

¹ Antioxidant Capacity and Microbial Attributes of Raw Cow Milk ² Fortified with Hypotrigona Squamuligera Honey

³ Dzomba P¹

⁴ ¹ Indura University of science education, Zimbabwe

⁵ Received: 13 December 2012 Accepted: 3 January 2013 Published: 15 January 2013

⁶

⁷ **Abstract**

⁸ Diseases such as diabetes, cancers, hypertension and obesity are problematic diseases in the
⁹ adult population. The use of functional foods that consists of phytochemicals such as
¹⁰ antioxidants that can act as prophylactics against such diseases has received considerable
¹¹ attention by the academia, food industry and the general public. The present study aimed at
¹² investigating antioxidant capacity and microbial attributes of cow milk fortified with
¹³ Hypotrigona squamuligera honey. Antioxidant capacity was assayed using 2,2-diphenyl-
¹⁴ 1-picrylhydrazyl (DPPH) antiradical activity and peroxide value method. Pour plate assay
¹⁵ was used to investigate microbial attributes. The fortified milk revealed a significant DPPH
¹⁶ antiradical activity than unfortified milk $p > 0.05$. A higher percentage inhibition of $98.38 \pm$
¹⁷ 0.40 was achieved with fortified milk as compared to 47.27 ± 1.00 . Fortified milk also
¹⁸ exhibited significantly lower peroxide values and microbial attributes than unfortified milk.
¹⁹ The present study results reveals that fortifying milk with *H. squamuligera* honey improves its
²⁰ antioxidant capacity and microbial inhibitory activity. This means that fortifying milk with *H.*
²¹ *squamuligera* honey preserve milk and maintains its health promoting effects.

²²

²³ **Index terms**— antioxidant capacity, microbial attributes, hypotrigona squamuligera, fortified milk, honey.

²⁴ **1 Introduction**

²⁵ studies in alternative methods of counteracting adult long standing diseases such as type 2 diabetes, obesity,
²⁶ hypertension, and cancers has increased over the years ??Ariyoshi et al., 2004). Diet management is one of the
²⁷ most effective ways of lowering the occurrence of such diseases in the general public ??Praveeshi et al., 2011).
²⁸ Milk plays an important role in the diet (Chirlaque, 2011). Drinking raw milk is believed to have many advantages
²⁹ (Chirlaque, 2011). It can act as an immune system booster. This is because it consists of natural lymphocytes,
³⁰ antibodies, hormones and growth factors (Chirlaque, 2011). It can also help in fighting diseases such as gout,
³¹ kidney stones, breast cancer, rheumatoid arthritis and migraine headaches. Raw milk has been used successfully
³² to cure diseases in the past. Raw milk is a wholesome food source of many essential nutrients such as vitamin
³³ B, C and antioxidants (Krushna et al., 2007). Antioxidants inhibit the accumulation of free radicals in the body
³⁴ (Francois et al., 2010). Free radicals have been implicated in the pathology of diseases such as cancers, diabetes,
³⁵ obesity and cardiovascular diseases. Vitamins help in preventing breast cancer, colorectal cancer and pancreatic
³⁶ cancer. Although raw milk is beneficial unfortunately it is not free from microbial contamination (Tasci, 2011).
³⁷ Contaminating bacterial can be pathogenic and therefore resulting in serious illness. Heating and sealing is the
³⁸ widely used method. Although this is an effective method unfortunately it destroys useful milk components such
³⁹ as enzymes and antioxidants that are crucial in maintaining health in humans. Other methods of ensuring that
⁴⁰ milk is free from harmful microorganisms include the use of H₂O₂ and lactoperoxidase system however their
⁴¹ acceptance by the public is low. *Apis mellifera* honey has also been tried and interesting results were reported
⁴² ??Krushna et al., 2006). The advantage of using honey is that it is a food substance and it consists of many

11 A) DPPH ANTIRADICAL ACTIVITY

43 other useful components such as antioxidants which have been reported to help in preventing current problematic
44 adult diseases. This study aimed at investigating antioxidant capacity and microbial attributes of raw cow milk
45 fortified with Hypotrigona squamuligera honey. A study conducted by (Dzomba et al., 2012) revealed that *H.*
46 *squamuligera* Materials and Methods a) Honey Collection *H. squamuligera* honey used in this study was collected
47 from Chinyani village forests in Murewa, Mashonaland East, Zimbabwe in November 2012. Samples were stored
48 in a freezer before use.

49 2 b) Extraction

50 Two grams of honey was added to 20ml of absolute ethanol in a conical flask. The contents were mixed by
51 vortexing and centrifuged at 3000rpm for 10 minutes. The supernatants were then collected, filtered using a
52 Whatman filter paper No. 1 into stopppard test tubes and then dried under vacuum at 40oC. The yield was
53 recorded. The extract was dissolved in ethanol/water (2:3) mixture and stored in a freezer at between 0-5oC.

