

1 Effect of Oral Administration of Chloramphenicol on 2 Hematological Profile of Male Charles Foster Rats

3 P. Shukla¹ and R. K. Singh²

4 ¹ CSIR- Central Drug Research Institute, Lucknow

5 *Received: 8 December 2012 Accepted: 2 January 2013 Published: 15 January 2013*

6

7 **Abstract**

8 For a given organism, relevant information about the internal environment can be easily
9 accessed by its hematological profile. Chloramphenicol being a potent broad spectrum
10 antibiotic is used readily in eyed drop formulations and is also in food industry. In the present
11 study, varying doses (750, 1500 and 2250 mg/kg B.Wt) of Chloramphenicol (CAP) was
12 administered orally as single daily dosage for 24 days to Male Charles Foster rats, to assess
13 the hematological changes associated with oral exposure to the drug. The results showed a
14 significant ($p<0.05$) dose dependent decrease in Red Blood Cells (RBC) count, Hemoglobin
15 (Hgb), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin Concentration
16 (MCHC) and increase in Hematocrit (Hct), White Blood Cells (WBC) and Platelets
17 compared to the initial blood profile. The results recorded in this present study suggested that
18 exposure to CAP results in Hematotoxicity. Hence, the potential of CAP to cause
19 hematotoxicity is reported in the study.

20

21 **Index terms**— CAP, hematotoxicity, blood cells, CF rats.

22 **1 Introduction**

23 Chloramphenicol (CAP) is a broad spectrum antibiotic, was first quarantined from bacterium Streptomyces
24 venezuelae in the year 1947. It was available by the trade name of Chloromycetin by Parke Davis & Co. It
25 was prescribed in mass in 1948 in USA following an outburst of enteric fever. In 1949 it was cleared from Federal
26 Food and Drug, since then it has been used and worked upon extensively being a potent inhibitor of protein
27 synthesis (E. Cundliffe and K. McQuillen, 1967).

28 Some studies suggest the use of CAP in food. Although, most countries have banned CAP from animal
29 food production, still traces of it have been detected in shrimp and other aquaculture products. According to
30 regulations promulgated in 1980's and 1990's, use of CAP in food was banned and countries have established a
31 zero tolerance policy. In Japan, zero tolerance thresholds for CAP is 50 ppb which in USA is 5 ppb. Meat and
32 offal from treated animals contained CAP and its non -genotoxic metabolites (G. ??ilhaud, 1993).

33 Even being a potent antibiotic with a broad range of spectrum, the use of CAP is limited due to its association
34 with aplastic anaemia (AA) (M. L. Rich, et al., 1950) and bone marrow suppression (C. E. ??mberkar, et al.,
35 2000). AA is a rare, dose independent, irreversible, idiosyncratic, manifestation of CAP which in most cases is
36 seen years after the treatment (A. A. Younis, 1989 (a)) and is fatal (A. A. Turton, et al., 2002) risk of developing
37 AA after CAP administration is 1:30000 to 1:5000015 (C. H. Li, et al., 2010). Only orally administered CAP
38 leads to AA (R. Holt, 1967; R. A. Gleckman, 1975). This has made the CAP to be prescribed parenterally
39 by many physicians. It is not known whether this lowers the incidence of AA or not but the risk is obviously
40 lowered. Other than oral and parenterally absorbed CAP, it is also used as ophthalmic preparations where AA
41 is also very rare (R. L. Rosenthal and A. Blackman, 1965;G. Carpenter, 1975; S. M. Abrams, et al., 1980) Blood
42 or hematological parameters are probably the more rapid and detectable variations under stress and are fuel in
43 assessing different health conditions (V. ??ymavathi) have been reported to express a positive impact on the

8 DISCUSSION

44 hematological profile of several animal species. Assessment of hematological parameters can therefore be useful
45 in determining the extent of deleterious effects of foreign substances on the blood parameters of an animal. The
46 present investigation was therefore aimed at assessing the effect of Chloramphenicol on the hematological profile
47 in Charles Foster male rats. II.

