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  Abstract-

 
Mellitus Diabetes (DM) is a metabolic disorder manifested by an increase in blood 

glucose level. Lack of insulin secretion by pancreatic β-cells or insulin resistance are factors that 
contribute to the development of DM. Insulin resistance is affected by a

 
number of factors 

including oxidative stress, leading to the formation of type 2 diabetes Mellitus (T2DM) or insulin-
dependent diabetes which is a major and rapidly growing global problem through several cellular 
processes. The current review is a brief account of the various aspects of oxidative stress and 
their association with diabetes in various ways in which oxidative stress contributes to the 
pathophysiology of insulin resistance to diabetes.
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Relationship between Oxidative Stress and 
Diabetes Mellitus

Dharmender α & Abdul Hafeez σ

Abstract- Mellitus Diabetes (DM) is a metabolic disorder 
manifested by an increase in blood glucose level. Lack of 
insulin secretion by pancreatic β-cells or insulin resistance are 
factors that contribute to the development of DM. Insulin 
resistance is affected by a number of factors including 
oxidative stress, leading to the formation of type 2 diabetes 
Mellitus (T2DM) or insulin-dependent diabetes which is a 
major and rapidly growing global problem through several 
cellular processes. The current review is a brief account of the 
various aspects of oxidative stress and their association with 
diabetes in various ways in which oxidative stress contributes 
to the pathophysiology of insulin resistance to diabetes. 
Keywords: mellitus diabetes (DM), type 2 diabetes 
mellitus (T2DM), 1 DM (T1DM), reactive oxygen species 
(ROS), superoxide dismutase (SOD), catalase (CAT), 
and glutathione (GLT), malondialdehyde (MDA); insulin 
receptor substrates (IRSs). 

I. Introduction 

M is a metabolic disorder characterized by high 
levels of free glucose in the blood. Diabetes is a 
disorder in the human body that causes blood 

glucose (sugar) levels to rise above normal due to 
insulin secretion or insulin resistance. This is also called 
hyperglycaemia (1). DM is an incurable disease that has 
a detrimental effect on many metabolic pathways and 
contributes to the pathophysiology of diabetic 
complications (2, 3). Oxidative stress is a very important 
factor in the development of diabetes (8). Oxidative 
stress is known to be associated with lifestyle-related 
diseases including atherosclerosis, high blood pressure, 
and diabetes. Free radical forms are important for body 
parts in biological homeostasis (11, 12), but where their 
production is excessive and greater than the body's 
antioxidant capacity, then the effects of oxidative stress 
(12). Oxidative stress is a major factor in the 
development of diabetes and insulin resistance (12-14), 
triggering pathophysiologic pathways and initiating a 
burst of malignant pathways leading to insulin 
resistance and DM (8, 15). In this review, we discussed 
the potential roles of oxidative stress in building insulin 
resistance and DM. 
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II. Classification of Diabetes Mellitus 

There are different types of DM, but the most 
common subtypes are 1 DM (T1DM) and 2 DM type 
(T2DM). T1DM occurs due to beta-cell dysfunction, 
reduced insulin secretion, and low levels of circulating 
insulin. T2DM is the most common type of DM that 
accounts for approximately 90–95% of patients with 
diabetes and is mainly associated with insufficient 
response to insulin (reduced insulin sensitivity) and 
insulin resistance in borderline tissues (16). With type 2 
diabetes, the human body does not use insulin properly. 
This is called insulin resistance. Initially, pancreas 
produces extra insulin to make it. Over time the 
pancreas may not be able to cope and it may not 
produce enough insulin to maintain normal blood sugar 
levels. Type 2 can be controlled by improving lifestyle, 
oral hypoglycaemic therapy, and insulin. Pregnancy 
diabetes is another topic that occurs in women during 
pregnancy when the body is less sensitive to insulin. 
Pregnancy diabetes does not occur in all women and 
usually develops after childbirth (17). Other types of DM 
are adolescent diabetes which is diabetes mellitus, pre-
existing diabetes in adults, and secondary diabetes from 
other diseases such as pancreatitis or secondary to the 
use of drugs such as corticosteroids (18, 19). 

