

Does Social Class Influence Learner Reasoning in Geometry?

Dr. Jayaluxmi Naidoo¹

¹ University of KwaZulu-Natal, South Africa

Received: 13 December 2012 Accepted: 2 January 2013 Published: 15 January 2013

Abstract

The purpose of this study was to explore the influence of social class on learners' reasoning in geometry in South Africa. The fieldwork for this study was conducted in two schools in KwaZulu-Natal (KZN), South Africa. The schools will be referred to as Green Park High and Bleak Stone High. Green Park High was a predominantly middle-class school whilst Bleak Stone High was a predominantly workingclass school. Data from 160 Grade 12 mathematics learners was collected through a questionnaire, and 24 of these learners completed a geometry evaluation worksheet. The 24 learners were interviewed using a semi-structured interview schedule. Themes and patterns were identified and linked to the conceptual framework of the study. The findings of the study demonstrate that while the learners from both workingclass and middle-class backgrounds employed similar techniques when solving geometry problems, their methods, logic and geometric reasoning differed considerably. It was also found that learners in this study conformed to the majority social class group with which they associated.

Index terms— geometry, mathematics education, reasoning, social class.

1 Introduction

South Africa came last out of 62 countries! This was reported about the quality of mathematics education in South Africa in the 2012 World Economic Forum's 5th Financial Development Report. This result is disturbing since mathematics is compulsory for learners at school; in addition mathematics is one of the key areas of study in formal educational institutions in South Africa (Adolphus, 2011). Mathematics serves as a gatekeeper to top earning careers and hence serves as a prerequisite to becoming economically successful (Iannelli & Paterson, 2005). Research (Noyes, 2009) has indicated that learners' success or failure in mathematics is a key factor in the determination of their subsequent life chances.

There have been many changes to the mathematics curriculum; from anecdotal experience the most disrupting was the move for mathematics to have an optional Paper 3 in 2006. The contents of Paper 3 included geometry, probability and statistics. These are key sections for learners if they intend pursuing mathematics in higher education institutions. Learners could choose whether or not they wanted to write the Paper 3 examination. The result of this change in the curriculum had a negative impact on the pass rate in mathematics for schools in rural areas and schools in lower socio-economic contexts (Gardiner, 2008). Many teachers did not teach these sections and hence learners were not adequately prepared to write the optional Paper 3. This in turn disadvantaged the learners. Learners could not cope with the content of first-year university mathematics due to their lack of knowledge in mathematics sections that were consigned to Paper 3. Thus instead of bridging the gap between the different socio economic classes and allowing more access for learners from different socioeconomic backgrounds this entrenched them in the cycle of economic stagnation.

From studies conducted within the scope of mathematics education in South Africa, it appears as if there is a silence around issues surrounding the effect of the social class structure on the learning of geometry in mathematics. Research focusing on whether or not the social class structure of South African schools has an effect on learners' reasoning in geometry is therefore warranted.

5 C) MATHEMATICS EDUCATION AND GEOMETRY IN SOUTH AFRICA

44 In this article I discuss data collected through the use of a questionnaire, geometry evaluation worksheets and
45 semi-structured interviews. The theoretical lens of the Van Hiele and social development theory was used to
46 explore the learners' reasoning in geometry within this study. While the study was part of a larger study, this
47 article aims at answering the following question: Does social class influence learner reasoning in geometry?

48 The article commences with a literature review of key issues; this section is followed by the research
49 methodology, findings and discussion. The article concludes with the conclusion. In general, the quality of
50 education in a majority of disadvantaged schools in South Africa has been questioned in the light of apartheid
51 education which denied the majority of South Africans access to adequate education (Mji & Makgato, 2006).
52 This denial of access to information was one of the cornerstones of apartheid in South Africa, with an attempt to
53 disallow those disadvantaged communities information that could be used to better themselves socially, politically
54 and economically.

55 2 II.

56 3 Literature Review

57 occupying the same situation" as cited in ??erberoglu (1994, p. 5). Berberoglu (1994) proposed that social class
58 and the class structure are forces that affect an individual in every aspect of life. Education is frequently related
59 to social class (Iannelli & Paterson, 2005), schools are implicated in producing and reproducing inequalities
60 related to social class and language by favouring knowledge and pedagogical practices that privilege the skills
61 and experiences of the middle and upper middle-class learners (Zevenbergen, 2001).

