

1 Performance of Cox Proportional Hazards and Accelerated
2 Failure Time Models in the Tuberculosis/HIV Co-Infected
3 Survival Data

4 Dr. A. Z. Musa

5 *Received: 9 February 2021 Accepted: 1 March 2021 Published: 15 March 2021*

6

7 **Abstract**

8 Cox model and accelerated failure time models are widely used in modelling of survival data
9 for various diseases. This research compares the performance of Cox proportional hazards
10 models and accelerated failure time (AFT) models using TB/HIV co-infected survival data.
11 The tools used are AFT model plot, the log-likelihood test, Akaike Information Criterion
12 (AIC), Log rank test for comparing all survival variables. The research established that AFT
13 model provides a better description of the dataset as compared with Cox PH models because
14 it allows prediction of Hazard function, survival functions as well as time ratio. Moreover, Cox
15 proportional hazard model does not fit appropriately when compared with AFT model;
16 thereby provide less appropriate description of the survival data. Hence, it is better for
17 researchers of TB/HIV coinfection to consider AFT model even if the proportionality
18 assumption of the Cox model is satisfied.

19

20 **Index terms**— accelerated failure test model, cox PH Model, TB/HIV co-infection, survival data and log-
21 likelihood test.

22 **1 Introduction**

23 Survival analysis is a statistical method for data analysis where the length of time, ?? 0 corresponds to the time
24 period from a well-defined start time until the occurrence of some particular event or endpoint ?? ?? , i.e. ?? =
25 ?? ?? ? ?? 0 , Ata and Sozer (2007). It is a common outcome measure in medical studies for relating treatment
26 effects to the survival time of the patients. In these cases, the typical start time is when the patient first received
27 the treatment, and the end point is when the patient died or was lost to follow-up. These developments have
28 led to the introduction of several new extensions to the original model. However the Cox PH model may not be
29 appropriate in many situations and other modifications such as stratified Cox model or Cox model with time-
30 dependent variables can be used for the analysis of survival data. The AFT model is another alternative method
31 for the analysis of survival data. Hence, the importance is to compare the performance of the Cox models and
32 the AFT models. This will be studied by means of real dataset which is from a cohort of TB/HIV co-infected
33 patients managed in tertiary Directly Observed Treatment Short (DOTS)

34 Course centre for a period of six months among the Nigerian adults.

35 Cox regression model in the presence of nonproportional hazards was considered by Ata and Sozer (2007). They
36 worked on alternative different models in the violation of proportional assumption. They analysed the treatment
37 and prognosis effects with censored and survival data, makes the assumption of constant hazard ratio. David
38 (2014) produced data for the simulation experiments that mimic the types of data structures applied researchers
39 encounter when using longitudinal biomedical data. Validity was assessed by a set of simulation experiments and
40 results indicate that a nonproportional hazard model performs well in the phase of violated assumption of the Cox
41 proportional hazards. Jiezhi (2009) compared the proportional hazards (PH) model and parametric AFT models.
42 The major aims of his work was to support the argument for consideration of AFT model as an alternative to
43 the PH model in the analysis of survival data by means of real life data from TB and HIV in Uganda. There are

6 C) ACCELERATED FAILURE TIME MODEL

44 two advantages of Cox proportional regression models, which are ability to incorporate time varying covariate
45 effects and timevarying covariates (Cox, 1972). Ogungbola et al (2018) there research established that the model
46 provides a better description of the dataset because it allows prediction of Hazard function, survival functions as
47 well as time ratio. The result revealed that the Weibull model provided a better fit to the studied data. Hence,
48 it is better for researchers of TB/HIV co-infection to consider AFT model even if the proportionality assumption
49 is satisfied. Kazeem et al (2015)considered the application of survival analysis has extended the importance of
50 statistical methods for time to event data that incorporate time dependent covariates. The Cox proportional
51 hazards model is one such method that is widely used. An extension of the Cox model with timedeprived
52 covariates was adopted when proportionality assumption are violated. The purpose of this study is to validate
53 the model assumption when hazard rate varies with time. This approach is applied to model data on duration
54 of infertility subject to time varying covariate.