48 2 Materials and methods a) Administration of Material

49 The chloramphenicol Capsules IP manufactured by Piramal Health Care Limited (Batch No-9BE012) were used
50 for the study. Freshly prepared chloramphenicol suspension was administered orally by cannula for 24 days.

51 3 b) Animals

52 Albino rats of Charles Foster strain were used in the study. IAEC approval number was taken from the
53 Institutional Animal House Facility which is affiliated to and works under the guidelines of CPCSEA (No.
54 36/11/Toxicol/IAEC). Rats weighed between 120-150 grams and were housed in polypropylene, autoclavable
55 cages (dimensions: 43x27x15 cm) with steel wire-mesh lid having provisions for attaching water bottle and
56 for keeping food pellets. Animals had continuous access to food and water during the entire period of
57 experimentation. They were examined routinely for their body weights and hematological parameters.

58 4 c) Experimental Design

59 20 rats showing evidences of good health were selected on the basis of findings of their initial health check-up
60 and body weight recordings. They were randomly assigned to four treatment groups, each group consisting of
61 five male animals and one group comprising of an equal number of animals served as control.

62 Group

63 5 e) Statistical Analysis

64 All data was analyzed by applying One way ANOVA with the p value limits of 0.05. Software used for the
65 purpose was PRISM.

66 6 III.

67 7 Results

68 The result of this study, on the effect of oral dosing of CAP on the hematological parameters in rats is presented in
69 Table 1 and 2. The results showed that the hemoglobin (Hgb), Red Blood Cells (RBC) count, Mean Corpuscular
70 Volume (MCV), Mean Corpuscular Hemoglobin Concentration (MCHC) obtained for rats administered with
71 CAP orally were significantly ($p<0.05$) lower in a dose-dependent pattern, compared to the control (Tables 1
72 and 2). On the contrary, the total White Blood Cells (WBC), platelets and Hematocrit (Hct) levels obtained for
73 rats administered with CAP orally following the same pattern, were significantly ($p<0.05$) higher, compared to
74 the control. IV.

75 8 Discussion

76 Hematological profiles are known to provide important information about the environment of a given organism.
77 The results of this present investigation showed that oral exposure to CAP caused a significant decrease in
78 Hgb, RBC, MCV and MCHC, whereas increase in Hct, WBC and Platelets. Similar effects on hematological
79 parameters have been reported for such other drugs as Chlorpyrifos (Y. Baig, 2007) and Deltamethrin (S. H.
80 Kowalczyk-Bronisz, et al., 1990). The hematotoxic condition may results from different mechanisms, including
81 decrease in the rate of blood cells synthesis and/or increase in the rate of blood cells destruction. The observed
82 decrease in RBC count, Hgb, MCH and MCHC may therefore, may assumed to be associated with retarded
83 hemopoeisis, destruction and shrinkage of RBC.

84 Increase in total white blood cells and platelets, as well as increase in Hct, is also reported in this study.
85 The increase in total white blood cells and lymphocyte observed in this work may be suggested to be due to
86 stimulated lymphopoiesis and/or enhanced release of lymphocytes from lymph myeloid tissue (B. K. Das and
87 S. C. Mukherjee, 2003). This lymphocyte response might be a direct stimulatory effect of toxic substances on
88 lymphoid tissues. Alternatively, this response may be assumed to be associated with the drug induced tissue
89 damage and disturbance of the non-specific immune system leading to increased production of leukocytes.

90 Researchers have reported that CAP induce and enhances some defects which results in damage to
91 undifferentiated marrow stem cells (E. P. Cronkite, 1964). Other researchers suggested that certain enteric
92 bacteria can produce a specific enzyme that degrades CAP to a toxic product (R. Holt, 1967). This was suggested
93 by further studies, which suggests that the metabolites of CAP generated by intestinal bacteria undergo further
94 metabolic transformations in system with in situ production of toxic intermediate (A. A. Yunis, 1989 (a)). In
95 a study (A. A. Yunis, 1973 (b)) it was actually revealed that the p-nitrosulfathiazole group is responsible for
96 CAP induced hematotoxicity by inhibiting DNA synthesis in marrow stem cells. This theory was based on the
97 observation that thiampenicol which is a CAP derivative, does not have a p-nitrosulfathiazole group and does

