

¹ Effect of Radiotherapy on Renal Function in Cervical Cancer
² Patients Treated at a Comprehensive Cancer Centre in Nigeria

³ Usman M. Aliyu

⁴ Received: 4 February 2021 Accepted: 1 March 2021 Published: 15 March 2021

⁵

⁶ **Abstract**

⁷ Background: Cervical cancer is the second commonest malignancy in women worldwide, and a
⁸ leading cause of cancer-related death for women in Nigeria. Unfortunately, treatment for
⁹ cervical cancer induces renal function injury due to the nephrotoxicity of commonly used
¹⁰ cytotoxic medications, as well as radiotherapy. Thus, this study seeks to evaluate the effect of
¹¹ radiotherapy on the renal function of cervical cancer patients. Objectives: 1) To examine if
¹² there will be a positive effect of radiotherapy on renal function in patients with cervical cancer
¹³ after treatment. 2) To ascertain the statistical significance of the difference in renal function of
¹⁴ cervical patients before and after treatment. Method: The study was an ex post facto research,
¹⁵ used for retrospective evaluation of documented information on 220 cervical cancer patients
¹⁶ treated in the department of radiotherapy and oncology UDUTH, Sokoto. The study covered
¹⁷ a five-year period, beginning from January, 2010 to December, 2015. Data was obtained from
¹⁸ the patients' case notes using a semi-structured data extraction form. Percentage and analysis,
¹⁹ independent t-test and chisquare statistics was used to determine the outcome of the findings.

²⁰

²¹ **Index terms**— cervical cancer, chemotherapy, radiotherapy, renal function.

²² **1 Introduction**

²³ Cancer of the cervix (CC) is the second commonest cancer affecting women worldwide and about 86% of cervical
²⁴ cancer cases occur in developing countries (1) . According to statistical data, 8-30 new cases of cervical cancer
²⁵ occur in 100,000 females within a year, depending on the region and state (2) . Cervical cancer is recognized to be
²⁶ one of leading causes of illness and death among women worldwide, especially in developing countries (1) (including
²⁷ Nigeria) (3) . Unfortunately, most of the patients in Nigeria present at late stages and often have evidence of
²⁸ renal impairment at presentation (3) . The renal system is one of the first body systems to be directly affected
²⁹ by cancer of the cervix, especially in advanced cases (1) . Renal impairment was seen in more than a quarter
³⁰ of patients presenting with cancer of the cervix prior to commencement of treatment (4) . These complications
³¹ are often preventable or reversible with prompt diagnosis and treatment (5) . Treatment of cervical cancer
³² commonly requires the use of chemotherapy, which can be given at the same time with radiotherapy (concurrent
³³ chemotherapy/radiotherapy-CRT), or alone as neo-adjuvant or adjuvant chemotherapy. The treatment is usually
³⁴ stratified by stage to include External Beam Radiation Therapy (EBRT), which is done by the use of CT-based
³⁵ treatment planning and conformal blocking, to complete the standard of care for EBRT (6) .

³⁶ Regarding the effect and outcome of chemotherapy and radiation therapy on renal functioning in patients, it
³⁷ has been shown that these treatments have a mixed effect, based on the classification of the cancer stages. For
³⁸ example, Okadema et al showed that Radiotherapy and chemotherapy may have adverse effects on renal and
³⁹ urological function (3) . The same study showed that a relatively high percentage of women with pelvic radiotherapy
⁴⁰ and/or chemotherapy had a ?20% reduction in their estimated Glomerular Filtration rate (eGFR). Other studies
⁴¹ report primarily that chemoradiation therapy has the negative effect of renal impairment (evidenced by a
⁴² reduction in GFR) in patients with cervical or pelvic malignancy. Many studies have also shown that the
⁴³ presence of renal impairment in patients with carcinoma of the cervix is a poor prognostic indicator (7) . Patient
⁴⁴ with evidence of renal impairment relating to the cervical cancer are said to be stage 3b according to the widely

7 D) STATISTICAL ANALYSIS

45 used International Federation of Obstetrics and Gynaecology (FIGO) staging for cancer of the uterine cervix (8)
46 .Varlotto et al found that radiotherapy is associated with a rise in renal dysfunction (9) .

47 However, other reports based on comparison tests, have shown a significantly statistical difference between
48 GFR values at the beginning vs. three months after using the therapy, while there was no difference between
49 GFR values at three months into treatment vs. six months into treatment (2) . Specifically for patients with
50 cervical cancer, studies have shown a significant statistical difference between the average values of GFR after
51 therapy. This led Horan, McArdle, Martin, Collins & Faulfo assert that pelvic radiation does not induce any
52 deterioration of renal function or degree of hydronephrosis. Overall, the kidney function was found to improve
53 at three and 6 months in the majority of patients (10) .

