

Evaluation of Total Phenolic Contents and Antiulcerogenic Activity of Root Bark of Azadirachta Indica

Mohammed Ibrahim¹

¹ Nizam Institute of Pharmacy

Received: 18 May 2012 Accepted: 12 June 2012 Published: 23 June 2012

Abstract

The effect of methanol extract of root bark of Azadirachta indica was investigated in mice to evaluate the antiulcerogenic activity. Total phenolics were also determined. The root barks of have been extracted by Azadirachta indica successive solvent extraction method. Extracts were subjected to phytochemical analysis and total phenolics were also determined by the modified Folin-Ciocalteu method. The parameters taken to assess anti-ulcer activity were volume of gastric secretion, pH, free acidity, total acidity, and ulcer index and

Index terms— Azadirachta indica, Root bark, Total phenolics, antiulcerogenic activity, Omeprazole, Methanol extract.

1 Introduction

azadirachta indica ??AI) has been advocated for the treatment of disorders like cough, nausea, vomiting, fever, jaundice, gonorrhea, intestinal worm infestation and leprosy in indigenous system of medicine 1 and reported to have antiulcerogenic property. [2][3] The biological, medicinal and industrial uses of various parts of AI and the compounds isolated from it have been reviewed. [4][5][6] AI barks contained condensed tannins to the extent of 15% along with other nonisoprenoid constituents like flavonoids and phenolics. 7 Peptic ulcer, one of the most common gastrointestinal disease, is caused by multiple factors including stress, smoking, nutritional deficiencies, noxious agents such as alcohol, NSAID and Helicobacter pylori infection, among others. [8][9] Plant extracts are some of the most attractive sources of new drugs and have been shown to produce promising results in the treatment of gastric ulcers. 10 This is an important reason to investigate the antiulcer effect of AI bark extracts that have been used traditionally against gastric diseases.

As to pharmacological effects, different extracts of leaves, seeds and stem barks of AI showed antimicrobial [11][12] , antioxidant 13 and antiulcer activities. [14][15] In our previous study, antioxidant effect of hydro alcoholic root bark extract was tested. 16 Given the association between biological constituents present and antiulcerogenic effects of the AI root bark, the present study was carried out by two approaches. First, we performed phytochemical screening of root bark successive solvent extracts. Second, we selected root bark methanol extract to assess its antiulcerogenic activity in ethanol induced gastric ulcer in mice.

2 II.

3 Materials and Methods

4 a) Chemicals and reagents

All reagents and chemicals used were of analytical grade. Folin-ciocalteu reagent (Merck Pvt. Ltd. India), Sodium carbonate (Merck Pvt. Ltd. India), standard omeprazole was the kind gift from Aurobindo Pharma Ltd., Hyderabad.

9 RESULTS AND DISCUSSION

40 5 b) Plant material

41 The root bark of AI was collected from agriculture land of Deshmukhi village of Andhrapradesh, India and the
42 authentication of plant material was done by a botanist at Osmania University, Hyderabad and the voucher no
43 was 0125.

44 6 c) Preparation of root bark extracts

45 Root barks were shade dried and powdered mechanically after cutting into small pieces. The powdered plant
46 material was extracted in a soxhlet extractor by successive soxhlet extraction method based on polarity order of
47 solvents. Solvents employed were pet ether, chloroform, ethyl acetate and methanol. The extracts were cooled
48 at room temperature, filtered and evaporated to dryness under reduced pressure in a rotary evaporator 17 .