98 not cause hematotoxicity and thus, extensively used in Europe. This theory was further supported by studies
99 indicating CAP reduced to pnitrosulfathiazole which is a short lived reduction intermediate and leads to helix
100 destabilization and strand breakage (M. Irena, et al., 1983) except than being unstable these intermediates are
101 highly toxic (P. Eyer, et al., 1984). At a concentration of 2000-4000 μ g/ml CAP depressed phagocytosis and burst
102 activity of neutrophils (M. J. Paape, et al., 1990). Other studies suggests that CAP directly induce apoptosis in
103 hematopoietic stem cells, directly leading to hematotoxicity (C. I. Kong, et al., 2000).

104 V.

105 9 Conclusion

106 In conclusion, significant adverse changes in hematological parameters are reported to be associated with exposure
107 to CAP, in this present study. This therefore suggest that exposure to CAP may be considered to be among the
108 risk factors for the development of anaemic condition. Hence, exposure to this drug should be minimized. ^{1 2}

Figure 1:

108
109 3 4 5 6

¹© 2013 Global Journ © 2013 Global Journals Inc. (US)

²()B

³© 2013 Global Journals Inc. (US)

⁴© 2013 Global Journ © 2013 Global Journals (US)

⁵()B

⁶()B

9 CONCLUSION

1

Gp	Treatment	Hgb	RBC	Hct	MCV	MCW	MPV	Platelets
Gp.	Control,	11.88±0.51	7.09±0.54	44.44±2.68	62.80±2.29	26.70±0.67	7.02±1.15	530.00±112.84
I								
	D.W.							
Gp.	750 mg/g	12.30±0.51	6.97±0.69	46.22±5.57	66.28±3.87	26.78±2.64	9.93±2.05	331.00±145.74
II								
	b.wt							
Gp.	1500 mg/kg	12.92±0.26	7.81±0.75	52.18±3.44	66.96±2.88	24.74±1.13	10.70±2.79	339.00±162.06
III								
	b.wt							
Gp.	2250 mg/kg	12.52±0.63	7.65±0.68	48.82±3.99	63.88±1.65	23.98±5.35	10.40±3.60	391.00±52.72
IV								
	b.wt							

[Note: Data are presented as Mean±S.D., n=5, p< 0.05 compared to control.]

Figure 2: Table 1 :

2

Gp	Treatment	Hgb	RBC	Hct	MCV	MCW	MPV	Platelets
Gp. I	Control,	10.42±0.30	6.96±0.38	50.48±2.53	56.42±2.27	24.62±1.39	17.94±3.62	560.20±120.06
	D.W.							
Gp. II	750 mg/kg	11.62±0.57	5.67±0.57	55.82±5.14	58.48±1.73	24.98±0.92	16.92±3.81	339.40±162.06
	b.wt							
Gp. III	1500 mg/kg	10.12±1.29	7.20±0.75	55.28±5.14	60.12±2.37	22.96±1.63	17.58±5.27	419.40±120.06
	b.wt							
Gp. IV	2250 mg/kg	11.26±0.40	6.24±0.75	51.98±3.73	56.32±2.24	23.64±1.11	17.12±3.34	397.40±120.06
	b.wt							

Data are presented as Mean±S.D., n=5, p< 0.05 compared to control.

Figure 3: Table 2 :

110 [Holt ()] 'the bacterial degradation of chloramphenicol'. R Holt . *Lancet* 1967. 1 p. .

111 [Obianime et al. ()] 'the effects of aqueous Ocimum gratissimum leaf extract on some biochemical and
112 hematological parameters in male mice'. A W Obianime , J S Aprioku , C Esomonu . *Asian J. Biol. Sci*
113 2011. 4 p. .

114 [Beamonte et al. ()] 'A case of drug-induced hematotoxicity: from in vivo to in vitro assessment'. A Beamonte ,
115 F Goldfain-Blanc , N Casadevall , D Bazot , H Bertheux , N Claude . *Comp Clin. Path* 2005. 14 p. .