55 2 Methodology a) Study and Sampling Procedure

56 The population target for this study comprises all Patients with Tuberculosis related cases/issues in the DOTs
57 Clinic of NIMR who had been registered between 2011 and 2016. The research design is a cross sectional design.
58 The study was carried out at the DOTs Clinic of the Nigerian Institute of Medical Research (NIMR). A parastatal
59 under the Federal Ministry of Health that has treated over 5000 TB patients in the last 6 years. The Institute
60 has a Directly Observed Treatment Short Course (DOTS) centre where it attends to patients infected with TB.
61 All patients that were enrolled between 2011 and 2016 was included in the study; it enabled the completion of
62 the 6months treatment cycle for those enrolled in 2016.

63 3 Log rank test:

64 This was used to compare the death rate between two distinct groups, conditional on the number at risk in the
65 groups. The log rank test hypothesis that; H_0 : All survival curves are the same H_1 : Not all survival curves
66 are the same.

67 Log rank test approximates a chi-square test which compares the observed number of failures to the expected
68 number of failure under the hypothesis. Chisquared test is used.

69 A large chi-squared value implies a rejection of the null hypothesis for the alternative hypothesis.

70 4 b) Cox Proportional Hazard Model

71 The non-parametric method does not control for covariates and it requires categorical predictors. When we have
72 several prognostic variables, we must use multivariate approaches. But we cannot use multiple linear regression
73 or logistic regression because they cannot deal with censored observations. We need another method to model
74 survival data with the presence of censoring. One very popular model in survival data is the Cox proportional
75 hazards model, which is proposed by 7 . The Cox Proportional Hazards model is given by
$$\text{exp}(?1 + ?2 + ?3 + ?4 + ?5 + ?6 + ?7 + ?8 + ?9 + ?10) = ?0(?)\text{exp}(?x)$$
(1)

76 where $?0(?)$ is called the baseline hazard function, which is the hazard function for anindividual for whom
77 all the variables included in the model are zero, $? = (1, 2, \dots, 9)$ is the values of the vector of
78 explanatory variables for a particular individual, and $? = (0, 1, 2, \dots, 9)$ is a vector of regression
79 coefficients.

80 The corresponding survival functions are related as follows: This model, also known as the Cox regression
81 model, makes no assumptions about the form of $?0(?)$ (non-parametric part of model) but assumes parametric
82 form for the effect of the predictors on the hazard (parametric part of model). The model is therefore referred
83 to as a semi-parametric model. The beauty of the Cox approach is that this vagueness creates no problems for
84 estimation. $?0(?) = ?0(?)\text{exp}(?x)$ (2)

85 Even though the baseline hazard is not specified, we can still get a good estimate for regression coefficients
86 $??$, hazard ratio, and adjusted hazard curves. The measure of effect is called hazard ratio. The hazard ratio of
87 two individuals with different covariates $??$ and $? * = ?0(?)\text{exp}(?x) / ?0(?)\text{exp}(?x *) =$
88 $\text{exp}([? - ? *])$ (3)

89 This hazard ratio is time-independent, which is why this is called the proportional hazards model.

91 5 Limitation of Cox

92 6 c) Accelerated Failure Time Model

93 Accelerated Failure Time model (AFT model) is a parametric model that provides an alternative to the commonly
94 used proportional hazards models. Whereas a proportional hazards model assumes that the effect of a covariate
95 is to multiply the hazard by some constant, an AFT model assumes that the effect of a covariate is to accelerate
96 or decelerate the life course of a disease by some constant.