54 II.

55 2 Aim and Objectives

56 The primary aim of the study was to evaluate the effect of radiotherapy on the GFR of cervical cancer patients
57 that underwent this treatment procedure at the department of Radiotherapy and Oncology, Usman Danfodiyo
58 University Teaching Hospital (UDUTH) Sokoto state. The objectives are: 1. To determine the effect of
59 radiotherapy on renal function in patients with cervical cancer after treatment. 2. To ascertain the statistical
60 significance of the difference in renal function of cervical patients before and after treatment.

61 3 III.

62 Research Questions

63 1. Would there be a positive or negative effect of radiotherapy on renal function in patients with cervical
64 cancer? 2. Would there be a significant difference in renal function of cervical cancer patients after radiotherapy,
65 as compared to their renal function before radiotherapy?

66 IV.

67 4 Method a) Research design

68 The study adopted an ex post facto design for retrospective evaluation of cervical cancer patients that underwent
69 radiotherapy treatment at the Department of Radio-Oncology, Usman Danfodiyo University Teaching Hospital
70 (UDUTH), Sokoto. The study covered a 5-year period of treatment for patients with cervical cancer, starting
71 from January 2010 and December 2015. In this context, the authors did not manipulate the independent variables
72 (radiotherapy and chemotherapy) to observe their effect on the dependent variables (Renal function, eGFR).

73 5 b) Participants

74 Participants were cervical cancer patients that received radiotherapy treatment in the department of
75 Radiotherapy-Oncology UDUTH, Sokoto. The sample consisted of 220selected case notes of cervical cancer
76 patients that were exposed to radiotherapy treatment. The patients' demographic characteristics include sex,
77 age, marital status, and occupation. Participants were both young and old patients, with the age ranging from
78 28-87years.

79 6 c) Materials

80 Data was collected from secondary sources. This comprised of patients case notes obtained in the archive of
81 the department of Radio-Oncology UDUTH, Sokoto. The treatment information documented in patients' was
82 obtained using a semi-structured data extraction form. For the radiotherapy procedure, patients were simulated in
83 a computed tomography simulator with thermoplastic immobilization device and positioning devices such as knee-
84 rests, to reproduce the same position during treatment. Three-dimensional conformal radiotherapy was planned
85 using the Monaco treatment planning system (version 5.0). Radiation was delivered by linear accelerator with 6
86 MV or 10 MV photons. Four conformal fields were used in treating all carcinoma of cervix patients. Adequate
87 coverage of target volumes and sparing of organs at risk was achieved. Treatment verification with Electronic
88 Portal Imaging Devices (EPID) was done. The GFR values were calculated using Cockroft-Gault equation at first
89 clinic visit, and repeated at first follow-up after treatment (radiotherapy).

90 7 d) Statistical Analysis

91 The data were analyzed using the Microsoft excel, then exported into SPSS version 20 (Chicago IL) for windows;
92 for statistical analysis. The data were analyzed for frequency distribution, generated for all categorical variables.
93 Mean and standard deviation were determined for quantitative variables. Comparison of the differences of the
94 patients renal function status before treatment and after treatment was determined through the use independent
95 t-test.

96 V.

97 8 Results

98 The purpose of the study was to evaluate the effect of radiotherapy of the GFR of cervical cancer patients.
99 The GFR were calculated using Cockroft-Gault equation at first clinic visit, and repeated at first followup after
100 treatment (radiotherapy). The results obtained from the statistical analysis is tabulated and interpreted as
101 follows: The demographic distribution of patients on table 1shows that the peak age incidence occurred with age
102 range of 40-49 year (31.4%), while the second most affected age group was 50-59 years (24.1%). The mean age
103 of the cancer patients was 49.9, SD \pm 11.9, and the age range of 24-87 years. Occupationally, 134(61.4%) were
104 housewives, 35 (15.9%) were Civil servants, 31(14.1%) were traders/businesswomen, 14(6.4%) were farmers and
105 5(2.3%) had other occupations. The mean age of the cancer patients was 49.9, SD \pm 11.9, and the age range of
106 24-87 years.