116 [Rich et al. ()] 'A fatal case of aplastic anemia following chloramphenicol (chloromycetin) therapy'. M L Rich ,
117 R J Ritterhoff , R J Hoffman . *Ann. Inter. Med* 1950. 33 p. .

118 [Thakur et al. ()] 'Amelioration of carbamazepine induced oxidative stress and hematotoxicity by vitamin C'. S
119 Thakur , M Eswaran , S G Rajalakshmi . *Spatula DD* 2012. 2 (3) p. .

120 [Attia et al. ()] 'Antioxidant effects of whole ginger (Zingiber officinale Roscoe) against lead acetateinduced
121 hematotoxicity in rats'. A M M Attia , F A A Ibrahim , G M Nabil , S W Aziz . *J. of Med. Plants Res*
122 2013. 7 (17) p. .

123 [Akah et al. ()] 'Aqueous extract and methanol fractions of the leaves of Brillantasia nitens Lindau. Reverses
124 phenylhydrazine -induced anaemia in rats'. P A Akah , C E Okolo , T C Okoye , N V Offiah . *J. Med. Plants*
125 *Res* 2010. 4 (3) p. .

126 [Cundliffe and Mcquillen ()] 'Bacterial protein synthesis: the effects of antibiotics'. E Cundliffe , K Mcquillen .
127 *J. Mol. Biol* 1967. 30 p. .

128 [Rosenthal and Blackman ()] 'Bone marrow hypoplasia following use of chloramphenicol eyedrops'. R L Rosenthal
129 , A Blackman . *J. A. M. A* 1965. 191 p. .

130 [Savithri et al. ()] 'Changes in hematological profiles of albino rats under chlorpyrifos toxicity'. Y Savithri , P R
131 Sekhar , P J Doss . *Int. J. Pharma. Bio. Sci* 2010. 1 p. .

132 [Li et al. ()] 'Chloramphenicol causes mitochondrial stress , decraseses ATP biosynthesis, induces matrix
133 metalloproteinase -13 expression, and solid tumor cell invasion'. C H Li , Y W Cheng , P L Liao . *Toxicol Sci*
134 2010. 116 (1) p. .

135 [Carpenter ()] 'Chloramphenicol eye drops and marrow aplasia'. G Carpenter . *Lancet* 1975. 2 p. .

136 [Kolawole et al. ()] 'Effect of aqueous extract of Kkaya senegalensis stem bark on biochemical and haematological
137 parameters in rats'. S O Kolawole , O T Kolawole , M A Akanji . *J. Pharmacol. Toxicol* 2011. 6 p. .

138 [Fujitani et al. ()] 'Effect of chlorpropham (CIPC) on the hemopoietic system of rats'. T Fujitani , Y Tada , A
139 T Noguchi , M Yoneyama . *Food Chem. Toxicol* 2001. 39 p. .

140 [Ologundudu et al. ()] 'Effect of Hibiscus sabdariffa anthocyanins on 2, 4-dinitrophenylhydrazine-induced tissue
141 damage in rabbits'. A Ologundudu , A O Ologundudu , O M Oluba , I O Omotuyi , F O Obi . *J. Toxicol.*
142 *Environ. Health* 2010. (1) p. .

143 [Uboh et al. ()] 'Effect of inhalation exposure to kerosene and petrol fumes on some anaemia-diagnostic indices
144 in rats'. F E Uboh , P E Ebong , O U Eka , E U Eyong , M I Akpanabiatu . *Global J. Environ. Sci* 2005. 3
145 p. .

146 [Saha et al. ()] 'Effect of Methanolic Leaf Extract of Ocimum basilicum L. on Benzene-Induced Hematotoxicity in
147 Mice'. S Saha , M K Mukhopadhyay , P D Ghosh , D Nath . 10.1155/2012/176385. *Evid. Based Complement.*
148 *Alternat. Med* 2012.

149 [Sanni et al. ()] 'Effect of oral administration of aqueous extract of Khaya senegalensis stem bark on
150 phenylhydrazine-induced anaemia in rats'. F S Sanni , S Ibrahim , K A N Esievo , S Sanni . *Pak. J. Biol. Sci*
151 2005. 8 p. .

