

1 Serum Haptoglobin, Ceruloplasmin and CRP Levels: Markers of 2 Diabetic Retinopathy

3 Dr. Satinder Kaur¹

4 ¹ PGI chandigarh

5 Received: 24 April 2012 Accepted: 24 May 2012 Published: 5 June 2012

6

7 **Abstract**

8 Background : Inflammation has been recognised as a critical contributor to retinal capillary
9 closure, one of the main pathogenic event in diabetic retinopathy. The relationship between
10 acute phase markers of inflammation and diabetic retinopathy was studied. Materials and
11 Methods : 60 Type 2 Diabetes patients attending OPD/IPD of Tertiary care hospital were
12 included. They were divided into three groups of 20 each. Group I: without retinopathy.
13 GroupII: with non proliferative diabetic retinopathy (NPDR). GroupIII: with proliferative
14 diabetic retinopathy (PDR). Results were compared with 20 normal controls. FBS, HbA1c,
15 haptoglobin, ceruloplasmin and CRP were analysed on auto analyzer Hitachi 911(Roche)..

16

17 **Index terms**— Non proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR),
18 acute phase proteins, ceruloplasmin, haptoglobin and CRP.

19 Serum Haptoglobin, Ceruloplasmin and CRP Levels: Markers of Diabetic Retinopathy Dr. Satinder Kaur ? ,
20 Parminder Singh ? , RK Grewal ? , Navjot kaur ? & Aman Agarwal ¥ Abstract -Background : Inflammation
21 has been recognised as a critical contributor to retinal capillary closure, one of the main pathogenic event in
22 diabetic retinopathy. The relationship between acute phase markers of inflammation and diabetic retinopathy
23 was studied.

24 Materials and Methods : 60 Type 2 Diabetes patients attending OPD/IPD of Tertiary care hospital were
25 included. They were divided into three groups of 20 each. Group I: without retinopathy. GroupII: with non
26 proliferative diabetic retinopathy (NPDR). GroupIII: with proliferative diabetic retinopathy (PDR). Results were
27 compared with 20 normal controls. FBS, HbA1c, haptoglobin, ceruloplasmin and CRP were analysed on auto
28 analyzer Hitachi 911(Roche).

29 Results : Diabetic patients with retinopathy had significantly higher levels of ceruloplasmin compared to
30 normal controls ($p<0.05$ & <0.01 respectively). Diabetic patients with or without retinopathy had significantly
31 raised levels of serum haptoglobin compared to control ($p<0.05$). NPDR patients had significantly raised levels
32 of haptoglobin when compared to group I patients. CRP levels in patients of retinopathy were elevated compared
33 to normal controls and diabetics without retinopathy ($p<0.05$).

34 **1 Conclusion : Levels of ceruloplasmin, haptoglobin**

35 and CRP were significantly increased in diabetic retinopathy as compared to controls and patients without
36 retinopathy. This may point to increase in serum viscosity leading to micro vascular sequelae. These proteins
37 may serve as marker for progression of diabetic retinopathy.

38 **2 Introduction**

39 Micro vascular complications cause serious morbidity in diabetics. Diabetic retinopathy is the most frequent vision
40 threatening complication in these patients 1 . Understanding the cause and course of diabetic vascular pathology
41 is important. Diabetic retinopathy is multifactorial complication.

8 DISCUSSION

42 Persistent hyperglycemia causes metabolic stress (via sorbitol pathway) responsible for early retinal capillary
43 dysfunction and lesions as micro aneurysm, basement membrane thickening, increased permeability and alteration
44 of retinal blood flow 2 . The importance of thrombotic tendency in the aetiology of diabetic retinopathy is widely
45 accepted which in turn may be related to protein composition changes in the plasma.

46 Haptoglobin, haemoglobin binding protein, plays role in providing protection against haem driven oxidative
47 stress but raised levels as seen in acute phase reaction can increase serum viscosity having important implication in
48 microcirculation pathology 3 . Ceruloplasmin, a copper containing metalloenzyme, possesses antioxidant property
49 (e.g. ferroxidase activity), but elevated levels can promote vasculopathic effect 4 . Systemic inflammation marker
50 CRP is synthesized in hepatocyte in response to cytokines released from site of inflammation. Raised levels of
51 CRP are suggestive of low grade inflammation and are independent marker of vascular disease in diabetes 5
52 . Chronic inflammation can be potential mediator of diabetic retinopathy and measurement of inflammation
53 markers like CRP, haptoglobin and ceruloplasmin may identify patients at higher risk of progression of disease.
54 Relationship between stages of diabetic retinopathy and inflammation activity was also studied.