54 3 c) Collection of Milk

55 Raw milk was collected from farms around Bindura. The milk was divided into two. One lot was quickly fortified
56 with *H. squamuligera* honey extracts at different concentrations. Both the fortified and unfortified milk was
57 placed in a cooler box and transported straight to the laboratory.

58 4 Fig. 1 : *H. squamuligera* insect and its honey d) DPPH 59 Antiradical Assay

60 A volume of 1 ml of fortified/unfortified milk was added to 2 ml of DPPH (100 μ M) dissolved in ethanol.
61 Absorbance of the samples was measured at 517nm after standing for 30 minutes. The blank consisted of
62 ethanol/water mixture. Percentage antiradical activity was calculated as follows;
63 % antiradical activity = ???? ?????

64 5 ???? ?? 100

65 Where A c is the absorbance of DPPH solution without milk, A s the absorbance of milk and DPPH solution.

66 6 e) Peroxide Value Determination

67 This was performed following a method reported by (Lafka et al., 2007) with some modifications. Two millimeters
68 of milk (fortified or unfortified, 10ml of chloroform, 15ml of acetic acid and 1 ml potassium iodide (10%) were
69 added to a stopppard conical flask. The flask was shaken for 2 minutes and left standing for 10 minutes in the
70 dark. The contents were then titrated with 0.01M sodium thiosulphate and 1% starch as the indicator. A blank
71 run was also performed. Peroxide value expressed as mmoles of active oxygen per Kilogram was calculated as
72 follows.

73 PV (mM/Kg) = ??????? ?? ?? ?? 1000 ?? Where V is the volume of sodium thiosulphate for the sample, Vo
74 is volume of sodium thiosulphate of blank, C is the concentration of sodium thiosulphate and m the mass of the
75 sample in g, All assay were repeated five times.

76 7 f) Microbial attributes

77 Enumeration of total viable counts was performed by tenfold dilution of milk samples using ringer solution.
78 Total Viable Count (TVC) was determined using the pour plate technique. Each dilution 0.1 was transferred
79 using a sterile pipette into Petri dishes followed by nutrient agar. The plates were incubated at 37oC for 48
80 hours. Following incubation plates exhibiting 30-300 colonies were counted. The average number of colonies in
81 a particular dilution was multiplied by the dilution factor to obtain TVC. TVC was expressed as the number of
82 organisms of Colony Forming Units (CFU) of samples according to (ISO, 1995).

83 8 III.

84 9 Statistical Analysis

85 The data is presented as mean \pm Standard deviation of five determinations. T-test, $p = 0.05$ was used to compare
86 results of fortified and unfortified milk.

87 IV.

88 10 Results and Discussion

89 11 a) DPPH antiradical activity

90 Fortified milk exhibited the highest DPPH antiradical activity. Antioxidant activity remained constant from day
91 1 to day 4 Table ???. From day 4 percentage inhibitory activity decreased to $77.45 \pm 0.80\%$ Table ???. This shows
92 that antioxidants were used to counteract free radicals. Unfortified milk antiradical activity was significantly

93 lower than that for fortified milk in all days. Values started to decrease from day 1 Table ?? . Milk consists of
94 appreciable levels of lipids. During storage lipids are easily attacked by oxygen forming peroxy radicals which
95 are dangerous to health. Even though milk consists of natural antioxidants these are quickly depreciated. This is
96 shown by a quick decrease in antiradical activity. Adding functional foods fortify the milk such that its integrity is
97 maintained. The present results show that fortifying milk with *H. squamuligera* honey maintains its antioxidant
98 properties for some time therefore its health promoting effect.

99 **12 b) Peroxide Value Determination**

100 The primary products of lipid oxidation are hydroperoxides. Determination of peroxide value gives an indication
101 of how far the milk has gone bad. lower than that for the unfortified milk. Peroxidation values for the fortified
102 milk were almost constant Table ?? revealing stabilization. Peroxidation values for unfortified milk increased
103 from day 1 showing quick deterioration.

104 **13 c) Microbial Attributes**

105 Total Viable Count results reveal that fortify milk with *H. squamuligera* honey reduces multiplication of bacteria
106 in milk Fig ?? . Samples that were treated with *H. squamuligera* honey extracts significantly inhibited the bacteria
107 growth, T-test $p > 0.05$ as compared to unfortified raw milk. The mean bacterial count of fortified milk was 7.13
108 X 105 at a concentration of 100% (v/v) and for unfortified was 1.17 X107.