152 [Prasad and Priyanka ()] 'Effect of rind extract of Garcinia gummi-gutta on haematology and plasma biochem-
153 istry of Catfish, Pangasianodon hypophthalmus'. G Prasad , G L Priyanka . *Asian J. Biochem* 2011. 6 p.
154 .

155 [Choudhary and Joshi ()] 'Effect of short term endosulfan on hematology and serum analysis of male rat'. N
156 Choudhary , S C Joshi . *Indian J. Toxicol* 2002. 9 p. .

157 [Hymavathi and Rao ()] 'Effect of sublethal concentrations of lead on the haematology and biochemical con-
158 stituents of Channa punctatus'. V Hymavathi , L M Rao . *Bulletin Pure Applied Sci* 2000. 19 p. .

159 [Kong et al. ()] 'Effects of antioxidants and a caspase inhibitor on chloramphenicol induced toxicity on human
160 bone marrow and HL 60 cells'. C I Kong , D E Holt , S K Ma , A K Lie , L C Chan . *Hum. Exp. Toxicol*
161 2000. 19 (9) p. .

162 [Cronkite ()] 'Enigmas underlying study of haemopoietic cell proliferation'. E P Cronkite . *Fad. Proc* 1964. 23 p.
163 .

164 [Akah and Okolo] 'Ezike (2009) the haematinic activity of the methanol leaf extract of Brillantasia nitens Lindau
165 (Acanthaceae) in rats'. P A Akah , C E Okolo , AC . *Afr. J. Biotech* 8 (10) p. .

9 CONCLUSION

166 [Edet et al. ()] 'Gongronema latifolium crude leaf extract reverses alterations in haematological indices and
167 weightloss in diabetic rats'. E E Edet , M I Akpanabiatu , F E Uboh , T E Edet , A E Eno , E H Itam , I B
168 Umoh . *J. Pharmacol. Toxicol* 2011. 6 p. .

169 [Agbor et al. ()] 'Haematinic activity of Hibiscus cannabinus'. G A Agbor , J E Oben , J Y Ngogang . *Afr. J.
170 Biotech* 2005. 4 (8) p. .

171 [Kayode et al. ()] 'Haematologic and hepatic enzyme alterations associated with acute administration of An-
172 tiretroviral drugs'. A A A Kayode , O T Kayode , O A Aroyeun , M C Stephen . *J. Pharmacol. Toxicol* 2011.
173 6 p. .

174 [Solanke and Singh ()] 'Haematological changes in rat, Rattus rattus after repeated exposure to thiodan 35'. A
175 K Solanke , V H Singh . *EC. Environ. Ecol* 2000. 18 p. .

176 [Synder] 'Hedli (1996) an overview of benzene metabolism (Review)'. R Synder , CC . *Environ. Health Perspect*
177 104 p. .

178 [Rahman and Siddiqui ()] 'Hematological and clinical chemistry changes induced by subchronic dosing of a novel
179 phosphorothion ate (RPR-V) in Wistar male and female rats'. M F Rahman , M K Siddiqui . *Drug Chem.
180 Toxicol* 2006. 29 p. .

181 [Juaristi et al. ()] 'Hematotoxicity induced by paclitaxel: in vitro and in vivo assays during normal murine
182 hematopoietic recovery'. J A Juaristi , M V Aguirre , R J Carmuega , M Romero-Benitez , M A Alvarez , N
183 C Brandan . *Methods Find Exp Clin Pharmacol* 2001. 23 (4) p. .

184 [Kowalczyk -Bronisz et al. ()] 'Immunological profile of animals exposed to pesticide-deltamethrin'. S H Kowal-
185 czky -Bronisz , J Gieldanowaki , B Bubak . *Arch. Immunol. Ther. Exp (Warsz)* 1990. 38 (3 -4) p. .

186 [Emara et al. ()] 'Immunotoxicity and hematotoxicity induced by tetrachloroethylene in egyptian dry cleaning
187 workers'. A M Emara , M M A El-Noor , N A Hassan , A A Wagih . *Inhal. Toxicol* 2010. 22 (2) p. .