III. Oxidative Stress and Antioxidant 
Process 

Various normal cells produce free radicals such 
as aerobic respiratory products and other metabolic 
processes (7) including reactive oxygen species (ROS). 
ROS is a highly active oxidant and can have adverse 
effects on cellular lipids, proteins, and DNA or reactive 
oxygen species (ROS) produced by organisms due to 
normal cell metabolism and environmental factors, such 
as air pollution or cigarette smoke. ROS are highly active 
molecules and can damage cell formation such as 
carbohydrates, nucleic acids, lipids, and proteins and 
alter their functions. Cells usually contain enzymes and 
coenzymes that act as antioxidants. This helps to 
reduce ROS and prevents it from causing damage (6). 
Oxidative stress is defined as an imbalance between the 
chemical processes responsible for the production of 
active oxygen (ROS) and those responsible for the 
removal of ROS (20). There are many enzymes in the 
cell that have internal mechanisms such as superoxide 
dismutase (SOD), catalase (CAT), and glutathione 
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(GLT), which protect cells from free radicals (25). Some 
heavy metal products have free properties such as iron 
(ferric) and copper (26) that can mix proteins, lipids, and 
nucleic acids and produce toxic products that lead to 
tissue dysfunction (27,28). They alter the structure of 
biologic molecules and break them down (28). DNA 
fragmentation is a well-known result of oxidative stress, 
which affects genetic expression and cell survival (23). 
Malondialdehyde (MDA), total cholesterol, and active 
hydroperoxides (ROOH) are oxidative stress biomarkers 
that occur in diabetic patients. (30). Oxidative stress 
plays important roles in diabetic complications through 
lipid peroxidation, DNA damage, and mitochondrial 
dysfunction (13, 23, 31, 32). Its involvement has been 
shown in other illnesses and age-related problems such 
as cardiovascular disease, chronic obstructive 
pulmonary disease, chronic kidney disease, 
neurological diseases, and cancer and more. Including 
high free varieties (33). Many scientists believe that the 
theory of oxidative evolution is a major cause of aging 
and related problems (33). Problems caused by 
oxidative stress and insulin resistance are prevented 
with the help of redox biology (34). 

IV. Normal Insulin Signaling Pathways 
and Insulin Resistance 

Insulin is usually a 51 amino acid dipeptide 
containing a series A and B series linked to 2 disulfide 
bonds found in cysteine residues. The chain contains 21 
amino acids and the B chain contains 30 amino acids. 
Insulin is encoded by a short arm of chromosome 11 in 
pancreatic β-cells containing signal peptide, chain B, 
connective peptide (and A) and A chain (4,5). In 
proinsulin, C-peptide binding is enclosed at each end by 
the dibasic residues (Arg-Arg and Lys-Arg) that link the 
N-terminus of the A series and the C-terminus of the B 
chain (124,125). Proinsulin made from Golgi substances 
is converted to insulin by removing dibasic residues by 
trypsin-like endyprotease enzymes such as insulin and 
C-peptide (5). Insulin resistance is a key factor in T2DM 
where cells are unable to respond to insulin effectively 
(8, 35) There are different enzymes and mediators, 
which facilitate the entry of glucose into adipocytes, 
muscles, and myocardial cells via GLUT- 4 (glucose 
transporter- 4) transporters [8, 34]. The feature is 
triggered by binding insulin to α chain of insulin 
receptors (IRs), which are members of transmembrane 
tyrosine kinases that are made up of α and-chains and 
activated by insulin and IGF- (insulin-like growth -) 1 and 
IGF-2 (36). As a result, binding induces structural 
changes in the chain by autophosphorylation in tyrosine 
residues through different adapter proteins, namely, 
insulin receptor substrates (IRSs), Shc proteins (SHC-
transforming), and APS protein (protein adapter) 
(37,38)). These processes provide a suitable site for 
binding IRS-1 (insulin receptor substrate-1) (38). Many 

types of insulin-dependent kinases such as extracellular 
protein kinase C, S6K1 (ribosomal protein S6 kinase 
beta-1), serine / - threonine-protein kinase 2, protein 
kinase B etc and other types of kinases such as AMP- 
activated protein kinase and glycogen synthase kinase 3 
can activate and activate phosphorylate IRS (38, 39). 
The activated IRS-1 binds to PI3K (phosphoinositide 3-
kinase) and activates it, which, in turn, promotes the 
conversion of PIP2 (phosphatidylinositol 4,5-
bisphosphate) to PIP3 (phosphatidylinositol 3,4,5-
trisphosphate)  (40). PIP3 itself is a potent activator of 
Akt, which also contributes to cell-induced glucose 
uptake through the production of GLUT-4 and inhibits 
glycogen synthase kinase leading to increased 
glycogen secretion (40, 41). Any disruption in the above-
mentioned steps may cause insulin resistance and DM 
(34). 