97 The assumption of AFT model can be expressed as $?0(?) = ?0(\text{exp}(?x))$ for $?0(4)$

98 Where $?0(?)$ is the survival function at the time t and the $?0(\text{exp}(?x))$ is the baseline survival
99 function at the time t . From this equation (1), AFT model can states that the survival function of an individual
100 with covariate x at the time t is same as the baseline survival function of the time $(\text{exp}(?x))$. The factor

101 $(\exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p))$ is known as the acceleration factor. The acceleration factor is the key measure of association
 102 obtained in the AFT model. It is a ratio of survival times corresponding to any fixed value of survival time.
 103 The general log-linear representation of AFT model for i th individual is given as $\log(\lambda_i) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon_i$ (5)
 104 Where $\log(\lambda_i)$ represents the log-transformed survival time, (X_1, X_2, \dots, X_p) are the explanatory
 105 variables with the coefficients $(\beta_0, \beta_1, \dots, \beta_p)$, ϵ_i is the residual term and assumes a specific distribution and
 106 β_0 is the intercept and β_i is the scale parameters respectively.

108 **7 Types of AFT Models**

109 There are various types of AFT models, they are as follows:

110 1) Exponential and Weibull Model 2) Log-normal AFT model 3) Log-logistic AFT model 4) Gamma AFT
 111 model We shall be explaining just the first two in this research: i. Exponential and Weibull AFT model:

112 The exponential distribution was studied 1st in connection with kinetic theory of gasses 4 The survival function
 113 of log-normal AFT model is given by $S(t) = \exp(-\frac{t}{\mu})$ where μ is the mean survival time
 114 σ is the standard deviation of survival time

115 The cumulative hazard function of log-logistic AFT is given by $H(t) = \log(-\log(S(t))) = \log(t/\mu) + \sigma \log(\gamma)$

117 **8 Various goodness of fit Test:**

118 There are various goodness of fit test, they are:

119 **9 Analysis and Discussion**

120 We can see from

121 **10 LOG Rank Test**

122 H_0 : The effect of the three regimens does not have significant to TB preventive therapy for TB/HIV coinfected
 123 adults.

124 **11 H_1 : Not H_0 :**

125 In Table ???. Since P -value (.0192) < 0.05 , the effect of the three regimens does have significant to TB
 126 preventive therapy for TB/HIV co-infected adults. Then survival distributions are different in the population
 127 which make the result more statistically significance. By the log-rank test, in the preventive therapy, there is
 128 significant difference among three regimens of TB preventive therapy for TB/HIV co-infected adults, since the p-
 129 value is 0.0192 against 5% level of significance. The K-M curves for time to event length and time to combined
 130 event of the preventive therapy is presented (Figure 1)

131 **12 a) Cox Proportional Hazard Model**

132 In Table ??, since P -value < 0.05 : SEX, HAEMO GLUC, BMI and LYMPHABS, then they are statistically
 133 significant. The coefficient for Creatinine is positive, telling us that greater Creatinine values are associated with
 134 greater hazard and therefore shorter survival. The coefficient for weight is negative -normal body weight will be
 135 associated with a lower hazard and longer survival among the therapy population. The coefficient of LYMPHABS
 136 is negative showing that there is no significant reduction in CD4 cells which will be associated with a lower hazard
 137 and longer survival. The CD4 cells are the cells that the HIV Virus kills. As HIV infection progresses, the number
 138 of these cells decline. When the CD4 counts drops below 200 due to advance HIV disease, a person is diagnosed
 139 with AID. A normal range for CD4 lies between 500-1500. If haemoglobin content is also reduced, then the
 140 possibility of survival will be greatly affected. The BMI estimate of parameter is also negative, and then there
 141 will be associated lower hazard and longer survival.