49 Resultant successive extracts of root barks were subjected to qualitative chemical analysis for the presence
50 of biologically active constituents. ??8 Thin layer chromatography was performed for all the extracts by taking
51 Quercetin as biomarker. Mobile phase employed was ethyl acetate: formic acid: glacial acetic acid: water (100:
52 11: 11: 26). 19 e) Determination of total phenolics content The Folin-Ciocalteu reagent (FCR) or Folin's phenol
53 reagent is a mixture of phosphomolybdate and phosphotungstate used for the colorimetric assay of phenolics and
54 polyphenolic antioxidants. It works by measuring the amount of the substance being tested needed to inhibit
55 the oxidation of the reagent. 20,21 Total phenol contents in the extracts were determined by the modified Folin-
56 Ciocalteu method. An aliquot of the extract was mixed with 5 ml Folin-Ciocalteu reagent (previously diluted
57 with water 1:10 v/v) and 4 ml (75 g/l) of sodium carbonate. The tubes were vortexed for 15 sec and allowed
58 to stand for 30 min at 40 o C for color development. Absorbance was then measured at 765 nm using the
59 Shimadzu UV-1800 spectrophotometer. Samples of extract were evaluated at a final concentration of 0.1 mg/ml.
60 Total phenolics content were expressed as mg/g tannic acid equivalent using the following equation based on the
61 calibration curve: $y = 0.1216x$, $R^2 = 0.9365$, where x was the absorbance and y was the tannic acid equivalent
62 (mg/g). 22 f) Animals Swiss albino mice (24-30 g) of either sex maintained under standard husbandry conditions
63 (temp 23 ± 2 o C, relative humidity $55\pm10\%$ and 12 hours light dark cycle) were used for the screening. Animals
64 were fed with standard laboratory food and ad libitum during the study period. The experimental protocol
65 has been approved by Institutional Animal Ethics Committee (IAEC NO.1330/AC/10/CPCSEA). g) Ethanol
66 induced gastric ulcer 23,24 The methanol extract of root bark of AI was selected as it is having significant amount
67 of biologically active constituents (from the results of phytochemical analysis) to evaluate anti ulcer activity by
68 ethanol induced gastric ulcer in albino mice. After 12 hour of fasting Swiss albino mice weighing 24-30 g of either
69 sex were divided into 5 groups, each group consists of 6 animals.

70 Group 1 served as a control received 1.0 ml/kg p.o 80% Tween 80.

71 Group 2 served as standard control received 30 mg/kg, p.o Omeprazole. After 1h all the animals were treated
72 with 0.2 ml of ethanol p.o to induce gastric ulcer. Animals were sacrificed by cervical dislocation one hour after
73 administration of ethanol. The stomach was excised and lesion index was determined by measuring each lesion
74 in mm along its greater length.

75 7 h) Determination of gastric parameters

76 Collection of gastric juice: After post operative period, animals were sacrificed by cervical dislocation and the
77 stomach was dissected out as a whole by passing a ligature at the esophageal end. Gastric content was evacuated
78 into graduated tube by cutting along the greater curvature of the stomach, and was centrifuged at 3000 rpm for
79 10min.

80 Volume of gastric juice: The volume of the centrifuged sample was expressed as ml/ 100 g body weight.

81 pH of gastric juice: pH of gastric juice was measured with the help of pH meter.

82 Free and total acidity: Gastric juice (1ml) was pipette into a 100ml conical flask and diluted with 9ml distilled
83 water. Two or three drops of Topfer's reagent was then added and titrated with 0.01 N sodium hydroxide until
84 all traces of red colour disappeared and the colour of the solution was yellowish-orange. The volume of alkali
85 added was noted. This volume corresponds to free acidity. Two or three drops of phenolphthalein were then
86 added and the titration was continued until a definite red ring appeared; the volume of alkali added was noted.
87 The volume corresponds to total acidity. The sum of the two titrations was total acidity. Acidity was expressed
88 in terms of mEq/L. Acidity was expressed as:Acidity = 0.1

89 Estimation of gastric ulcerative index changes: The stomach was opened along the greater curvature and it
90 was washed with running tap water. Then the ulcerative area was counted by placing it on a flat wooden plate.

91 The following arbitrary scoring system was used to grade the incidence and severity of lesion.0 = Normal, 1
92 = Red coloration, 2 = Spot ulcers, 3 = Hemorrhagic streaks, 4 = Ulcers > 3 but < 5 and 5 = Ulcers > 5 . Ulcer
93 index and % protection were calculated by following formulas.

