

1 Relevance of Sex Hormones Levels With Spermogram of Infertile 2 Men

3 Dr. Thualfeqar G Mohammed¹

4 ¹ Kufa University / Iraq-Najaf-Kufa

5 Received: 5 June 2012 Accepted: 5 July 2012 Published: 15 July 2012

6

7 **Abstract**

8 Infertility is the inability of a sexually active, noncontracepting couple to achieve pregnancy in
9 one year. The causes of male infertility include, the testicular primary failure, deficient
10 gonadotropin secretion or due to unexplained causes. The present study was conducted to
11 verify the relationship of male sex hormones changes with spermogram. To achieve this aim 75
12 infertile men with ages of 30.9 ± 5.8 y and 35 fertile men with ages of 31.5 ± 6.3 y (control
13 group) were enrolled and the prevalence and pattern of endocrinological abnormalities in the
14 patients were investigated for male infertility who attending the Central Public Health
15 Laboratories Department of Hormones and Kamal ALSamaraie hospital period from
16 September 2009 to April 2010.

17

18 **Index terms**— Azoospermia, Oligozoospermia, Teratospermia, Asthenozoospermia, FSH, LH, Prolactin,
19 Testosterone, Infertility

20 **1 I. Introduction**

21 he successful and complete male germ cell development is dependent on the balanced endocrine interplay of
22 hypothalamus, pituitary and the testis. Gonadotropin releasing hormone (GnRH) secreted by the hypothalamus
23 elicits the release of gonadotrophins i.e. follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the
24 pituitary gland [1]. FSH binds with receptors in the Sertoli cells and stimulates spermatogenesis. LH stimulates
25 the production of testosterone in Leydig cells, which in turn may act on the Sertoli and peritubular cells of the
26 seminiferous tubules and stimulates spermatogenesis [2].

27 Author ? ? : Department of Biochemistry, College of Medicine, Kufa University. Najaf-Iraq. Author
28 ? : Department of Chemistry, College of Science, Al-Nahrain University. Baghdad-Iraq. E-mail :
29 tgalmohanna@hotmail.com T The failure of pituitary to secrete FSH and LH will result in disruption of testicular
30 function leading to infertility. Testosterone, estradiol and inhibin control the secretion of gonadotrophins through
31 feedback mechanism [3]. Infertility is a common disorder and nearly one out of every six to eight couples suffers
32 couples suffers from it at any given time. Infertility among couples in their respective age is more common than
33 hypertension, diabetes, heart diseases and even the common flu [4].

34 Globally, it has been estimated that approximately 10-15% couples seek medical help for the problem of
35 infertility. In 20-25% cases the problems are attributable to the male partner, while 30-40% represent female
36 factor. In approximately 30% of cases both partners and in 15% no specific factor can be identified [5].

37 Male infertility can be assessed through semen analysis and hormonal profile [6]. Absence of spermatozoa
38 in the semen ejaculate is called "azoospermia", count less than 20 million/ml "Oligospermia", density of 20
39 million/ml but motility of less than 50% is called "asthenospermia", teratospermia is a reduced percentage of
40 sperm with normal morphology assessed by light microscopy [7].

41 Male infertility is associated with a reduction in the quality of sperms. Decrease in sperm density, eventually
42 leading to azoospermia has been found to be associated with raised FSH, LH and low testosterone level [8].
43 Primary hypogonadism results from disorders that affect the gonads directly, and secondary hypogonadism results
44 from defective pituitary gonadotropin secretion.

45 **2 II. Materials and Methods**

46 Subjects : A total of 75 subjects with 35 controls, were included in the study. Subjects were categorized as
47 azoospermia, oligozoospermia, teratospermia and asthenozoospermia on the basis of their semen concentration
48 and motility.

49 Semen analysis : The seminal fluid analysis was done according to the procedure described by the World
50 Health Organization [7].

51 **3 III. Results**

52 To evaluate serum hormonal levels in various subgroups of infertile men, patients were categorized into four groups
53 according to the results of their semen analysis. Group 1 consisted of 19 patients with azoospermia, group 2
54 contained 17 patients with oligospermia, group 3 comprised of 24 patients with asthenospermia, and group 4
55 involved 15 patients with teratospermia. The results of FSH, LH, prolactin, testosterone and free testosterone
56 levels are shown in table ?? and Figure 1-4. Significant ($p<0.01$) decreases were observed for the levels of total
57 and free testosterone, and significant ($p<0.05$) increases were indicated for the levels of FSH and LH in the
58 group of azoospermia and oligospermia when compared with the control group. Patients' of asthenospermia and
59 teratospermia showed insignificant variation when compared with the control group. On the other hand prolactin
60 levels did not show significant variation.

61 **4 Global Journal of**

62 **5 Medical**

63 **6 IV. Discussion**

64 FSH, LH and testosterone are prime regulators of germ cell development. The quantitative production of
65 spermatozoa generally requires the presence of FSH, LH and testosterone. FSH acts directly on the seminiferous
66 tubules whereas luteinizing hormone stimulates spermatogenesis indirectly via testosterone. FSH plays a key role
67 in stimulating mitotic and meiotic DNA synthesis in spermatogonia [9].