109 Bacterial multiplication inhibition was concentration dependent. Low inhibition was observed at 50% and less.
110 According to (Chambers 2002) when raw milk is of good quality the bacterial load should be around 103/ml.
111 Bacterial load of 107/ml show poor quality milk. Present results Table ?? show that raw milk collected from
112 the farms bacterial load falls within 103/ml showing quality milk. However milk quality deteriorated as days
113 went by except that for 100% extract concentration. Even on the fourth day its bacterial load was far below
114 103/ml. The antibacterial activity of honey can be attributed to peroxide and non peroxide components. H₂O₂
115 is the major antibacterial factor in honey (Krushna et al., 2007). It is produced during oxidation of glucose
116 and other monosaccharides by glucose oxidase. Non peroxide components include phenolic acids and flavonoids.
117 Phenolic acids and flavonoids are important phytocompounds that have been shown to promote health in humans
118 (Francois et al., 2010).

119 V.

120 **14 Conclusion**

121 Results of the present study are interesting. Fortifying milk with *H. squamuligera* honey extracts improves its
122 antioxidant capacity and its microbial attributes. Quality raw milk is favoured by the public because it consists
123 of many nutrients that are believed to promote health. It consists of micronutrients that can act as prophylactics
124 against most adult diseases such as middle age cancers and diabetes type 2. Honey is an attractive option for
125 use in preserving milk because it is a food substance and has been shown to consist of antioxidants.

126 VI. ¹

Figure 1:

1

Figure 2: Table 1 :

22

Figure 3: Figure 2 :Table 2 :

3

					013
					2
				Year	
				11	
				Volume	
				XIII	Issue
				III	Version
				I	
				D D D D)	
				C	
				(
Fortified	Day 1	Day 2	Day 3	Day 4	8.40 ±1.15
	5.57 ± 0.18	7.05 ± 0.54	7.13 ± 0.15		Day 5 8.30 ± 0.34
Unfortified	2.51 ± 0.72	Time	Bacterial count cfu/ml	n =5, *	= significantly different T-test, p = 0.05
					38.20 ± 0.11

Day 1	4.5×10 ²	4.2×10 ²	3.8×10 ²	3.2×10 ²	5.5×10 ²
Day 2	1.32×10 ²	1.28×10 ²	1.01×10 ²	4.5×10 ²	1.41×10 ² *
Day 3	1.20×10 ²	1.16×10 ²	1.11×10 ²	8.7×10 ²	1.70×10 ² *
Day 4	1.10×10 ²	1.09×10 ²	8.50×10 ²	1.67×10 ²	1.50×10 ² *

Figure 4: Table 3 :

127 .1 Acknowledgement

128 Authors appreciate help rendered by Bindura University laboratory technicians.

129 [Ariyoshi ()] 'Angiotensin-converting enzyme inhibitors derived from food proteins'. Y Ariyoshi . *Trends Food*
130 *SCI Technol* 1993. 4 p. .

131 [Praveesh et al. ()] 'Antihypertensive and anticancer effect of cow milk fermented by Lactobacillus plantarum
132 and Lactobacillus casei'. B V Praveesh , J Angayarkanni , M Palaniswamy . *Int J Pharm Sci* 2011. 3 (5) p. .

133 [Francois et al. ()] 'Chemical composition and biological activities of Ficus capensis leaves extracts'. M N Francois
134 , D Amadou , S Rachid . *J. Nat. Prod* 2010. 3 p. .

135 [Chirlaque ()] *Factors influencing raw milk quality and dairy products*, Chirlaque . 2011. Gandia. Universidad
136 Politecnica de Valencia

137 [Krushna et al. ()] 'Honey as a natural preservative of milk'. Nsa Krushna , S Kowsasly A Radha , R B Naraianan
138 . *Indian Journal of Experimental biology* 2007. 45 p. .

139 [Iso ()] *International for Standardization. Recommendation of the meeting of the ISO of meat and meat products*,
140 Iso . **ISO/TC- 34/SC.6.TheNetherlands** 1995.

141 [Tasci ()] 'Microbiological and chemical properties of raw milk consumed in Burdar'. F Tasci . *Journal of Animal*
142 *and veterinary advances* 2011. 10 (5) p. .

143 [Lafka et al. ()] 'On the extraction and antioxidant activity of phenolic compounds from winery waste'. T Lafka
144 , V Sinanoglou , E S Lazos . *Food Chem* 2007. 104 p. .

145 [Dzomba et al. ()] 'Phytochemical screening and biological activities of Hypotrigona squamuligera raw honey'. P
146 Dzomba , N Ngoroyemoto , L Mutandwa . *International Journal of Biochemical Research and Review* 2012.
147 1 p. .

148 [Chambers ()] 'The microbiology of raw milk in Robinson RK Ed'. J V Chambers . *The microbiology of milk in*
149 *Essex*, 2002. El. 1.