94 8 Volume of

95 9 Results and Discussion

96 Qualitative chemical analysis results (table-2) were exhibiting the presence of alkaloids, glycosides, flavonoids,
97 tannins, saponins and terpenoids. TLC results (table-1) were qualitatively confirming the presence of flavonoids

98 in successive extracts of root bark by using quercetin as biomarker. Total phenolic contents were quantified by
99 standard procedures and results were given in table 1. Results depicts that phenolic content was significantly
100 found in ethylacetate extract followed by methanol extract. The anti-ulcer activity of root bark of AI was
101 evaluated by employing ethanol induced gastric ulcer in mice. Ethanol induced gastric injury is associated with
102 significant production of oxygen free radicals leading to increased lipid peroxidation, which causes damage to
103 cell and cell membrane. 26 Pretreatment of mice with root bark extracts produced a dose dependent protection
104 in the ethanol induced ulceration model as compared to control group. However the protection was statistically
105 significant reduced the severity of ulcer and caused a significant reduction of ulcer index in this model. Omeprazole
106 produced significant gastric ulcer protection as compared to control group (Table 3). Ethanol damages the plasma
107 membrane and leads to intracellular accumulation of sodium and water by increasing the membrane permeability.
108 These changes ultimately cause cell death and gastric mucosal exfoliation. 27 Ethanol is also known to release the
109 endogenous ulcerogenic mediators. These could precipitate mucosal injury either by causing vascular changes like
110 mucosal edema and increased mucosal permeability or by nonvascular effects like mucus depletion and enzyme
111 release in the stomach. 28 The decrease in volume of gastric juice may also attributed to its anti secretory ear
112 2012 Y potential of the drug. The anti secretory potential may also relate towards gastric juice and interference
113 of gastric blood circulation are responsible for the induction of ulceration. 29 AI root bark methanol extract
114 significantly decreased the gastric juice volume as compared to control. Methanol extract significantly increased
115 p H as compared to control and nearer to standard. The excessive secretion of hydrochloric acid in the stomach
116 was considered to be an important factor in the formation of peptic ulcer. Hydrochloric acid is known to produce
117 ulceration and digestion of the stomach tissues as well as to reduce the neutralizing capability of the stomach
118 mucus secretions. [30][31][32] As a measurement of free hydrogen ion, pH indirectly represents the hydrochloric
119 acid concentration in the stomach. Increase in pH is usually affected by either the reduction of the acid secreted
120 in the stomach or the increase in the volume of alkaline and neutral fluids (mucus). The variation in the pH
121 level among the groups shows tendency of protective effects of them towards gastric ulceration. The decrease
122 in acidity was at its maximum level for the reference standard group followed by extract treatment group. The
123 least decrease in acidity was shown by methanol extract treated group at its 500mg/kg dose. Macroscopic
124 examination of ethanol induced gastric ulcer in mice was shown in figure 1. suggest that flavonoid quercetin
125 promotes a decrease in ulcerative lesions due to its antioxidant effect. In addition, a review of antiulcer drugs of
126 plant origin shows that triterpenes, because of their ability to strengthen defensive factors such as stimulation of
127 mucus synthesis or maintenance of the prostaglandin contents of gastric mucosa at high levels, are compounds
128 with potential antiulcerogenic activity (Lewis and Hanson, 1991). Dose dependent ulcer index results were given
129 in figure 2. Comparison of ulcer protection of root bark methanol extract with that of standard control was
130 shown in figure ???. Based on this data, it is suggested that the gastro protection observed in this study could be
131 related to the presence of phenolics and flavonoids in the methanol extract of root bark of AI extract.(a) (b) (c)
132 IV.

133 10 Conclusion

134 In conclusion, the results show that the methanol extract of root bark of Azadirachta indica present antiulcer
135 activity, as evidenced by ethanol induced gastric ulcer model in albino mice. Results suggest that the effectiveness
136 of the extract as anti ulcerogenic agent may be due to presence of flavonoids and phenolics compounds. The
137 results of this study showed that the root bark of Azadirachta indica contains appreciable amount of phenolic
138 contents along with other biologically active constituents. ^{1 2}

¹© 2012 Global Journals Inc. (US) © 2012 Global Journals Inc. (US)