68 Testosterone is essential for spermatogenesis in all species. There is some debate as to the relative levels
69 required [10]. The androgen receptors are located on Sertoli cells [11] and the peritubular myoid cells and, since
70 they are not expressed on germ cells, the signal must be transduced by these cells, particularly the Sertoli cells.
71 Testosterone deficiency in men is manifested typically by symptoms of hypogonadism, including decreases in
72 erectile function and libido [12].

73 The current results demonstrated elevated levels of FSH and LH with decreased levels of free and total
74 testosterone in the azoospermia and oligospermia patients. However such difference could not be observed in
75 patients with asthenospermia and teratospermia. These result indicated to seminiferous epithelial damage [13].

76 The current finding are in consistence with previous reports. Babu et al had reported elevated levels of FSH
77 and LH levels with low testosterone concentration in infertile men [14]. Sulthan et al had illustrated elevated
78 concentrations of FSH in infertile men due to the seminiferous epithelial destruction [15]. Similar findings had
79 been also reported in other studies [16,17].

80 **7 V. Conclusion**

81 These results suggested that changes of sex hormones in man are related to the alterations of spermogram. Such
82 relationships must be considered in the management of the enrolled patients. The need for measuring prolactin
83 levels in the evaluation of male infertility is unnecessary. ¹

Figure 1: Figure 1 :

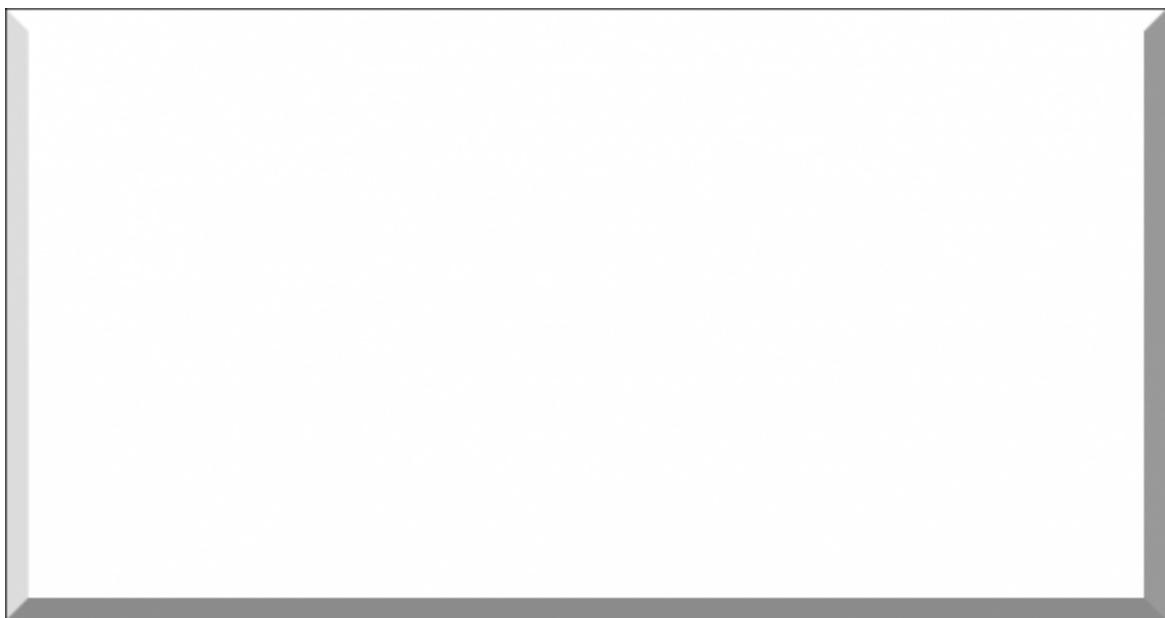


Figure 2:

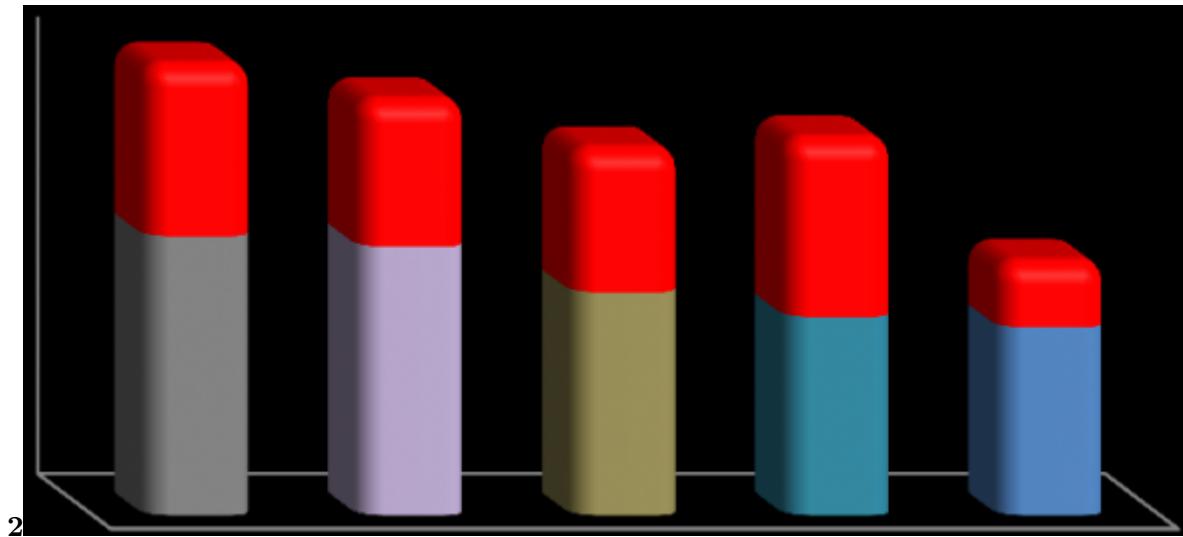


Figure 3: Figure 2 :

Figure 4: Figure 3 :

Figure 5: Figure 4 :

84 [Pak Med Assoc] , *Pak Med Assoc* 45 (9) p. .

85 [Ahmed ()] *Basic concepts in infertility: Male and Female*, N Ahmed . 1998. Karachi: Sanober Publishers. p. .

86 [Mulder et al. ()] 'Characterization of a nuclear receptor for testosterone in seminiferous tubules of mature rat
87 testes'. E Mulder , M J Peters , J D Vries , H J Molen . *Mol Cell Endocrinol* 1975. 2 p. .

88 [Sanborn et al. ()] 'Direct measurement of androgen receptors in cultured Sertoli cells'. B M Sanborn , A
89 Steinberger , R K Tcholakian , E Steinberger . *Steroids* 1997. 29 p. .

90 [Krester ()] 'Endocrinology of Male Infertility'. De Krester , DM . *Brit Med Bullet* 1979. 35 p. .

91 [Babu et al. ()] 'Evaluation of FSH, LH, and testosterone levels in different subgroups of infertile males'. S R
92 Babu , M D Sadhmani , M Swarna , P Padmavathi , P P Reddy . *Indian Journal of Clinical Biochemistry*
93 2004. 19 (1) p. .

94 [Weinbauer and Nieschlag ()] 'Gonadotropin control of testicular germ cell development'. G F Weinbauer , E
95 Nieschlag . *Adv Exp Med Biol* 1995. 317 p. .

96 [Weinbauer and Nieschlag ()] 'Gonadotropin control of testicular germ cell development'. G F Weinbauer , E
97 Nieschlag . *Adv Exp Med Biol* 1995. 317 p. .

98 [Sulthan et al. ()] 'Hormonal evaluation in male infertility'. C Sulthan , F Audran , Y Iqbal , C Ville . *Ann Biol
99 Clin Paris* 1985. 43 (1) p. .

100 [Bremner et al. ()] 'Immunohistochemical localization of androgen receptors in the rat testis: evidence of a stage
101 dependent expression and regulation by androgens'. W J Bremner , M R Millar , R M Sharpe . *Endocrinology*
102 1994. 135 p. .

103 [Subhan et al. ()] *Oligospermia and its relation with hormonal profile*, F Subhan , F Tahir , R Ahmad , Z D
104 Khan . 1995.

105 [Anderson et al. ()] 'Physiological relationships between inhibin B, follicle stimulating hormone secretion and
106 spermatogenesis in normal men and response to gonadotrophin suppression by exogenous testosterone'. R A
107 Anderson , E M Wallace , N P Groome . *Hum. Reprod* 1997. 12 p. .

108 [Guyton and Mcclur ()] *Reproduction and hormonal function of the male and the pineal gland. Text book of
109 Medical Physiology 11 th Ed*, A C Guyton , R D Mcclur . 2006. Elsevier China. p. .

110 [Khan et al. ()] 'Role of estimating serum luteinizing hormone and testosterone in infertile males'. M S Khan , I
111 Ali , A M Khattak , F Tahir , F Subhan , B M Kazi , J K Aurakzal , N Usman . *Gomal Journal of Medical
112 Sciences* 2005. 3 (2) p. .

113 [Merino and Carranza-Lira ()] 'Seman characteristics, endocrine profile and testicular biopsies of interfile men
114 of different ages'. G Merino , S Carranza-Lira . *Arch Androl* 1995. 35 (3) p. .

115 [O'donnell et al. ()] 'Testosterone promotes the conversion of round spermatids between stages vii and viii of the
116 rat spermatogenic cycle'. L O'donnell , R I McLachlan , N G Wreford , D M Robertson . *Endocrinology* 1994.
117 135 p. .

118 [Towards more objectivity in diagnosis and management of male fertility Intl J Androl ()] 'Towards more ob-
119 jectivity in diagnosis and management of male fertility'. *Intl J Androl* 1997. 7. (Suppl 1-53)

120 [. In Editor (ed.) ()] *WHO: World health organization laboratory manual for the examination of human semen
121 and sperm-cervical mucus interaction*, . In Editor (ed.) 1999. Cambridge: Cambridge University Press.