62 To be successful in school, learners are required to access the opportunity structures made available by the
63 school. For disadvantaged learners this may present a problem because of their limited opportunity structure
64 (Smyth, 2004). Social class and success in mathematics are interlinked (Lubienski, 2000) since it is the educational
65 system that trains young people to live in society when they are adult. As a result each individual is being groomed
66 to carry out the social role expected of the class to which they belong. Mathematics has traditionally been viewed
67 as a discipline where success is limited to a minority as opposed to a majority of children. By being associated
68 with this notion, mathematics is seen as a subject that preserves the divide between social classes by limiting the
69 participation of the less privileged rather than being used as an instrument of empowerment (Stinson, 2004).

70 4 b) The social class structure in South Africa

71 Social class provides an important framework for understanding how integration is being conceptualised and
72 effected in South Africa. When the apartheid system began breaking down, the flow of children within the
73 system took place in a fairly predictable way; children 'of colour' moved into what was once called 'white' schools
74 (Van der Berg, 1999). This movement was about class following its own interest.

75 The class structure of post-apartheid South Africa was largely informed by the model developed using the
76 SALDRU (Southern Africa Labour and Development Research Unit) survey that was compiled in 1993 on the
77 post-apartheid class structure. This model was later updated in 2002 (Seekings & Nattrass, 2002). Data
78 from this survey defined the upper class as those households headed by people in managerial, technical or
79 professional occupations, or with substantial income from assets or entrepreneurial activities. The middle-class
80 was comprised of households that were headed by educators, nurses, white collar workers, as well as skilled or
81 supervisory workers. The working-class was comprised of households headed by semi-skilled or unskilled workers;
82 and finally the underclass was comprised of households with no members in employment and negligible income
83 from entrepreneurial activities or assets (Seekings & Nattrass, 2002).

84 Race, ethnic and gender relations are essential components of class structure and therefore have a major impact
85 on class relations and class struggles (Barbeau, Krieger, & Soobader, 2004). Due to the circumstances of South
86 Africa, race and class intersect (Seekings, 2003); hence various other factors like family size, educational level of
87 parents, occupational status of parents, housing status, types of home, number of vehicles and tuition received
88 were also taken into account before allocating a learner in this study to a specific social class background.

89 5 c) Mathematics education and geometry in South Africa

90 With democracy in South Africa came many new curricula for mathematics. The intention of the new curriculum
91 was rooted in building a democratic South Africa (Department of Education, 2003b) to ensure that the divisions
92 of the past were healed and to establish a critical society that is based on democratic values, social justice and
93 fundamental human rights (Department of Education, 2003a).

94 This was one of the reasons why two major changes in mathematics occurred in 2006: firstly, mathematics
95 or mathematics literacy was made compulsory for all learners in South Africa and secondly, Paper 3 became
96 optional. As discussed earlier, Paper 3 comprised the sections geometry, statistics and probability.

97 Geometry, which is frequently referred to as the mathematics of space, involves the properties of space in
98 which bodies are situated, and in which they move (Bursill-Hall, 2002). Learning the names and dimensions of
99 shapes prepares learners for the real world, as well as for more advanced mathematical concepts. Learning how
100 three-dimensional shapes and objects operate helps one understand how a football is thrown, how cars move and
101 how buildings are constructed. .

102 In geometry the learner can search for patterns and use these to generalise, experiment, analyse, visualise,
103 describe and provide proofs for their conjectures. Unfortunately geometry is a neglected field (Olkun, Sinoplu,
104 & Deryakulu, 2005). Moreover, research indicates that learners perform badly in geometry because of the
105 disjointed and abstract way in which geometry is taught (Mogari, 2004). In addition, learners appear to believe
106 that geometry is abstract in nature and that it is a difficult subject in which to succeed (Barrantes & Blanco,
107 2006).

108 Geometry provides a rich context for the development of reasoning, including making conjectures and validating
109 them. In addition, visualisation and spatial reasoning are used to solve problems both within and outside
110 mathematics (Van der Sandt, 2003). This implies that studying geometry also provides opportunities for divergent
111 thinking and creative problem Volume XIII Issue III Version I Year learners develop logical thinking skills we
112 also need to know how they develop thinking skills in geometry.

113 6 III.