107 9

108 Table 3 shows that there is both positive and negative effect of radiotherapy on renal function of patients with
109 cervical cancer after treatment. In analyzing these effect by percentages based on patients' disease stages, G1b
110 indicates 63.6% negative effect and 36.4% positive effective. G2a 39.4% negative effect and 60.6% positive effect,
111 G2b 49.0% negative effect and 51.0% positive effect. G3a 42.9% negative effect and 57.1% positive effect, G3b
112 43.5% negative effect and 56.5% positive effect. G4a 63.2% negative effect and 36.8% positive, G4b 72.7% negative
113 effect and 27.3% positive effect. Overall, the finding shows 51.8% positive effect and 48.2% negative effect on
114 renal function of the 220 patients. This result indicates that radiotherapy has both positive and negative effects
115 on renal function of patients with cervical cancer after treatment. However, this effect of radiotherapy on renal
116 function of the patients with cervical cancer was not found to be of statistically significant difference, with χ^2
117 (1, N=220) = .284, P = .288. Table 4 shows the pattern of the eGFR status among the patients before and after
118 completion of their treatments. The GFR measurement for the patients was done before and after radiotherapy.

119 Table 5 shows there was a marginal difference in the mean score of patients GFR before and after radiotherapy
120 intervention. The mean scores ($M= 69.67$, $SD=19.48$, $N=220$) for GFR before treatment and the mean scores of
121 ($M=70.87$, $SD= 20.38$, $N=146$) for GFR after treatment. However, there was no statistical significant difference
122 in the patients GFR between before and after treatment as was($t (219) = -0.66$, $P < 0.5$).

123 10 VI.

124 11 Discussion

125 Cervical cancer is the second most common malignancy in women and it is a leading cause of cancer-related
126 death for women in Nigeria. Unfortunately, treatment for cervical cancer induces renal function injury due to the
127 impact of high doses of ionizing radiation on the renal system in the course of radiotherapy. Following the known
128 deleterious effect of radiotherapy on renal function, this study seeks to investigate the change in Glomerular
129 Filtration Rate(GFR) among cervical cancer patients that have undergone radiotherapy in the department of
130 Radio-Oncology UDUTH, Sokoto.

131 The mean age of the cancer patients in this study was 49.9 ($SD \pm 11.9$), with an age range of 24-87years.
132 The peak incidence of (31.4%) of the disease occurred in people age 40-49 years, just as it been established in
133 previous researches done in Nigeria (11,12,13) .

134 The statistical analysis on table 2 shows the classification of cancer stages presented by patients. Stage1b 5%,
135 stage2a 15%, and 2b 23.2%, stage3a 22.3%, and 3b 20.9%, stage4a 8.6%, and 4b was 5% respectively. This shows
136 that there was 80%incidence of advanced disease (Stage 2b and above). This corresponds to other similar studies
137 (15,16) which describe the late presentation of cervical cancer cases in Nigeria, compared to high-income countries
138 where early presentation of cases predominates the disease (17) . This supports the importance of screening and
139 early testing, which significantly reduces the incidence of cervical cancer and increases early detection of new
140 cases, thereby improving prognosis for survival following treatment (19) .

141 Regarding the research questions which were put forward to be answered in this study, the statistical analysis
142 for question one shows a bidirectional effect of radiotherapy on renal function of patients with cervical cancer.
143 The bidirectional outcome of the result implies that application of radiotherapy as an intervention procedure in
144 the treatment of cervical cancer has both negative and positive effects. This was established in the study from
145 the derived findings which shows 51.8% positive effect of radiotherapy on renal function and 48.2% of its negative
146 effect, in the 220 cervical cancer patients treated. These findings support the evidence from Okadema et al (3) ,
147 who assert that radiotherapy and chemotherapy may have adverse effects on renal and urological function. Their
148 claim is supported by many prospective studies, which indicate that major genitourinary complications (or a
149 significant rise in renal dysfunction) are associated with postoperative radiotherapy (3,9) .

150 On the contrary, despite the availability of extant literature showing that radiotherapy has a negative effect
151 on renal function of the cervical cancer patients, there is also empirical evidence from studies that show the
152 positive effect of radiotherapy on renal function of patients with cancer of the cervix, in tandem with the findings
153 of this study. For example, Horan and his fellow researchers declared that pelvic radiation does not induce any
154 deterioration of renal function or degree of hydronephrosis (10) . Another study also shows that kidney function
155 was improved between the third and sixth months, in the majority of their patients (2) . Some studies have shown

14 CONCLUSION

156 that the dose (Gy) of radiation given and the Stage of the disease (especially among patients with stages III and
157 IV cancer) are often responsible for the renal complication imposed by the use of radiotherapy in treatment of
158 cervical cancer. For example, it found that that patients with KV 20Gy values < 10% retained significantly better
159 renal function than did patients with KV 20Gy values > 10% ($P = 0.002$) (14) . The incidence of complications
160 may be reduced to some extent by careful dose planning and continuous observation of the patient during the
161 irradiation (9,16) .