V. Relationship between Oxidative Stress 
and Insulin Resistance 

Oxidative stress increases the risk of insulin 
resistance and DM (26, 34). It should be noted that 
oxidative stress caused by DM has more complex 
interactions (42, 43). The following are potential 
molecular mechanisms by which free radicals disrupt 
the normal glucose Homeostasis contributes to the 
formation of DM. 

a) β-Cell Dysfunction/Insulin Production and Secretion 
The function of insulin is to maintain blood 

glucose levels by promoting glucose uptake into insulin-
targeted tissues. Glucose is a key regulator of insulin 
secretion by pancreatic Beta cells, which triggers a burst 
of events called beta-stimulating cells - the ability to 
sense circulating blood sugar levels and release the 
right amount of insulin to keep blood glucose at a 
normal level (126- 129). 

Normal glucose homeostasis is made up of 
healthy and active beta cells and DM is associated with 
various levels of beta-cell dysfunction (44, 45). DM 
occurs as a result of loss of beta-cell function and 
function (46). In these cases, insulin secretion produced 
by glucose from beta cells is reduced and decreased; 
therefore, glucose levels have risen above normal levels 
(47). In this process, insulin secretion occurs, which is 
interrupted by a decrease in the energy of the sugar to 
promote insulin secretion leading to severe unstable 
insulin release and followed by beta-cell failure (46). 
Beta-cell dysfunction occurs due to pathogenic 
mechanisms and oxidative stress (46, 48). Free radicals 
in pancreatic beta cells arise due to enzyme activity 
such as mitochondrial respiratory tract (MRC) and 
NADPH (nicotinamide adenine dinucleotide phosphate) 
oxidase or NOX enzyme (15, 49-51). Superoxide anion 
is a major free radical pathway produced by MRC and 
NOX enzyme in beta cells (52). Beta cells are affected 
by free radicals produced by phagocytic and immune 
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cells (53). Chronic hyperglycemia induces free radical 
production in the islands by increasing cytosolic calcium 
and protein kinase activation pathways (50, 54). Beta 
cells have a low dose of antioxidant protection system, 
so that oxidative stress on beta cells increases in DM 
and plays an important role in the loss of their function in 
both T1DM and T2DM (45, 48, 55). Oxidative stress 
disrupts beta-cell function through a number of 
molecular mechanisms (48, 55-62). Significantly 
reduces insulin production, disrupts the insertion of 
proinsulin vesicles into plasma membranes, and 

reduces their exocytosis in response to glucose 
distribution (48, 55, 56). It can also cause apoptotic 
processes in pancreatic cells that lead to death and loss 
of beta cells (48, 55, 56,). Therefore, depressive beta 
cell dysfunction caused by stress is a major potential 
target for experimental intervention in patients with DM. 
We suggest that pharmacologic agents protecting the 
islands from oxidative damage may provide Target 
therapeutics to promote beta-cell function that leads to 
improved glucose homeostasis. 

Figure 1: Possible molecular mechanisms between oxidative stress and beta-cell dysfunction

b) GLUT-4 Expression and/or Localization 
GLUT4 is an insulin-regulated glucose 

Transporter found in adipose tissue and bound muscles 
such as skeletal and heart muscle and, therefore, to 
maintain insulin sensitivity in these tissues a normal 
body profile of GLUT-4 expression and / or localization 
is required (15,63). The reducing factor of the GLUT-4 
antagonist has an effect on insulin sensitivity (63, 64) as 
a decrease in glucose entering target cells translates 
into lower insulin sensitivity in these tissues (65). 
According to Clinical Studies GLUT-4 expression and / 
or localization decreased insulin-resistant and T2DM-
resistant patients (64, 66, 67). This patho physiologic 
condition is exacerbated by oxidative stress (68, 69). 
Oxidative stress can reduce the content of GLUT-4 by 
impairing gene expression by damaging the binding of 
the nuclear material to the GLUT-4-induced insulin 
receptor in 3T3-L1 adipocytes (70). 3T3-L1 adipocytes 
develop oxidative stress in these cells and receive Glut-
4 expression from these tissues. They found that 
hydrogen peroxide produced by significant oxidative 
stress is regulated by GLUT-4 to 3T3-L1 adipocytes and, 
consequently, reduces cellular glucose (70). Other 
studies suggest that oxidative stress reduced GLUT-4 
transport to cell membranes. They induced 
mitochondrial oxidative stress using mitochondria-
targeted paraquat to adipocytes and found that 

oxidative stress significantly reduced GLUT-4 transport 
and thus induced insulin resistance in these tissues (71). 
Long-term oxidative stress can suppress transcription 
factors involved in GLUT-4 expression such as 
peroxisome proliferator-activated receptor gamma, 
CCAAT-binding proteins, factor 1, MEF2 (myocyte 
enhancer factor 2), and Nf- κb etc. (70, 72-74). It can 
also suppress small amounts of RNA involved in GLUT-
4 expression such as miR-21a-5p, miR-222- 3p, miR-
29c-3p, and miR-133a-3p etc (75-78). In addition, a 
variety of stress-inducing substances and products 
such as p38 MAPK, JNK / SAPK, PKC (protein kinase 
C), sorbitol, and hexosamine are all produced by 
oxidative damage and may suppress GLUT-4 (29). 
Therefore, reduced expression / activation of GLUT-4 is 
one of the major molecular mechanisms by which 
oxidative stress induces insulin resistance and 
contributes to the formation of DM (15). 

