing plots and hierarchical clustering, and effectively combine them in the workflow of usual practice348
of pathology as annotating images is not portion of the everyday work of pathology experts, e) Virtual peer349
review -Placing the pathologist in the central to both algorithm development and execution: Algorithms extract350
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reliable information from proven archived diagnosed cases similar to the relevant features of the patient, that are351
diagnosed and treated by other physicians; Comparing for example diagnosis of patient’s cervix biopsy to a prior352
Pap test assessment for real-time cytologic-histopathologic correlation, f) Automation with AI can assist with353
case triage by performing laborious tasks for example of screening for easily identifiable cancer types or counting354
mitoses, and with simplification of complex tasks (e.g., triaging biopsies which require immediate action and355
ordering suitable stains upfront when specified); AI algorithms have attained sensitivity above 92% for breast356
cancer recognition, g) Re-birth of the hematoxylin and eosin image: combination of computational pathology357
and emerging technologies of multiplexing and threedimensional imaging allows analysis of individual pixels of358
pathological images to understand diagnostic, and theoretically available prognostic information, h) Making data359
science accessible to pathologists will enhance their accuracy with the use of AI tools to generate/analyze big360
image data. 64 To integrate AI based algorithms into the workflow of pathologists, Jiang et al. outlined and361
discussed various challenges facing their implementation in pathology. The challenges include: i) Validation:362
AI models are typically established on small-scale data and images from single-center and therefore they need363
to be sufficiently validated using multi-institutional data before clinical adoption, ii) Interpretability: DL-based364
AI methods are rightfully perceived as ’black-box’ methods due to their lack of interpretability which is an365
obstacle towards the clinical adoption by doctors, iii) Computing system: Histopathological photo file dimensions366
are typically 1,000x of an X-ray and 100x of a CT image files requiring powerful computing and storage, and367
bandwidth to transmit gigapixel-sized images, iv) Attitude of pathologists: Due to the lack of AI based model’s368
interpretability, pathologists are afraid of the change in workflow and worry about how to describe the evidence369
from AI in the diagnosis report, v) Attitude of clinicians and patients: In order to have both clinicians and370
patients have trust, AI based diagnostic and prognostic/predictive assays ought to have a high accuracy, and371
vi) Regulators: The clinical adoption of AI digital pathology needs approval by regulatory agencies and the lack372
of interpretability limits the approval. 65 Samek et al. present two methods that describe predictions of deep373
learning models to overcome DL’s black box approach. The first method which computes the sensitivity of the374
prediction with respect to changes in the input and the second approach meaningfully decomposes the decision375
in terms of the input variables. 66 Some of problems that need to be overcome to achieve the progress of DP376
and ML in their daily usage in pathology practice are: a) Make interfaces user friendly which currently are not,377
b) Require a single image format instead of current existence of several proprietary image formats, c) Overcome378
issue of the large image file sizes using technological advances in storing, and d) Enhance interactions between AI379
experts and pathologists. 67 AI machine learning model development, a multi-step process, includes important380
technical, regulatory, and clinical barriers. The model should overcome these barriers, which collectively define381
a ”translation gap,” in order to being accepted in a real world. The translation gap in digital pathology includes382
a variability caused by the manual nature of the tissue acquisition process and histopathology slide preparation,383
differences introduced during tissue sampling, tissue fixation, sectioning, and staining. During model development384
and validation these variations must be accounted for in order to achieve its widespread adoption. Also, since DP385
is relatively immature, at present only two manufacturers have received FDA approval to market digital pathology386
systems for primary diagnosis. 68,69 Similarly Steiner et al. discuss how the low penetration of digital pathology387
has negatively affected integration of AI into pathologist’s diagnostic workflow and validation of algorithms in388
live clinical settings. 70 VII.389

14 Conclusion390

Artificial Intelligence (AI) has come a long way over the last 65 years. Over the last two decades research in AI391
has gained traction in healthcare and it is now being applied across many medical subspecialties of dermatology,392
radiology, and pathology. A nationwide or global strategy for AI and Digital Pathology (DP) will be necessary393
in order to be used for automated diagnosis, triaging cases for improved workflow, or deriving novel insights394
for pathologists. If DP system’s requirements of proper slide image management software, integrated reporting395
systems, improved scanning speeds, and high-quality images, are achieved then it will provide time and cost396
saving benefits over the traditional microscope based pathology approach, offer a second opinion, and in addition397
it will reduce the problem of inter-observer variation. However, AI approaches including deep learning do face398
rightful criticism, as their internals to make decisions by design are not known and hence will require legal and399
regulatory issues worked out to reap the possible benefits. The successful introduction of AI and DP tools to the400
healthcare system will need proper regulatory approved evidence based validation, and 1401
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