114 7 Theoretical Framework a) The Van Hiele Theory

115 The Van Hiele theory describes the different levels of thinking that learners pass through as they learn geometry
116 in mathematics (Mistretta, 2000). Two mathematics educators in the Netherlands, Pierre van Hiele and Dina van
117 Hiele-Geldorf, noticed the difficulties that learners were having in the learning of geometry. Their observations
118 led them to develop a theory involving levels of thinking in geometry that learners pass through as they progress
119 from recognising a figure to being able to write a formal geometrical proof. Their theory explains why many
120 learners encounter difficulties in geometry especially with formal proofs.

121 The Van Hieles identified five levels of understanding: visualisation, analysis, informal deduction, formal
122 deduction and rigour (Ryan & Williams, 2007). The first three levels relate to thinking within the capability
123 of elementary school learning while the next two involve thinking needed in high school and university level
124 geometry (Mistretta, 2000). The levels are sequential and hierarchical with each having its own language. This
125 implies that the educator must identify the level on which the learner is operating or else both the educator and
126 the learner may be on different levels during instruction. Thus for effective teaching and learning to occur in the
127 geometry classroom the educator must be mindful that learners differ in capabilities and in social development.

128 8 b) Social Development Theory

129 Becoming socialised involves the process of learning to behave in socially approved ways, playing approved social
130 roles and developing social attitudes. Social development is defined as acquiring the ability to behave according
131 to social expectations (Hurlock, 1978).

132 In terms of cognitive development, Vygotsky's theory of social development supports the notion that
133 learning precedes development. Vygotsky's social development theory rests on two main principles: the More
134 Knowledgeable Other (MKO) and the Zone of Proximal Development (ZPD). The MKO refers to anyone who
135 has a better understanding than the learner, with respect to a particular task, process or concept. The MKO
136 could refer to an educator, older adult, a peer or even computers (Mace, 2005). The ZPD occurs when learner
137 development proceeds through a learner's participation in activities slightly beyond their competence. With the
138 assistance of adults or more skilled children, the cognitive processes are internalised and transformed to form the
139 individual plane. This competence. With the assistance of more highly skilled individuals, cognitive processes
140 are internalised and transformed to ensure that the child learns how to do the activity independently.

141 Social development theory supports the notion of the educator working in partnership and collaboration with
142 learners in order for the learners to discover and create their own meaning and understanding (Woolcock &
143 Narayan, 2000). Social development theory favours teaching strategies like scaffolding, reciprocal teaching and
144 guided instruction. Scaffolding refers to a temporary support structure that an educator creates to assist learners
145 in completing a task that they would not be able to complete on their own. It is in this fashion that the classroom
146 becomes a community of acquisition (Mace, 2005) -acquisition by the learner.

147 IV.

148 9 Methodology

149 In this qualitative, interpretive study, data was collected from schools in KZN, South Africa. Access to schools
150 was granted by the KZN Department of Education, school principals and parents of the learners in the Grade
151 12 classes. Of the 12 schools that were approached only five responded positively. Three of the five schools were
152 selected based on convenience; one of the three schools was used for the pilot study. A total of 160 Grade 12
153 mathematics learners participated in the pilot and main study. The pilot study was used to ensure the reliability
154 and validity of the research instruments.

155 The schools in the main study were called Green Park High and Bleak Stone High. Both schools catered
156 for more than one socio-economic group and more than one race group. Green Park High catered for the
157 predominantly middle class learner and the school had a higher population of Indian learners. Bleak Stone High
158 catered for the predominantly working-class learner and the school had a higher population of black learners.

159 The learners in the main study were selected using purposive sampling. The research study necessitated two
160 sets of learners belonging to specific socio-economic backgrounds within each school, i.e. one set from a working-
161 class background and the other set from a middle class background. The main study involved 24 Grade 12
162 participants who came from different social backgrounds and race groups. The participants were comprised of 11
163 boys and 13 girls. The learners were between 16 and 18 years old. Data was collected by using a questionnaire, a
164 geometry evaluation worksheet and a semi-structured interview schedule. () K personal and family background.
165 This section of the instrument focused on sensitive questions about matters such as parents' occupation, family's
166 financial background and type of housing; therefore confidentiality and the learner's right to withdraw from the
167 study were stressed both verbally and in writing.