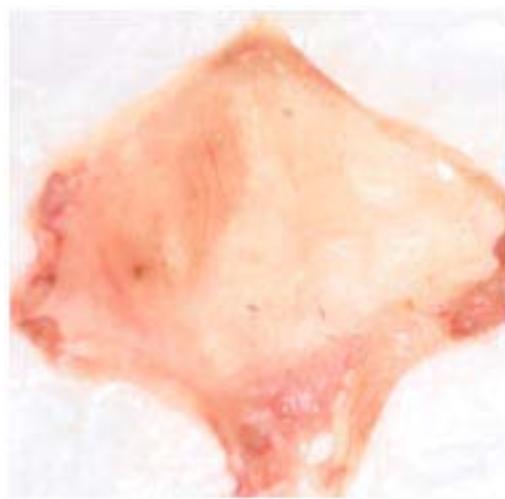

²© 2012 Global Journals Inc. (US)

Figure 1:

Figure 2: 25

1

Figure 3: Figure 1 :

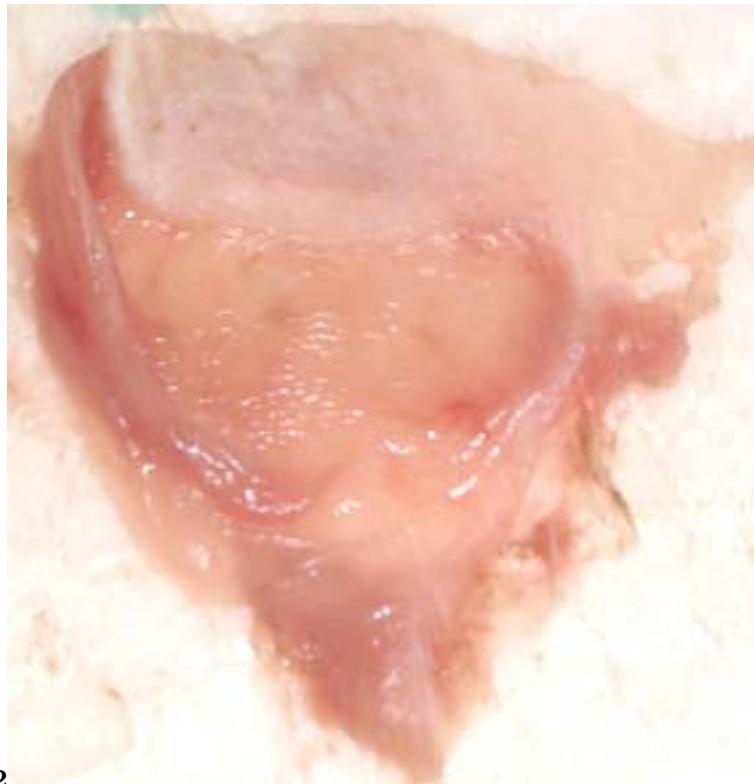


Figure 4: Figure 2 :

d) Phytochemical evaluation Ulcer index= Arithmetic mean of intensity in group+ Number of ulcer positive
% Protection =

$$\frac{\text{Control mean} - \text{Test mean}}{\text{Control mean}} \times 100$$

III.

ear 2012

Y

Volume XII Issue VI Version I

Medical Research
Global Journal of

$\text{NaOH} \times \text{Normality} \times 100\text{mEq/L} / 100$

Ulcer Index

25

Figure 5:

10 CONCLUSION

1

Extract	Petether	Chloroform	Ethylacetate	Methanol	%	80
% Yield w/w	2.50	3.80	1.72	4.70	1.29	Ethanol
R f Value	0.87	0.89	0.92	0.89	0.89	
Total phenolics content, µg/ml	98.19±1.66	19.73±0.41	821.54±2.70	740.10±0.13	80.75±2.78	

Total phenolic contents were expressed in Mean±SEM.

Figure 6: Table 1 :

2

Figure 7: Table 2 :

3

Treatment	Dose	Vol. of (mg/kg) juice(ml)	pH	Free Acidity (mEq/L)	Total Acidity (mEq/L)	Ulcer index	%Protection
Control	-	1.65±0.81	2.9±0.20	31±0.89	74.5±1.87	5.25±0.48	0
Std.control	30	1.48±0.07	3.9±0.13	9.3±0.81	23.3±2.75	1.02±0.2	75 ***
Treated	100	1.53±0.05	2.77±0.08	8.8±0.98	61.3±1.86	3.16±0.214	21
	250	1.53±0.08	3.22±0.11	6±3.57	42.3±5.68	2.33±1.70	41.75
	500	1.23±0.2	3.70±0.10	1.21±1.23	29.5±6.10	1.58±0.47	60.50 ***

Values are expressed in mean±SEM Statistical comparison was performed by using ANOVA coupled with st test. *** P<0.001 were consider statistically significant when compared to control group.