142 The results of a PH model fitted to this dataset are obtained (Table ??) $\log(\lambda(t)) = \beta_0 + \beta_1 \log(t) + \beta_2 \log(\text{SEX}) + \beta_3 \log(\text{HAEMO GLUC}) + \beta_4 \log(\text{BMI}) + \beta_5 \log(\text{LYMPHABS})$
 143 $+ \beta_6 \log(\text{CD4}) + \beta_7 \log(\text{CD8}) + \beta_8 \log(\text{CD4/CD8}) + \beta_9 \log(\text{CD45RA}) + \beta_{10} \log(\text{CD45RO}) + \beta_{11} \log(\text{CD45RA/CD45RO}) + \beta_{12} \log(\text{CD45RA/CD45RO})^2$
 144 $+ \beta_{13} \log(\text{CD45RA/CD45RO}) \log(\text{CD45RA/CD45RO}) + \beta_{14} \log(\text{CD45RA/CD45RO}) \log(\text{CD45RA/CD45RO})^2 + \beta_{15} \log(\text{CD45RA/CD45RO})^3$

145 After a Cox PH model is fitted, the adequacy of this model, including the PH assumption and the goodness of
 146 fit, needs to be assessed. The PH assumption checking with graphical method and two statistical test methods.
 147 Omnibus Test: From Table ??, since the P-value (0.009) < 0.05 , we have statistical reasons to reject H_0 and
 148 conclude that the parameter of the model are more stable and can be totally relied on in evidence based decision
 149 making regarding the TB/HIV preventive therapy. Also, the log-likelihood supported the significant of the model
 150 parameter estimate.

151 **13 b) Accelerated Failure Time Models**

152 In AFT model, the log minus log plot will be parallel. For this reason, the investigation of Accelerated Failure.

15 CONCLUSION

153 Time Model comes into play. In univariate AFT models, age, haemoglobin, body mass index, sex, and absolute
154 lymphocyte count are not statistically significantly associated with time to sputum conversion of TB/HIV co-
155 infected patients. The results from the different AFT models applied to the time to sputum conversion are
156 presented in Tables 5, 6, 7, and 8. There is no big difference for the estimations in different models. Accelerated
157 failure time models were compared using statistical criteria (likelihood ratio test and AIC). The Weibull in table
158 8 reveals that age and sex are statistically significant while HAEMO GLUC, BMI and LYMPHABS are not
159 significant with their p-value greater than 0.05. We compared all these AFT models using statistical criteria
160 (likelihood ratio test and AIC). The nested AFT models can be compared using the likelihood ratio (LR) test
161 in Table ??0. The Cox model, loglogistic model and the Weibull model are nested within the log-normal model
162 (Table ??0). According to the LR test, the weibull model fits better. However, the LR test is not valid for
163 comparing models that are not nested. In this case, we use AIC to compare the models (Table ??1), (The smaller
164 AIC is the best). The Weibull AFT model appears to be an appropriate AFT model according to AIC compared
165 with other models, although it is only slightly better than Log-logistic or Log-normal model. We also note that
166 the Cox model and Lognormal model are poorer fits according to LR test and AIC. This provides more evidence
167 that the PH assumption for this data is not appropriate. At last, we conclude that the Weibull model is the best
168 fitting the AFT model based on AIC criteria.

169 14 IV.

170 15 Conclusion

171 In this research, our findings revealed the absence of protection of TB/HIV preventive therapies on sputum
172 conversion, death and combined event of the conversion and death. The study presents similar estimates of risk
173 for the covariates with the previous study based on the baseline variables in the Cox Proportional Hazard model.
174 But the PH assumption does not hold for LYMPHABS in this analysis. We also use three different AFT models
175 to fit the data. We find that the weibull AFT model fit better for this dataset. The univariate PH models, the
176 SEX, HAEMO GLUC, BMI and LYMPHABS are lesser than p-value, then they are statistically significant. The
177 coefficient for Creatinine is positive, telling us that greater Creatinine values are associated with greater hazard
178 and therefore shorter survival. The coefficient for weight is negative-normal body weight was associated with
179 a lower hazard and longer survival among the therapy population. The coefficient of LYMPHABS is negative
180 showing that there is no significant reduction in CD4 cells which will be associated with a lower hazard and
181 longer survival. Men have longer survival time and sputum conversion time than women. The risks of TB/HIV
182 progression, death and the combined event of TB/HIV and death are higher among old adults.