168 The second section of the questionnaire was based on the learner's mathematical background. This section
169 was designed to locate the learner within a mathematics context in terms of the learner's views on the different
170 sections in mathematics as well as to gain an understanding of the learner's mathematical ability in geometry.
171 This information was further supplemented by data collected from the school principals as well from the head of
172 department of mathematics at each school.

173 10 V. The Geometry Evaluation Worksheet

174 The learner questionnaire was followed by a geometry evaluation worksheet. The geometry evaluation worksheet
175 consisted of two geometry questions and eight sub-questions. The questions were randomly constructed based on
176 different aspects of Euclidean geometry as shown in Figure 1 and 2. The primary aim of the geometry evaluation
177 worksheet was to provide the learners with an opportunity to demonstrate their techniques implemented during
178 the geometry solution process. This was also an opportunity to investigate these techniques as well as to compare
179 the geometric reasoning with respect to the different social class groups at the different schools. This strategy
180 was followed by a semistructured interview schedule.

181 11 a) The semi-structured interview schedule

182 The semi-structured interview schedule was comprised of a set of standard questions that each learner was asked.
183 In addition, responses were probed to ensure that there were no misunderstandings. Learners were also probed
184 with respect to their individual attempts on the geometry evaluation worksheet. In addition, the interview
185 provided an idea as to what the learner understood while answering the questions; the interview provided insight
186 into the thought processes and reasoning the learner followed when answering the geometry evaluation worksheet.
187 These interviews were audio-recorded with the permission of the learner. This was done to ensure there were no
188 misinterpretations and misquotes.

189 12 VI.

190 13 Findings and Discussion

191 14 a) Performance in the geometry evaluation worksheet

192 The social class groups differed considerably with respect to their geometric reasoning, their logic as well as
193 the type of language used to express their reasoning. Learners were inclined to answer questions in a similar
194 manner to their peers at the school. This is in agreement with social development theory which suggests that
195 to be socialised, children must know what approved behaviour is, and they need to model their behaviour along
196 the approved lines. In this study it was evident that in order to gain their peers' approval, the learners had to
197 identify with the majority class group at each school.

198 Green Park High had a predominantly middleclass learner population and the working-class learners in this
199 school had similar ideas and reasoned in a similar manner as the middle-class learners of the school. In addition,
200 the visual markings made on their (the working class learners') diagrams were similar to the ones made by the
201 middle-class learners.

202 On the other hand, in Bleak Stone High, which catered mainly for working-class learners, the middleclass
203 learners worked in a similar way to the workingclass learners. These learners also spoke in the same manner,
204 they reasoned in a similar manner and they used the same types of visual techniques on their diagrams.

205 It could therefore be inferred that the learners in each of the above-mentioned schools were conforming to the
206 majority class group in their school.

207 15 b) Learners' reasoning in geometry

208 While analysing the geometry evaluation worksheet the learners' geometrical reasoning was examined. The results
209 obtained showed that learners from Green Park High reasoned more logically and sequentially than the learners
210 from Bleak Stone High. This was evident from each learner's step-by-step interpretation of how they had gone
211 about solving the questions in the geometry evaluation worksheet. Some of the participants' responses follow: "I
212 found that there was a diameter, from the diameter I worked with the semi-circle? Usually what they said they
213 were 'seeing' was three-dimensional, when in fact what was on paper was illustrated in two dimensions. Based
214 on the manner in which these learners approached the geometry problems it is also evident that learners at both

215 schools needed to visualise the problems in order to complete them as can be deduced from the Green Park High
216 interview transcript:

217 "First I read the question and then ? I used my colours and ? I put ? all different colours ? it looked
218 complicated but once you put the colours in you try and figure it out, it was alright ..."

219 The learners at Green Park High demonstrated that they were aware of what they were seeing and what they
220 were not seeing. In some instances learners had to mentally or physically manipulate the evaluation worksheet
221 in order to complete the various questions. "I turned the page around ? so that I can see things." "I will turn
222 this page (proceeds to turn the page around) and using my knowledge I learnt in Grade 11 ? see whether I can
223 find angles ?"

224 These visual images of what the learners were seeing helped them to explain how they were seeing things and
225 to convince me why their solutions were correct. This step-by-step method also proved to be beneficial in that
226 when the responses to the geometry evaluation worksheet were compared it was evident that a greater percentage
227 of the learners from Green Park High had attempted or completed the questions correctly as compared to the
228 learners in Bleak Stone High.