55 3 II.

56 4 Material And Methods

57 5 Statistical Analysis

58 Mean and standard deviation were computed. The difference between two groups was seen by applying t-test.
59 The level of significance considered was 0.05.

60 6 IV.

61 7 Results

62 The mean age of patients of PDR (group III) was higher than patients in other two groups. Retinopathy patients
63 had longer duration of diabetes as compared to patients who had no fundus changes (table ??). FBS of all the
64 patients was >140mg/dl and HbA1c was > 7.0 g% showing poor glycemic control.

65 Diabetic patients with retinopathy (group II&III) had significantly higher levels of ceruloplasmin as compared
66 to normal controls ($p<0.05$ & <0.01 respectively). Diabetic patients with or without retinopathy had significantly
67 raised levels of serum haptoglobin compared to controls ($p<0.05$). NPDR patients had significantly raised levels
68 of haptoglobin when compared to group I patients. CRP levels in patients of retinopathy were elevated as
69 compared to normal controls and diabetics without retinopathy ($p<0.05$) Table ??I.

70 V.

71 8 Discussion

72 In an attempt to identify the etiological factors and possible risk in the pathogenesis of retinal micro vascular
73 changes, acute phase proteins were studied in various stages of diabetic retinopathy. Its precise cause is
74 uncertain but there is evidence that an imbalance in haemostatic mechanism may be entailed in its initiation and
75 progression. Pathophysiological changes include retinal capillary closure, thrombosis, non-perfusion, capillary
76 leakage and increased serum viscosity 6 . Severity of retinopathy is known to increase with duration of disease
77 as observed in the present study 7 . This may be due to damage caused to retinal vasculature by long standing
78 metabolic abnormality. Excess glucose is metabolised via sorbitol pathway creating metabolic stress in vascular
79 cells, which can impaired cells ability to handle free radicals. Excess glucose can also be channelled to form
80 diacyl glycerol activating protein kinase C pathway and hyperglycemia can cause non enzymatic glycosylation of
81 various proteins making them non functional 8 .

82 There is metabolic and oxidative stress in uncontrolled diabetes, ceruloplasmin is thought to be a scavenger
83 so its levels increase. But high levels of ceruloplasmin can cause vascular injury by generating free radicals and
84 oxidizing LDL making it more atherogenic. ROS disrupt copper binding to ceruloplasmin, thereby impairing its
85 normal protective function as liberated copper may promote oxidative pathology 9 . Ceruloplasmin levels were
86 significantly higher in retinopathy patients as compared to controls. Some studies have shown that it takes part
87 in pathological development of diabetic retinopathy and had a close relation with severity of pathological changes
88 [10][11] .

89 Haptoglobin is a positive acute phase reactant giving protection against Hb induced oxidative stress. Its levels
90 increased in diabetic patients and further elevated in patients with NPDR showing oxidative damage playing
91 role in vascular complication. Surprisingly haptoglobin levels were lower in PDR patients compared to NPDR
92 patients, probable reason may be haptoglobin is getting lost in proteinuria because PDR patients are more likely
93 to have proteinuria as well. This needs further investigation. Other workers have also observed increase in
94 haptoglobin levels in diabetic retinopathy patients. Serum haptoglobin correlates with serum viscosity and it
95 has positive effect on erythrocyte aggregation kinetics 3,12-13 . Hence increased levels may be responsible for
96 development of micro vascular disease.

97 Increased inflammatory activity in diabetic retinopathy, as reflected by significantly increased levels of CRP, is
98 associated with endothelial dysfunction. CRP is not only an inflammation marker but does contribute in vascular

99 pathogenesis. By triggering complement activation it may exacerbate tissue damage leading to more severe
100 disease. It is one marker which shows significant rise when diabetics start developing vascular complications.
101 Our results are in agreement with other studies [14][15] .