183 Log-rank test was able to show us that effect of the three regimen have significant association to the TB/HIV
184 co-infected preventive therapy. Moreso, through Omnibus Tests of Model, we were able to deduce that there is
185 no significant difference in time to sputum conversion of the TB/HIV co-infected patients on therapy. Telling us
186 that the model is statistically adequate and significant

187 According to the Cox PH model with timedeependent variables, the predictive effect of absolute lymphocytes
188 count clearly changes at about 2 years. Before 2 years, the hazard is less than one, which indicates that the
189 risk of TB/HIV as absolute lymphocyte count increases. According to the log-logistic AFT model, LYMPHABS
190 prolongs the time to sputum conversion as it increases along the process. The PH model is routinely applied to
191 the analysis of survival data. The study considered here provides an example of a situation where AFT model is
192 appropriate and where the PH model provides a little better description of the data set. We have seen that the
193 PH model is a less valuable and realistic alternative to the AFT model in some situations. AIC shows us that
194 weibull AFT model fits better when compared to the other models.

195 This study is based on a large number of participants from Lagos residents in Nigeria, where the prevalence of
196 TB infection and HIV are very high. In this study, the Cox PH model and the AFT model have been compared
197 using TB/HIV co-infected data. Association of the TB/HIV preventive therapies with the sputum conversion is
198 examined through the linkage of the signs and symptoms to replication of the virus. The Cox model expresses the
199 multiplicative effect of covariates on the hazard. The AFT model provides an estimate of the survival function
200 time ratios. In this research, we have analyzed the TB/HIV dataset using these alternative methods. This study
201 provides an example of a situation where the AFT model is appropriate and where the PH model provides a little
202 description of the data since logminus-log plot is not parallel. The Cox proportional hazard assumption does not
203 hold in this dataset.

204 We select the model that best describes the data. In addition, the example illustrates that the AFT model
205 have a more realistic interpretation and provides more informative results as compared to Cox PH model for the
206 available data. Therefore, a) We suggest that using the Cox PH model may not be the optimum approach. The
207 AFT model may provide an alternative method to fit some survival data.

208 b) Determining the effect of the three regimens may be additional values to researches.

209 The results from this model could then be compared with the standard AFT models and Cox PH models. In
210 addition, further study can be carried out to evaluate the effects of practical cases such as large censoring. ¹

Figure 1:

Figure 2:

II. Cox model with

time-varying covariates remains a flexible model in survival analysis of patients with acute severe illness. Schei ke (2004) presented some development that dealt with time varying effect of covariates. He also emphasized the use of semi-parametric models where some effects are time-varying and some are time-constant, thus giving the extended flexibility only for effects where a simple description is not possible. Time-varying effects may be modelled completely non-parametrically by a general intensity model,

i ?

(t) .
= Smooth-
(t, ing
X tech-
(t))niques
i have
? been

suggested for estimation of $\lambda(t)$; see, e.g., Nielson and Linton (1995) and the references therein. Such a model may be useful when the number of covariates is small compared to the amount of data, but the generality of the model makes it difficult to get a clear, if any, conclusion about covariate effects. Yuanxin (2013) built up a Cox proportional hazards model by survival analysis using the SAS statistical package. To process the analysis, the proportional assumption or time dependence for individual factors is tested; variables are selected; and their interactions are considered to optimize the model. Due to strikingly impact of gender on the prediction, it is stratified. Therefore different baseline hazards are applied for the set of variables within each group. In the model, the parameters are estimated by maximum likelihood Newton-Raphson algorithm. The results show that gender, status of diabetes, age, body mass index, cholesterol and blood pressure are found impacting the diseases onset/development. Interestingly, the education level has its influence on it as well. In this research, we applied the model into the sputum conversion of the TB/HIV which are co-infected patients managed in tertiary DOTS centre for a period of 6 months among the Nigeria adults. We also make use of the knowledge of percentage of censoring, variation in sample sizes. All these contribute to the existing knowledge.