162 Turning to the second research question, the findings show that there was a marginal difference in the mean
163 score of patients' GFR before and after radiotherapy intervention. The mean scores were ($M = 69.67$, $SD = 19.48$,
164 $N = 220$) for GFR before treatment and the mean scores were ($M = 70.87$, $SD = 20.38$, $N = 146$) for GFR after
165 treatment. This marginal difference observed in the mean scores of the patients' GFR before and after treatment
166 is a supportive evidence to the findings on question one, which shows a Year 2021 variance 51.8% positive effect
167 and 48.2% of negative effect in the 220 cervical cancer patients evaluated in the study. Despite the findings
168 that radiotherapy has both negative and positive effect of renal function, it shows that there was no statistical
169 significant difference in the patients GFR before and after treatment at ($t(219) = -0.66$, $P < 0.5$). Therefore,
170 there was no statistical significant difference found regarding the effect of radiotherapy on renal function of
171 patients with cervical cancer $?2$ ($1, N = 220$) = .284, $P = 288$. This supports findings from other studies, which
172 showed that there was no statistical difference in the risk between patients treated with radical hysterectomy with
173 postoperative radiotherapy and radiotherapy alone (15) . However, the latency period between radiotherapy and
174 the manifestation of urological complications may be relatively long, as radiotherapy has both acute and chronic
175 side-effects.

176 12 Global

177 13 VII.

178 14 Conclusion

179 Cervical cancer remains a disease of great public health importance in most of the developing world, Nigeria
180 inclusive. The various modalities for managing this disease, have been associated with documented deleterious
181 effects on the renal function of patients treated. Although this study shows a marginally predominant positive
182 effect of radiotherapy on renal function of patients with cervical cancer, radiotherapy has been known to cause
183 serious renal injury, especially due to the anatomical location of the cervix. The incidence of complications
184 may be reduced to a large extent by careful dose planning and continuous observation of the patient during the
185 irradiation. Consequently, it is necessary for the radiation oncologists to maintain the standard dose applications
186 and procedures for treatment of cervical cancer patients, as well as to monitor patients closely so as to either
187 prevent complications or identify them early. ¹

1

Volume XXI Issue II Version I
D D D D) F
(
Medical Research
Global Journal of

Figure 1: Table 1 :

187

2

Stage	Frequency	Percent
1b	11	5
2a	33	15
2b	51	23.2
3a	49	22.3
3b	46	20.9
4a	19	8.6
4b	11	5
Total	220	100

Table 2 shows the classification of cancer stages. Stage 1b accounted for 11(5 %), 2a 33(15%), 2b

51(23.2%), 3a 49 (22.3%), 3b 46(20.9%), 4a 19(8.6%), 4b accounted for 11 (5%).

Figure 2: Table 2 :

3

Year 2021
35

Figure 3: Table 3 :

4

Year 2021
36

Figure 4: Table 4 :

5

Variables	Group	N	M	SD	t	df	P = 0.05
GFR:	Before	220	69.67	19.48	-0.66.2	219	0.505
	After	220	70.87	20.38			

Figure 5: Table 5 :

188 [(2012)] , 10.1089/jwh.2011.3385.Epub. 22816437. PMC3521146. Oct. 2012 Jul 20. 21 p. .

189 [Airede and Malami ()] ‘A five year review of female genital tract malignancies in Sokoto, Northwestern Nigeria’.
190 L R Airede , S A Malami . *Mary Slessor J Med* 2005. 5 p. .

191 [Chapman et al. ()] ‘Adjuvant combinedmodality therapy for stage IIIC endometrioid and non-endometrioid
192 endometrial cancer’. B V Chapman , C W Swanick , M S Ning , P K Allen , P T Soliman , S N Westin .
193 *Gynecol Oncol* 2019. 154 p. .

194 [Janaki et al. ()] ‘Aggressive approach in a case of cancer cervix with uremia’. M G Janaki , S Mukesh , Arul
195 Ponni , S Nirmala . dio: 10:4103/ 0973-1075.63136. *Indian J Palliat Care* 2010.

196 [Musa et al. ()] ‘Cervical cancer survival in a resource-limited setting-North Central Nigeria’. J Musa , Nankat , C
197 Achenbach , I Shambe , B Taiwo , B Mandong , P Daru , R Murphy , A Sagay . 11.10.1186/s13027-016-0062-0.
198 *Infectious Agents and Cancer* 2016.