229 Learners' responses to the geometry evaluation task were analysed. The results indicated that 50% of learners
230 at Green Park High had either attempted or completed the questions on the geometry evaluation worksheet
231 correctly. In contrast, only 29% of learners at Bleak Stone achieved the same result. Moreover, learners from
232 Bleak Stone High, who were from predominantly working-class backgrounds, did not demonstrate well-defined
233 logic in their geometry reasoning. This could have been as a result of the learners not knowing the work, being
234 at a different Van Hiele level to that of the question, or not having access to the language to express themselves
235 adequately within the formal context of a school, as can be seen from the following examples: "Whatever came
236 to mind I just wrote it down." "I tried to work backwards." "? I know I wrote it there I probably just wrote it
237 there, I don't know why."

238 The interview schedules for learners from Bleak Stone High indicated that the majority of the learners were
239 going through a process; it appeared as if they were grasping at straws when attempting these questions.

240 "? I don't know and I know that x always stands for something so that's why I use x." "For the first question
241 I couldn't find OD parallel to AC, so I assumed it was parallel ? so I put OD is parallel to AC. I knew it was
242 linked so I used it for the second one too."

243 Their focus was on finding the answer and the majority of the learners failed to follow a sequential stepby-step
244 process. The process used was one that accidentally led to the correct answers in some instances. It was evident
245 that the learners were at a different Van Hiele level than at which the question was pitched. The majority of
246 the learners made assumptions and worked from there as can be seen in the following excerpt taken from the
247 interview transcript: "It looked confusing at first, whatever came to mind I just started writing, writing and
248 eventually I ended up with the answer."

249 "I guess I want to solve for something ? so I assumed it was parallel." "I must have assumed it was straight." As
250 is shown above, the learners' geometrical reasoning was affected by a variety of factors. Mathematical language is
251 crucial to reasoning because it provides the medium, in which claims are developed, made, justified and verified
252 (Ball Loewenberg & Bass, 2000). Learners who are proficient in the language of the school are more likely to
253 understand the messages and content being conveyed by the educator than learners who are less familiar with
254 the language and hence unable to "crack the code" of school language (Zevenbergen, 2001).

255 16 VII.

256 17 Conclusion

257 Researchers (Howie, 2003;Legotlo, Maaga, & Sebego, 2002;Setati & Adler, 2001) have commented on the poor
258 mathematics results obtained by learners in South Africa. This is distressing since mathematics acts as a
259 gatekeeper to higher paying careers and an improvement of social status in society. A clear example of this
260 is the section geometry; this is a much-needed section in mathematics and would assist learners in moving
261 beyond their existing social class boundaries. Thus, when in 2006 geometry in mathematics was relegated to an
262 optional paper the exclusion problem was exacerbated.

263 Based on evidence obtained in this research it was ascertained that middle-class and working-class learners
264 reasoned in geometry in different ways with regard to their schools and their social class backgrounds. The
265 learners in Green Park High, who were predominantly middle-class, reasoned in geometry by presenting evidence
266 of a sequential thought process which was further justified by logical explanations for their thought processes.
267 These learners used language that was appropriate in the geometry classroom in order to verbalise their thought
268 processes. They used language that was within the mathematics context; more specifically the geometry context.
269 The learners made satisfactory attempts at interpreting the geometry questions and went about their solution
270 process using the appropriate geometry theorems and definitions.

271 In contrast, the learners in Bleak Stone High, who were predominantly working-class, had a tendency to
272 reason in geometry in a manner that demonstrated a different logic. The same learners also did not demonstrate
273 a sequential systematic process in their thinking. It would appear that the manner in which the learners went
274 about attempting their geometry questions was an attempt at finding an answer regardless of whether or not
275 the answer was realistic. These learners exhibited difficulty with the interpretation and solution of the questions.

276 Based on evidence obtained in this study I would argue there is evidence to claim this difficulty is due to at least
277 one of four reasons: ? The learners were not familiar with the language used in the geometry evaluation worksheet.
278 ? The learners were not exposed to similar types of geometry questions on a regular basis. ? The geometry
279 questions were on a different level to that of the learners' ability level. ? The learners were performing at a lower
280 Van Hiele level to that at which the questions were targeted. The learners did not apply the appropriate geometry
281 theorems and definitions; they very often mixed up definitions as well as theorems. This demonstrated that the
282 learners did not have a firm foundation in terms of mathematics syllabus requirements for circle geometry, which
283 forms a large part of a geometry examination paper.