Figure 3:

- 7) Akaike Information Criterion
- 8) Hosmer-Lemeshow test
- 9) Kuiper's test
- 10) Kernelized Stein Discrepancy
- 11) Zhangs Z K , Z C Z A test
- 12) Moran test

AIC: To compare various semi-parametric and parametric models Akaike Information Criterion (AIC) is used. It is a measure of goodness of fit of an estimated statistical model. In this study, AIC is computed as follows

$$AIC = 2(P \ln n) + 2K \quad (10)$$

Where P is the number of parameters and K is the number of coefficients (excluding constant) in the model. For P=1, for the exponential, P=2, for Weibull, Log-logistic, III.

- 1) Bayesian Information Criterion
- 2) Kolmogorov-Smirnov test
- 3) Cramer-von Mises Criterion
- 4) Anderson-Darling test
- 5) Shapiro Wilk test
- 6) Chi-squared test

Figure 4:

6

Covariate	??	Life-Expn	Se(coeff)	Wald p
CD4	-0.014	0.989	0.031	0.659
Weight	-0.061	0.928	0.084	0.465
BMI	0.627	1.858	0.487	0.349
Glucose	-0.023	0.977	0.016	0.852
Haemoglobin	0.146	1.158	0.161	0.009
Creatine	-0.000	0.999	0.006	0.079

Figure 5: Table 6 :

7

Covariate	??	Life-Expn	Se(coeff)	Wald p
CD4	-0.011	0.919	0.034	0.50
Weight	-0.075	0.908	0.097	0.440
BMI	0.336	1.3959	0.376	0.371
Glucose	-0.022	0.978	0.015	0.145
Haemoglobin	0.136	1.146	0.176	0.438
Creatine	-0.00001	0.999	0.005	0.984

Figure 6: Table 7 :

8

Distribution	m	L	LR	df
Cox model	2	-42.961	115.142	1
Log-logistic	2	-100.532	326.460	1
Weibull	3	-263.762	440.452	2
Log-normal	2	-43.536		

Figure 7: Table 8 :

9

Distribution	Log-likelihood	k	c	AIC
Cox Model		6	1	256. 214
Log-logistic	-100.532	6	2	225. 156
Weibull	-263.762	6	1	218. 079
Log-normal	-43.536	6	2	235. 019

Figure 8: Table 9 :

.1 Acknowledgement

We will like to acknowledge the Director and Institutional Review Board (NIMR-IRB) of National Institute Medical Research, Yaba, Lagos for their approval for the effective use of their patients' data.

.2 Appendices

[211] [Ogungbola et al. ()] 'Accelerated failure time models with application to data on TB/HIV co-infected patients in Nigeria'. O O Ogungbola , A A Akomolafe , Z A Musa . *American J Epidemiol Public Health* 2018. 2018. 2 (1) p. .

[218] [Monica ()] *Bayesian Approaches to Correcting Bias in Epidemiological Data*, M B Monica . 2011. dissertation submitted to Department of Statistical Science, Baylor University

[220] [Thomas ()] *Bootstrap application in proportional hazard models*, M L Thomas . 1993. Iowa State University (Retrospective thesis and dissertation)

[222] [Jiezhi ()] *Comparison of Proportional Hazards and Accelerated Failure Time Models, A Master of Science Thesis Submitted to the College of Graduate Studies and*, Q Jiezhi . 2009. Saskatchewan Canada. Department of Mathematics and Statistics University of Saskatchewan Saskatoon

[225] [Lindsay ()] *Cox Regression Model*, S Lindsay . 2004. thesis submitted to Department of Mathematics, B.S., Virginia Polytechnic Institute and State University

[227] [Ata and Sozer ()] 'Cox Regression Models with Non proportional Hazards applied to Lung Cancer survival data'. Ata , M Sozer . *Hacettepe Journal of Mathematics and Statistics* 2007. 36 (2) p. .