188 [Paape et al. ()] 'In vivo effects of chloramphenicol, tetracycline, and gentamicin on bovine neutrophil function
189 and morphologic features'. M J Paape , S C Nickerson , G Ziv . *Am. J. Vet. Res* 1990. 51 p. .

190 [Jensen] 'Jollow (1991) the role of Nhydroxyphenetidine in phenacetin-induced hemolytic anemia'. C B Jensen ,
191 DJ . *Toxicol. Appl. Pharmacol* 111 (1) p. .

192 [Ikpeme and Ekaluo] 'Kooffreh and O. Udensi (2011) Phytochemistry and haematological potential of ethanol
193 seed, leaf and pulp extracts of Carica papaya (Linn.). Pak'. E V Ikpeme , U B Ekaluo , ME . *J. Biol. Sci* 14
194 p. .

195 [Abrams et al. ()] 'Marrow aplasia following topical application of chloramphenicol eye ointment'. S M Abrams
196 , T J Degnan , V Vinciguerra . *Arch. Intern. Med* 1980. 140 p. .

197 [Milhaud ()] *Metabolic study discussion on chloramphenicol*, G Milhaud . 1983. (WHO report)

198 [Ambeker et al. ()] 'Metabolism of chloramphenicol succinate in human bone marrow'. C E Ambeker , B Cheung
199 , J Lee , L C Chan , R Liang , C R Kumana . *Eur. J. Clin. Pharmacol* 2000. 56 p. .

200 [Irena et al. ()] 'Molecular basis of chloramphenicol and thiamphenicol toxicity to DNA in vitro'. M Irena , R C
201 Skolimowski , D I Knight , Edwards . *J. Antimicrob. Chemother* 1983. 12 (6) p. .

202 [Jain and Subrahmanyam ()] 'on the mechanism of phenylhydrazine-induced hemolytic anemia'. S K Jain , D
203 Subrahmanyam . *Biochem. Biophys. Res. Co* 1978. 82 (4) p. .

204 [Baig ()] *Pesticidal residue analysis of organochlorine residues in different milk samples from Chittoor district in
205 Andhra Pradesh, India. Final Report of UGC Minor Research Project during the Period from*, M D A Baig .
206 2007. 2004-2006.

207 [Berger ()] 'Phenylhydrazine Haematotoxicity'. J Berger . *J. Appl. Biomed* 2007. 5 p. .

208 [Eppstein et al. ()] 'Prevention of Doxorubicin-induced Hematotoxicity in Mice by Interleukin 1'. D A Eppstein
209 , C G Kurahara , N A Bruno , T G Terrell . *Cancer Res* 1989. 49 p. .

210 [Eyer et al. ()] 'Reactions of nitrosochloramphenicol in blood'. P Eyer , E Lierheimer , M Schneller . *Biochem.
211 Pharmacol* 1984. 33 p. .

212 [Jee et al. ()] 'Responses of cypermethrin-induced stress in haematological parameters of Korean rockfish,
213 *Sebastes schlegeli* (Hilgendorf)'. L H Jee , F Masroor , J C Kang . *Aquacult. Res* 2005. 36 p. .

214 [Turton et al. ()] 'Studies on haematotoxicity of chloramphenicol succinate in Dunkin Hartley guinea pig'. A A
215 Turton , C M Andrews , A C Harvard , T C Williams . *Int. J. Exp. Pathol* 2002. 5 p. .

216 [Das and Mukherjee ()] 'Toxicity of cypermethrin in *Labeo rohita* fingerlings: Biochemical enzymatic and
217 haematological consequence'. B K Das , S C Mukherjee . *Comp. Biochem. Physiol. Toxicol. Pharmacol* 2003.
218 134 p. .

219 [Gleckman ()] 'Warning-chloramphenicol may be good for your health'. R A Gleckman . *Arch. Intern. Med* 1975.
220 135 p. .

221 [AA] 'Yunis (1973 (b) Chloramphenicol -induced bone marrow suppression'. AA . *Semin. Hematol* 10 p. .

222 [AA] 'Yunis (1989 (a) Chloramphenicol toxicity: 25 years of research'. AA . *Am. J. Med* 3 p. .