c) Insulin Signaling Pathways 
Insulin resistance with DM occurred due to any 

impairment in insulin signaling pathways (79, 80). In 
appreciation of insulin sensitivity was introduced novel 
therapeutic variables of the insulin signal (80). Oxidative 
stress can disrupt normal IST (insulin signal 
transduction) at various levels including IR, IRS-1 and 
IRS-2; PI3K enzyme and Akt signature methods (81-86). 
T2DM-induced oxidative stress and IST substances in 
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the brains of diabetic mice caused by Balbaa and 
colleagues in 2017 (87). They found that oxidative stress 
significantly reduced the expression of an IST substance 
such as p-IRS, p-AKT, and GSK-3β in brain tissue with 
normal insulin signaling (87). Oxidative stress induced 
IRS-1 and IRS-2 serine phosphorylation, leading to 
disrupted IST (81, 82). Free radicals can induce serine 
phosphorylation of IRS-1 and suppress normal IST using 
JNK / SAPK signaling methods (85). Other types of 
serine / threonine kinases such as Akt (or PKB), GSK-3, 

AMPK, and mTOR are also very sensitive to oxidative 
stress and may interfere with insulin signaling (100-102). 
Oxidative stress can also lead to IST impairment by 
down-regulating proteins involved in normal IST (87). IST 
substances such as Akt, IRS, IRS-1, and GSK-3 are 
under the influence of low free radicals regulated by 
oxidative stress thus interfering with insulin sensitivity 
leading to insulin resistance and DM (87 ). Therefore, 
IST disruption is another important link between 
oxidative stress and insulin resistance (81-86, 88-90). 

Figure 2: Oxidative stress impairs insulin signaling pathways by several molecular pathways.

d) Inflammatory Processes 

The inflammatory response is one of the main 
molecular mechanisms involved in the pathophysiology 
of insulin resistance, DM, and related complications (53, 
91, 92). A separate study suggests that chronic 
inflammation is involved in the pathophysiology of 
insulin resistance DM (92-98). This type of mechanism 
can also establish other pathophysiologic mechanisms 
of DM such as beta-cell dysfunction (53, 95). Animal 
experimental and pathological studies show that IR and 
inflammation are directly linked during T2DM 
development (24,42) Inflammatory mediators play an 
important role in improving IR and T2DM by activating 
various inflammatory responses such as IL -β. IL- a is an 
effective pro-inflammatory mediator that plays an 
important role in controlling various inflammatory 
mediators such as cytokines, adipokines and chemicals. 
It causes inflammation by binding to interleukin-1 
receptor type I (IL-1RI) and reduces the expression of 
insulin receptor substrate-1 (IRS-1) at the ERK-
dependent writing level and the post-transcriptional ERK 
level (43)). IL-1β

 
production is largely controlled by 

dietary stress caused by diet. Other experimental 
studies have been performed on a variety of 
experimental animals to investigate the presence of 
various inflammatory responses in β-cells that indicate 
that IL-β

 
plays a key role in activating other inflammatory 

mediators such as cytokines and chemicals (21, 22). in 
cell-cells of pancreatic islands due to impaired insulin 
secretion occurs in β-cells of pancreatic islands. In this 
way IL-β

 
also plays an important role in causing 

inflammation of the tissues of the body because it 

reduces the ability of the insulin receptors to respond to 
glucose which ultimately leads to the formation of IR in 
borderline tissues. IL-6 is another mediator that can be 
positively linked to IR [19 - 22]. IL-6 not only inhibits the 
metabolism of non-oxidative glucose (120,121) but also 
suppresses the activity of lipoprotein lipase which 
increases plasma levels of triglycerides [23]. In addition, 
IL-6 also activates cytokine signaling proteins (SOCS) 
(101,108) that can inhibit cytokine transcriptional factor 
activation of the insulin receptor [26] causing IR 
development in borderline tissue. 