102 **9 VI.**

103 **10 Conclusions**

104 Inflammatory pathway plays pivotal role in development and progression of diabetic complications. Elevated
105 concentration of CRP and haptoglobin may be good predictor of onset of micro vascular complications in diabetes.
106 Further studies on CRP as a marker for different stages of retinal vascular disease are needed. So that early
diagnosis and treatment can slow progression and prevent blindness.¹

Figure 1:

107

10 CONCLUSIONS

108 [Group] , Group . II 51.1 ± 7.93 10.65 ± 6.75 .

109 [Table 2 : Mean ceruloplasmin, haptoglobin CRP levels in diabetic patients with/without retinopathy controls]
110 # Table 2 : Mean ceruloplasmin, haptoglobin & CRP levels in diabetic patients with/without retinopathy &
111 controls, I———. (Group III $58 \pm 7.26^*$ 13.9 ± 7.19 # group III VS controls)

112 [Hegde et al.] 'A one year cross sectional study of serum C-reactive protein(CRP) levels in patients with diabetic
113 Retinopathy attending department of Ophthalmology'. K Hegde , S Kodkany , P Shivanand , K Manunath ,
114 K S Smitha , Ramakrishna . *Kles Hospital and medical research centr E Belgaum*,

115 [Nowak et al. ()] 'Antioxidant potential, paraoxonase 1, ceruloplasmin activity and C reactive protein concentra-
116 tion in diabetic retinopathy'. M Nowak , T Weilkoszynski , B Marek , B Kos-Kudta , E Swietochowska , L
117 Sieminska . *Clinical and Experimental Medicine* 2009. (3) p. .

118 [Kathryn et al. ()] 'Association between acute phase reactants and advanced glycation end products in type 2
119 diabetes'. C B Kathryn , C Wing-Sun , B Sidney , John B Richard . *Diabetes Care* 2004. 27 p. .

120 [Brownlee ()] 'Biochemistry and molecular cell biology of diabetic complications'. M Brownlee . *Atherosclerosis*
121 2001. 2006. p. . (Nature)

122 [Tall ()] 'C-reactive protein reassessed. New Engl'. Alan R Tall , MB . *J. Med* 2004. p. .

123 [Pepys and Hirschfield ()] 'C-reactive protein: a critical update'. M B Pepys , G M Hirschfield . *J Clin Inves*
124 2003. 111 (12) p. .

125 [Manal et al. ()] 'Evaluation of plasma endothelein-1 and serum inflammatory markers in Patients with diabetic
126 Retinopathy'. S J Manal , Nirvana Mostafa , Mie Samy , Afify . *J.Med Sci* 2005. (1) p. . (Maha Hashem and
127 Amr Azeb)

128 [Kim et al. ()] 'High serum Lp(a) levels in Korean Type 2 diabetes patients with proliferative diabetic retinopa-
129 thy'. C H Kim , H J Park , J Y Park , S K Hong , Y H Yoon , K U Lee . *Diabetes Care* 1998. (2) p.
130 .

131 [Makoto et al. ()] 'Hyperglycemia is a factor for an increase in serum ceruloplasmin in type 2 Diabetes'. D Makoto
132 , S Shinji , Y Keiichi , H Manaka , H Kioko , K Mamoru . *Diabetes Care* 1998. (9) p. .

133 [Weng X Cloutier et al. ()] 'Influence of acute phase proteins on erythrocyte aggregation'. G Weng X Cloutier ,
134 R Beaulieu , G O Roederer . *Am J Physiol* 1996. (6) p. .

135 [Cooper et al. ()] 'Mechanism of diabetic vasculopathy; An overview'. M Cooper , F Bonnet , M Oldfield , K
136 Jandeleit . *Am. J. Hypertension* 2001. p. .

137 [Dandona et al. ()] 'Population based assessment of diabetic retinopathy in an urban population in South India'.
138 L Dandona , R Dandona , T J Naduvilath , C A Mccarty , G N Rao . *Br J Ophthalmol* 1999. (8) p. .

139 [Significance of serum ceruloplasmin levels in pathological course of diabetic retinopathy] *Significance of serum*
140 *ceruloplasmin levels in pathological course of diabetic retinopathy*, [Http://en.cnki.com.cn/article_en/CJFDTOTAL-SYYY200905113.htm](http://en.cnki.com.cn/article_en/CJFDTOTAL-SYYY200905113.htm) (Tao Yu-bin)