Figure 8: Table 3 :

139 [Balakrishnan et al. ()] , V Balakrishnan , M Narendranathan , A S Subair , E K Raji , N R Pillai . *Santha*
140 *kumara G Nimbidin in duodenal ulcer Trop gastroenterol* 1985. (6) p. .

141 [Bandyopadhyay et al. ()] , U Bandyopadhyay , R Chatterjee , R Bandyopadhyay , Us Patent5 . 1998. 730 p.
142 986. (Corresponding to Indian patent: 1100/Del/95)

143 [Wolfe et al. ()] , K Wolfe , X Wu , R H Liu , Antioxidant . *J Agric Food Chem* 2003. 51 p. .

144 [Dandiya and Kulkarni ()] , P C Dandiya , S K Kulkarni . *Pharmacology Vallabh prakashan New Delhi* 2005. p.
145 247.

146 [Chopra and Chopra ()] *A review of work on Indian medicinal plants including indigenous drugs and poisonous*
147 *plants. Indian council of medical research, Special research series*, R N Chopra , I C Chopra . 1995. 27 p. 30.

148 [Gill et al. ()] 'Activity of Wild Punica granatum Ethanolic Seed Extract'. N S Gill , S Dhawan , A Jain , R
149 Arora , M Bali , Anti-Ulcerogenic Antioxidant . *Res J Med Plant* 2012. 6 p. .

150 [Singleton et al. ()] *Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-*
151 *ciocalteu reagent.* 299, Vernon L Singleton , Rudolf ; Orthofer , Lamuela-Raventos , M Rosa . 1999. p. 152.

152 [Febry and Okema ()] *Ansory R Activity of East African medicinal plants against Helicobacter pylori Chemother-*
153 *apy*, W Febry , P Okema . 1996. 315 p. 42.

154 [Lewis and Hanson ()] 'Anti-ulcer drugs of plant origin'. D A Lewis , P J Hanson . *Progress Medicinal Chemistry*,
155 G P Ellis, G B West (ed.) 1991. 2012. Elsevier Science Publishers. 28 p. .

156 [Pillai et al. ()] 'Antigastric activity of nimbidin Indian'. N R Pillai , D Suganthan , C Seshadri , Santha . *J Med*
157 *Res* 1978. 169 p. 68.

158 [Pogtip et al. ()] 'Antioxidant activity of Saimese neem tree'. S Pogtip , S Roongtawan , G Wandee . *J*
159 *Ethanopharmacol* 2005. (1) p. .

160 [Av et al. ()] 'Antiulcer activity and the mechanism of action of magaldrate in gastric ulceration models of rats'.
161 Av , D D Patel , R K Santani , Goel . *Ind J Physiol. Pharmacol* 2000. 44 p. .

162 [Asha et al. ()] 'Ashokkumar P, Rajkumar, Kanimozhi M, Phytochemical screening and antimicrobial activity
163 from five Indian medicinal plants against human pathogens'. K N Asha , R Chowdhury , M H Choudhury ,
164 M A Rashid . *Mid Eas J Scie Res* 2004. 2010. 54 p. . (Acta pharma)

165 [Biswas et al. ()] 'Biological activities and medicinal properties of neem'. Kausik Biswas , Ishita Chattopadhyay
166 , K Ranajit , Uday Banerjee , Bandyopadhyay . *Azadirachta indica) Curr Scien* 2002. (11) p. .

167 [Vinson et al. (2005)] 'Dried fruits: excellent in vitro and in vivo antioxidants'. J Vinson , L Zubik , P Bose , N
168 Samman , J Proch . *J Am Coll Nutr* 1 February 2005. 24 (1) p. .

169 [Cho et al. ()] 'Dual effects of zinc sulphate on ethanolinduced gastric injury in rats: Possibly mediated by an
170 action on mucosal blood flow'. C H Cho , B W Chen , Y K Poon , M M Ng , W M Hai , Lam . *J Pharm*
171 *Pharmacol* 1989. 41 p. .