TNF-α is another mediator in which TNF-α 

improved interactions between IR and T2DM (122,123) 
Experimental studies show that TNF-α expression 
increases in obese animals that modulate insulin action 
(135). From previous studies it has been found that 
serum levels of TNF-α are positively correlated with IR 
pathophysiology (135, 136) indicating that TNF-α is also 
a key factor contributing to IR development. There are 
many monocytes, macrophage activity and mediators 
such as CX3CL1 (fractalkine), CRP 4 Oxidative Medicine 
and Cellular Longevity, IL-18, MCP-1 (monocyte chemo 
attractant protein-1), resistin, PAI-1 (plasminogen 
activator inhibitor -1), E-selectin, and IFN-γ (interferon-
gamma)-induced IR (91, 94-98). 

Therefore, by making inflammatory processes a 
therapeutic approach for the management of diabetes 
(93,103,104). Several studies have reported the 
importance of anti-inflammatory agents in glucose 
homeostasis. For example, Goldfine and colleagues in 
2010 examined the effects of sugar reduction salsalate 
(salicylate prodrug) and reported that it was effective in 
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reducing HbA1c and fasting plasma glucose in T2DM 
patients (105). Clinical trials have been performed with 
agents to reduce oxidative stress. Oxidative stress is a 
major inflammatory event as it stimulates the formation 
of monocytes and macrophages that promote 
inflammatory responses involved in insulin resistance 
and DM (103,106,107). It also regulates the expression 
of pro cytokines and thus enhances inflammatory 
mediators (88, 108). Thus, free radical-induced 
inflammation is one of the possible links between 
oxidative stress and insulin resistance (99). 
e) Mitochondrial Dysfunction 

Mitochondria are cellular organelles that play a 
key role in energy production, reactive oxygen species 
(ROS), mediator signaling (130-133), apoptosis (9,10) 
calcium storage, heat production, and cell survival and 
act as part of the signal signal pathways (109,110). 
Mitochondria are major sources of ROS (134) 
production that cause mitochondrial dysfunction, insulin 
resistance and DM (111). Oxidative stress is an 
important factor contributing to mitochondrial 
dysfunction (112), which impairs mitochondrial function 
by altering normal MRC activity, reducing mitochondrial 
respiratory capacity, increasing proton leakage to MRC, 

which alters potential fluid differentiation internal 
mitochondrial., and reduced the integrity of the 
mitochondrial layers (113-115). These processes can 
occur in pancreatic islands and / or systematically in 
adipocytes and muscle tissue (116). The normal 
process of glucose uptake depends largely on the 
body's function of healthy mitochondria that produce the 
energy needed to receive glucose from borderline 
tissues (117). Thus, mitochondrial dysfunction 
significantly reduces ATP cell production and interferes 
with cellular glucose uptake (88). As a result of these 
cells they fail to take up circulating glucose in response 
to insulin leading to insulin resistance (88, 16,118). In 
addition, oxidative stress can disrupt normal 
mitochondrial function by increasing the production of 
mitochondrial fatty acid oxidation and DAG (diacyl 
glycerol), which also stimulates many serine / threonine 
kinases leading to IST impairment (88). Thus, stress-
dependent mitochondrial dysfunction is another 
molecular mechanism by which free radicals induce 
insulin resistance (88, 116,118). Oxidative stress and 
mitochondrial dysfunction have two interactions where 
both can produce energy (119). 

Figure 3: Oxidative stress induces insulin resistance. 

VI. Conclusion 

Diabetes is a metabolic disorder due to 
hyperglycaemia that can be completely cured but not 
normally controlled. There are many factors that 
contribute to the increase and progression of diabetes. 
Factors can be genetics, stress, obesity, and unhealthy 
lifestyle etc. But above all oxidative stress plays an 
important role in the development and progression of 
diabetes. Oxidation is a chemical process within the 
human body that leads to the production of free 
radicals. These oxidative reactions produce free radicals 
that slowly damage cells and organs by removing 
inflammatory mediators (such as TNF-α, cytokines, 
adipokines and chemicals etc.) and causing damage to 
cell organelles such as mitochondrial damage, damage 
of ribosomal, nucleus damage etc. leading to insulin 
resistance. Among other things, oxidative stress 
increases the rate of disease progression by interfering 
with insulin signaling pathways resulting in a decrease in 
insulin sensitivity. Oxidative stress increases apoptosis 
necrosis leading to beta cell dysfunction leading to 
insulin secretion. Antioxidants play a very important role 
in eliminating free radicals. They bind with free oxidative 

radicals and remove them from the body by making it 
harder. Combining antioxidant treatment with standard 
hypoglycaemic medications will increase recovery rate 
and antioxidant therapy will help address diabetes 
problems such as nephrotoxicity, neuropathy and 
retinopathy, which may be caused by oxidative stress. 
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