284 The root of the differences and segregation in the study occurred outside the classroom. It lay with the social
285 class system of South Africa where it is inevitable that class and race intersect. It was evident that mathematics
286 was not neutral, mathematics played a part in the perpetuation of power (Gates, 2001) mathematics as used and
287 applied in society and mathematics education as carried out in many classrooms oppose democratic values. Along
288 similar lines, some researchers (Khuzwayo, 2005; Zevenbergen, 2001) maintain that mathematics education has
289 established a systematic access denial on the grounds of a person's race, language, and social class. This situation
290 could be alleviated if educators complete short courses in geometry to assist their learners with understanding this
291 abstract section in mathematics, and if schools are equipped with both human and material resources equitably,
292 regardless of the social milieu in which the school is situated.

293 18 Volume XIII Issue III Version I

294 Year

Figure 1: K

295 1 2 3 4

¹()K © 2013 Global Journals Inc. (US)solving which in turn helps develop learners' logical thinking abilities(Nakin, 2003). Apart from knowing how Does Social Class Influence Learner Reasoning in Geometry?

²Does Social Class Influence Learner Reasoning in Geometry?

³© 2013 Global Journals Inc. (US) Does Social Class Influence Learner Reasoning in Geometry?

⁴© 2013 Global Journals Inc. (US)

Answer the following questions in the spaces provided and please remember that the diagrams are NOT drawn to scale.

- 1.1. OD is parallel to AC.
- 1.2. Angle BDC = Angle ADE.

Figure 2:

296 [Lubienski ()] 'A clash of social class cultures? Students' experiences in a discussion intensive seventh grade
297 mathematics classroom'. S T Lubienski . *The elementary school journal* 2000. 100 (4) p. .

298 [Khuzwayo ()] 'A history of mathematics education research in South Africa: The apartheid years'. B Khuzwayo
299 . *Researching mathematics education in South Africa: Perspectives, practices and possibilities*, R Vithal, J
300 Adler, & C Keitel (ed.) (Cape Town) 2005. HSRC. p. .

301 [Barrantes and Blanco ()] 'A study of prospective primary teachers' conceptions of teaching and learning school
302 geometry'. M Barrantes , L J Blanco . *Journal of mathematics teacher education* 2006. 9 (1) p. .

303 [Setati and Adler ()] 'Between languages and discourses: Language practices in primary multilingual mathe-
304 matics classrooms in South Africa'. M Setati , J Adler . *Educational Studies in Mathematics* 2001. 43 p.
305 .

306 [Hurlock ()] *Child Development*, E B Hurlock . 1978. Auckland: Mc Graw -Hill Book Company.

307 [Ryan and Williams ()] *Children's mathematics 4-15. Learning from errors and misconceptions*, J Ryan , J
308 Williams . 2007. Open University Press. Mc Graw -Hill Education.

309 [Berberoglu ()] *Class structure and social transformation*, B Berberoglu . 1994. London: Greenwood Publishing
310 Group.

311 [Seekings and Nattrass ()] 'Class, distribution and redistribution in post-apartheid South Africa'. J Seekings , N
312 Nattrass . *Transformation: critical perspectives on South Africa* 2002. 50 (1) p. .

313 [Nakin ()] *Creativity and divergent thinking in geometry education*, J B N Nakin . 2003. Gauteng. University of
314 South Africa

315 [Mogari ()] 'Developing geometrical knowledge outside school: The case of miniature wire toy car makers'. D
316 Mogari . *African Journal of Research in SMT Education* 2004. 8 (2) p. .

317 [Iannelli and Paterson (2005)] *Education and Social Mobility in Scotland*, C Iannelli , L Paterson . <http://www.ces.ed.ac.uk/SocMobility/Papers/WP5.pdf> 2005. 11th May, 2006.

318 [Gardiner ()] 'Education in rural areas'. M Gardiner . *Issues in education policy* 2008. 1 (4) p. .