172 [Szabo et al. ()] 'Duodenal ulcer induced by MPTP (1-methyl 4-methyl 1,2,3,6,-tetrahydropyridine)'. S Szabo ,
173 Brown , H Pinam , Dli , Newmeyer . *Proc Soc Exp Bio Med* 1985. 180 p. .

174 [Lr et al. ()] 'Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis'. Lr ,
175 P Dragstedt ; M , M Barros , E L Lemos , M F Maistro , J P B Leite , J K Sousa , S F Bastos , Andrade .
176 *Contributions to the physiology of the stomach. XXXVII*, 1917. 2008. 68 p. . (JAMA)

177 [Dharmani and Pallt ()] 'Exploring Indian medicinal plants for antiulcer activity'. P Dharmani , G Pallt . *Ind J*
178 *Pharmacol* 2006. 38 (2) p. .

179 [Kiranmai et al.] 'Free radical scavenging activity of neem tree root bark extract'. M Kiranmai , M D Ibrahim ,
180 Mahendra Kumar . *Asia J Pharma Clin Res* 2011 (4) p. .

181 [Schmutterer] *In the neem tree edited by Schmutterer H Weinheim federal republic of Germany: VCH* 1995: 1,
182 H Schmutterer .

183 [Kh and Cheesman (ed.) ()] *Lipid peroxidation in biological systems in DNA and free radicals*, Kh , Cheesman .
184 B Haliwell and OI Aruoma (ed.) 1993. London: Ellis Horwood. p. 12.

185 [Subapriya and Nagini ()] 'Medicinal properties of neem leaves: a review'. R Subapriya , S Nagini . *Curr Med*
186 *Chem-Anticancer agents* 2005. 5 p. .

187 [Chopra and Gupta ()] 'Nair BN Preliminary study of antibacterial substances from Melia azadirachta Indian'.
188 I C Chopra , K C Gupta . *J Med Res* 1952. p. .

189 [Aktar and Sengupta ()] *Neem: A great boon to mankind www.shamskm*, M Wasim Aktar , Dwaipayan Sengupta
190 . 2008. p. .

191 [Belaiche et al. ()] 'Observation survey of NSAID related upper gastrointestinal adverse events in Belgium'. J
192 Belaiche , A Burette , M Devos , E Louis , M Huybrechts , M Dettenre . *Acta Gastroenterol Belgium* 2002.
193 65 p. .

10 CONCLUSION

194 [Garg and Nigma ()] 'Ogle CW The gastric antiulcer effects of the leaves of the neem tree'. G P Garg , S K
195 Nigma . *Planta Med* 1993. 215 p. 59.

196 [Desai et al. ()] 'Pathogenesis of peptic ulcer disease and current trends in therapy'. J K Desai , R K Goyal , N
197 S Parmar . *Ind J Pharmacol* 1997. 41 p..

198 [Walpole et al. ()] 'Production of gastric and duodenal ulcer in the cat by intramuscular implantation of
199 histamine'. S Walpole , R Varco , C Code . *Proc Soc Exp Bio Med* 1940. 44 p. .

200 [Kahraman et al. ()] 'The antioxidative and antihistaminic properties of quercetin in ethanolinduced gastric
201 lesions'. A Kahraman , N F Erkasap , T Koken , M Serteser , F Aktepe , S Erkasap . *Toxicology* 2003.
202 183 p. .

203 [Hay et al. ()] 'The experimental production of gastric and duodenal ulcers in laboratory animals by the
204 intramuscular injection of histamine in beeswax'. L Hay , R Varco , C Code . *Surg Gynecol Obstet* 1942.
205 75 p. .

206 [Male ()] 'Thin-layer chromatographic analysis of flavonoids, phenolic acids, and amino acids in some Croatian
207 Hypericum taxa'. H Male . *J. Planar Chromatogr* 2004. 17 p. .

208 [Malairajan et al. ()] 'Veni K Evalution of anti-ulcer activity of Polyalthia longifolia (Sonn.) Thwaites in
209 experimental animals'. P Malairajan , G Geetha , S Narasimhan , Jessi Kala . *Indian J Pharmacol* 2008.
210 40 (3) p. .