[229] [David ()] 'Data Generation for the Cox Proportional Hazards Model with Time-Dependent Covariates: A Method for Medical Researchers'. J H David . *Statistics in Medicine* 2014. 33 (3) p. .

[231] [Persson ()] *Essays on the assumption of Proportional Hazards in Cox Regression*, dissertation for the degree of Doctor of Philosophy in Statistics, I Persson . 2002. at Upsala University

[233] [Bender et al. ()] 'Generating Survival Times to Simulate Cox PH Models'. R Bender , T Augustin , M Blettner . *Wiley Online Library* 2005. 24 (11) p. 338.

[235] [Global tuberculosis control: surveillance, planning, financing World Health Organization ()] 'Global tuberculosis control: surveillance, planning, financing'. *World Health Organization* 2007. p. 79.

[237] [Johnson and Strawderman ()] 'Induced smoothing for the semiparametric accelerated failure time model: Asymptotics and extensions to clustered data'. L M Johnson , R L Strawderman . *Biometrika* 2009. 96 p. .

[240] [Nielsen and Linton ()] 'Kernel Estimation in a Nonparametric Marker Dependent Hazard Model'. J P Nielsen , O B Linton . *Ann. Statist* 1995. 23 (7) p. .

[242] [John et al. ()] 'Modelling Survival in Acute Severe Illness Cox versus AFT models'. L M John , D B Andrew , J S Patricia , Hbn Tamara . *Journal of Evaluation in Clinical Practice* 1356 -1294. 2006. 2006.

[244] [Pagano and Gauvreau ()] M Pagano , K Gauvreau . *Principles of Biostatistics*, (Belmont, Calif Wadsworth) 1993. p. . (1st ed.)

[246] [Lin and Ying ()] 'Rank-based Inference for Accelerated Failure Time Models'. Jin Z Lin , D Y Ying , Z . *Biometrika* 2003. 90 p. .

[248] [Wei et al. ()] 'Regression analysis of multivariate failure time data by modeling marginal distributions'. L J Wei , D Y Lin , L Weissfeld . *Journal of the American Statistical Association* 1989. 2013. 84 p. . Survival Analysis of Cardiovascular Diseases. Washington University in St. Louis (25. Yuanxin H.)

[251] [Cox ()] 'Regression mode0ls and lifetables'. D R Cox . *Journal of the Royal Statistical Society Series B* 1972. 34 p. .

[253] [Ayman ()] 'Semi-Parametric Hazard Ratio applied to Engineering Insurance System'. A M Ayman . *International Journal of Engineering Research and Application* 2012. 2 (2) p. .

[255] [Kazeem et al. ()] 'Semi-Parametric Non-Proportional Hazard Model With Time Varying Covariate'. A A Kazeem , A A Abiodun , R A Ipinyomi . *Journal of Modern Applied Statistical Methods* 2015. 14 (2) . (Article 9)

[258] [Sy Han ()] *Statistical methods and computing for Semi-parametric and Accelerated Failure Time Model with induced Smoothing*, C Sy Han . 2013. department of Statistics, University of Connecticut Graduate School

[260] [Maller and Zhou ()] *Survival Analysis with Long-Term Survivors*, R Maller , X Zhou . 1996. New York: Wiley.

[261] [Efron ()] 'The efficiency of Cox's likelihood function for censored data'. B Efron . *J. Am. Statist. Assoc* 1977. 72 p. .

[263] [Scheike ()] 'Time-varying effects in survival analysis'. T H Scheike . *Handbook of Statistics*, N Balakrishnan, C R Rao (ed.) 2004. Elsevier B.V., North Holland. 23 p. .

[265] [Leemis et al. ()] *Variate Generation for Accelerated Life and Proportional Hazards Models with Time Dependent Covariates*, L M Leemis , L Shih , K Reynertson . 1989. Norman, OK 73019. University of Oklahoma