319 [Mace (ed.) ()] *Encyclopedia of educational technology*, K Mace . <http://coe.sdsu.edu/eet/articles/sdtheory/start.htm> B. Hoffman (ed.) 2005. (Vygotsky's social development theory)

320 [Mistretta ()] 'Enhancing geometric reasoning'. R M Mistretta . *Adolescence* 2000. 35 (138) p. .

321 [Mji and Makgato ()] 'Factors associated with high school learners' poor performance: a spotlight on mathemat-
322 ics and physical science'. A Mji , M Makgato . *South African journal of education* 2006. 26 (2) p. .

323 [Stinson ()] 'Gate-Keeper" (?): Three theoretical perspectives that aim toward empowering all children with a
324 key to the gate. The mathematics educator'. D W Stinson . *Mathematics as*, 2004. 14 p. .

325 [Olkun et al. ()] 'Geometric explorations with dynamic geometry applications based on Van Hiele levels'. S Olkun
326 , N B Sinoplu , D Deryakulu . <http://www.ex.ac.uk/> *International journal for mathematics teaching and
327 learning* 2005. p. .

328 [Ball Loewenberg and Bass ()] 'Interweaving content and pedagogy in teaching and learning to teach: Knowing
329 and using mathematics'. D Ball Loewenberg , H Bass . *Multiple perspectives on mathematics teaching and
330 learning*, J Boaler (ed.) (London) 2000. Ablex Publishing. p. .

331 [Howie ()] 'Language and other background factors affecting secondary pupil's performance in mathematics in
332 South Africa'. S J Howie . *African Journal of Research in SMT Education* 2003. 7 p. .

333 [Zevenbergen ()] 'Language, social class and underachievement in school mathematics'. R Zevenbergen . *Issues
334 in mathematics teaching*, P Gates (ed.) (London) 2001. Routledge Falmer Publishers. p. .

335 [Gates ()] 'Mathematics teacher belief systems'. P Gates . *Psychology of Mathematics Education (PME)* 2001.
336 25 (3) p. . (Exploring the social foundations)

337 [National Curriculum Statement Grades 10 -12 (General) Mathematics Literacy ()] *National Curriculum State-
338 ment Grades 10 -12 (General) Mathematics Literacy*, (Pretoria) 2003b. Department of Education.

339 [National Curriculum Statements Grades 10 -12 (General) Mathematics. Pretoria: Department of Education ()]
340 *National Curriculum Statements Grades 10 -12 (General) Mathematics. Pretoria: Department of Education*,
341 2003a.

342 [Noyes ()] *Participation in mathematics: What is the problem? Improving schools*, A Noyes . 2009. 12 p. .

343 [Legotlo et al. ()] 'Perceptions of stakeholders on causes of poor performance in Grade 12 in a province in South
344 Africa'. M W Legotlo , M P Maaga , M G Sebego . *South African journal of education* 2002. 22 (1) p. .

345 [Adolphus ()] 'Problems of teaching and learning of geometry in secondary schools in River State'. T Adolphus
346 . *Nigeria. International journal of emerging science* 2011. 1 (2) p. .

347 [Smyth ()] 'Social capital and the 'socially just school'. J Smyth . *British journal of sociology of education* 2004.
348 25 (1) p. .

351 [Woolcock and Narayan ()] *Social capital: Implications for development theory, research and policy. The World Bank research observer*, M Woolcock , D Narayan . 2000. 15 p. .

353 [Van Der Berg ()] *Social policy to address poverty. Cape Town: Development Policy Research Unit*, S Van Der Berg . 1999.

355 [Seekings ()] *Social stratification and inequality in South Africa at the end of apartheid. Cape Town: Centre for social science research*, J Seekings . 2003.

357 [Van Der Sandt ()] *The relationship between teacher's knowledge of geometry and the teaching and learning of geometry*, S Van Der Sandt . 2003. Gauteng. University of South Africa

359 [Bursill-Hall ()] *Why do we study geometry? Answers through the ages. 1 -31*, P Bursill-Hall . https://www.dpmms.cam.ac.uk/~piers/F-IG_opening_ppr.pdf.04/01/13 2002.

361 [Barbeau et al. ()] 'Working class matters: Socioeconomic disadvantage, race/ethnicity, gender, and smoking in NHIS 2000'. E M Barbeau , N Krieger , M Soobader . *American journal of Public Health* 2004. 94 (2) p. .