199 [Adegoke et al.] ‘Cervical cancer trends in the United States: a 35-year populationbased analysis’. O Adegoke ,
200 S Kulasingam , B Virnig . *J Womens Health* p. 2012. (Larchmt)

201 [Kunogi et al. ()] ‘dosimetric predictors of nephrotoxicity in patients receiving extended-field radiation therapy
202 for gynecological cancer’. H Kunogi , N Yamaguchi , Y Terao , K Sasai . *Radiat Oncol* 2021. p. .

203 [Goga-Cmega et al. ()] ‘Influence of radiation therapy on glomerular filtration rate after treating pelvic malig-
204 nancy’. V Goga-Cmega , L Tozija , G Spasovski . 10.1515/mmr-2016-0017. *Mac Med Review* 2016. 70 (2) p.
205 .

206 [Mutambara et al. ()] ‘Knowledge, attitudes and practices of cervical cancer screening among women who attend
207 traditional churches in Zimbabwe’. J Mutambara , P Mutandwa , M Mahapa , V Chirasha , S Nkiwane , T
208 Shangahaidonhi . *Journal of Cancer Research and Practice* 2017. 4 (2) p. .

209 [Anorlu et al. ()] ‘Late presentation of patients with cervical cancer to a tertiary hospital in Lagos: what is
210 responsible?’. R I Anorlu , C O Orakwue , L Oyeneyin , O O Abudu . 15597852. *Eur J Gynaecol Oncol* 2004.
211 25 (6) p. .

212 [Bruheim et al. ()] ‘Late side effects and quality of life after radiotherapy for rectal cancer’. K Bruheim , M G
213 Guren , E Skovlund . *Int J Radiat Oncol Biol Phys* 2010. 76 p. .

214 [Mohammed et al. ()] ‘Malignant tumours of the female genital tract in Zaria, Nigeria’. A Mohammed , S A
215 Ahmed , O P Oluwole , S Avidime . *Ann Afr Med* 2006. 5 p. .

216 [Babarinsa et al. ()] ‘Pattern of gynecological malignancies at the Ibadan cancer registry (1976-1995)’. A
217 Babarinsa , E E Akang , I F Adewole . *Nig Q J Hosp Med* 1998. 8 p. .

218 [Horan et al. ()] ‘Pelvic radiotherapy in patients with hydronephrosis in stage IIIB cancer of the cervix: renal
219 effects and the optimal timing for urinary diversion?’. G Horan , O Mcardle , J Martin , C D Collins , C Faul
220 . *Gynecol Oncol* 2006. 101 p. .

221 [Okadome ()] ‘Renal function and urological complications after radical hysterectomy with postoperative radio-
222 therapy and platinum-based chemotherapy for cervical cancer’. Okadome . 10.1093/jjco/hyx160. *Japanese
223 Journal of Clinical Oncology* 2018. 48 (2) p. .

224 [Abdus-Salam et al. ()] ‘Renal Status of Patients with Cervical Cancer Prior to Treatment Commencement’. A
225 A Abdus-Salam , A D Bojude , R A Abdus-Salam . <https://www.tjn.online.com> *Tropical Journal of
226 Nephrology* 2009. 4 (1) p. .

227 [Chao et al. (1998)] ‘The clinical implications of hydronephrosis and the level of ureteral obstruction in stage
228 IIIB cervical cancer’. K S Chao , W M Leung , P W Grigsby . *Int J Radiat Oncol Biol Phys* 1998 Mar 1 5.
229 40 (5) p. .

230 [Varlotto et al. ()] ‘The potential nephrotoxic effects of intensity modulated radiotherapy delivered to the para-
231 aortic area of women with gynecologic malignancies preliminary results’. J M Varlotto , K Gerszten , D E
232 Heron , J Comerci , S Gautam , R Selvaraj . *Am J Clin Oncol* 2006. 29 p. .

233 [Ali et al. ()] ‘Understanding Cervical Cancer in the context of Developing Centres’. F Ali , R Kuelker , B Wassie
234 . *Ann Trop Med Public Health* 2012. 5 p. .

235 [Li et al. ()] ‘Urological complications after radical hysterectomy with postoperative radiotherapy and radiother-
236 apy alone for cervical cancer’. F Li , H Guo , H Qiu , S Liu , K Wang , C Yang , C Tang , Q Zheng , Y Hou .
237 10.1097/MD.0000000000010173. <http://dx.doi.org/10.1097/MD.0000000000010173> *Medicine* 2018.
238 97 (13) .