

1 The Herbal Drug, Polysaccharide k, has an Immunological and
2 Synergistic Anticancer Effect with Cetuximab for
3 Gastrointestinal Cancer in Vivo

4 hara masa¹

5 ¹ Nagoya City University

6 *Received: 5 April 2013 Accepted: 4 May 2013 Published: 15 May 2013*

7 **Abstract**

8 Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody, has been widely used
9 for therapy of several kinds of malignant diseases. However, the anticancer effect is
10 incomplete. The purpose of this study was to examine the synergism between the herbal drug,
11 Polysaccharide K, and Cetuximab against gastrointestinal cancer cell lines in vitro and in
12 vivo. Two gastrointestinal cancer cell lines positive for EGFR expression were used for this
13 study. In the in vivo study, mice were xenografted with cancer cell lines subcutaneously.
14 Neither PSK nor Cetuximab suppressed cell proliferation. However, when both drugs were
15 administered, cancer growth was suppressed significantly compared with treatment with
16 Cetuximab alone. This study demonstrated that PSK has the potential to enhance
17 Cetuximab's effect on gastrointestinal cancer.

19 **Index terms—**
20 These activities are due to NK cells (antibodydependent cellular cytotoxicity (ADCC)) or complement
21 (complement-dependent cytotoxicity (CDC)). These activities might not be the original therapeutic intent of
22 monoclonal antibody treatment; however, it is desirable to enhance these activities if possible.

23 ADCC activity is dependent on specific antibody and NK cell activities. For example, Cetuximab promotes
24 ADCC activity on cancer cells. The enhancement of NK cell activity can be difficult. We previously reported the
25 use of daily interleukin-2 (IL-2) injections to enhance NK cell activity; however, it is very complicated clinically.
26 Recently, some herbal drugs were found to stimulate immunological activities. Polysaccharide K (PSK) is
27 obtained from the mushroom *Trametes versicolor* and reportedly enhances ADCC activity 1 , but the mechanism
28 is still unclear. Some reported that it increased the number of NK cells, and others reported that it enhanced
29 NK cell activity. Oral intake of PSK has been clinically used for colorectal cancer therapy when combined with
30 5-FU [2][3][4] . Here, we evaluated PSK's anticancer effect on gastrointestinal cancer cell lines in vitro and in
31 vivo and discuss the therapeutic possibility of PSK combined with Cetuximab.

33 **1 II.**

34 Materials And Methods a) Cell Lines DLD1, COLO320, COLM-5 and HT-29, human colon cancer cell lines, and
35 GLM-1, MKN-28 and MKN-45, human gastric cancer cell lines, were used in this study. Among them, those cell
36 lines positive for EGFR expression were emphasized. DLD1, COLO320, MKN-28 and HT-29 were purchased from
37 RIKEN Cell Bank (Tsukuba, Japan), GLM-1 and COLM-5 was kindly provided by H. Nakanishi (Aichi Cancer
38 Center Research Institute, Japan; Ito et al., 2010). These cells were maintained in DMEM (Nissui Pharmaceutical
39 Company, Tokyo, Japan) supplemented with 10% FBS (Gibco, Grand Island, NY), 100 units/mL penicillin, and
40 100 µg/mL streptomycin in plastic dishes (BD Falcon; Introduction he use of monoclonal antibodies in the clinic
41 has changed approaches to cancer chemotherapy. Specific, targeted antibodies can block signals from growth
42 factor receptors by competing for receptor binding. Many kinds of monoclonal antibody chemotherapies have
43 been established.

4 B) PROLIFERATION ASSAY

44 Cetuximab (Erbitax) is one of the available antiepidermal growth factor receptor (EGFR) monoclonal
45 antibodies that is used for treatment of tumors. Cetuximab is used commonly for treatment of colorectal cancer
46 patients. There are two types of monoclonal antibodies for colorectal cancer therapy, anti-VEGF monoclonal
47 antibody (Bevacizumab) and anti-EGFR antibody. Whereas Bevacizumab is usually used as a first or second
48 line treatment combined with Oxaliplatin or Irinotecan, anti-EGFR antibodies are used as third line therapy.
49 However, these anticancer treatments remain inadequate.

50 The primary anticancer mechanism of therapeutic antibody treatment is inhibition of growth factor signals.
51 In addition, several monoclonal antibodies have immunological activities.

52 T BD Biosciences, Franklin Lakes, NJ) and incubated at 37°C in 5% CO₂ b) Agents . After evaluation of
53 cell surface EGFR expression by flow cytometric analysis, the cell lines with highest expression of EGFR were
54 evaluated in the following proliferation assays and in vivo assays.

55 PSK was obtained from Kureha Corporation (Tokyo, Japan). Cetuximab (two mg/mL) was purchased from
56 Merck (Darmstadt, Germany). These two drugs are clinically used at a dosage of three g/ person and 400 mg/m
57 2 c) Flow Cytometry , respectively.

58 Flow cytometric analysis was performed to evaluate the expression of EGFR on the cell surface of each cell line.
59 Tumor cells were harvested with trypsin/EDTA and washed twice with buffer (five mM EDTA, five mg/mL bovine
60 serum albumin in PBS) and reacted on ice with mouse anti-human EGFR monoclonal antibody (NeoMarkers)
61 as the primary monoclonal antibody for 30 min. After washing twice with buffer, cells were incubated on ice for
62 an additional 30 min with PE-conjugated polyclonal goat anti-mouse IgG, F(ab') 2 d) Cell Growth Assay as the
63 secondary antibody (Jackson ImmunoResearch, West Grove, PA). The labeled cells were then washed, and the
64 intensity of fluorescence was evaluated with a FACSCalibur (BD Biosciences, San Diego, CA).

65 Cancer cells were harvested with trypsin/EDTA, plated at 5 x 10⁴ e) Animals cells/24-well plastic plate (BD
66 Falcon) in DMEM supplemented with 10% FBS on day 0, then treated with a range of doses of PSK (5, 10, 50,
67 100 and 500 µg/mL) or Cetuximab (1, 5, 10, 50 and 100µg/mL) on days one and three. Both the total number of
68 cancer cells and viable cells were measured in triplicate on day four with an Automated Cell Counter (Bio-Rad).
69 Viable cells in controls, 500 µg/mL PSK, and 100 µg/ of Cetuximab were also counted with the Trypan blue
70 exclusion procedure.

71 Five-to six-week-old male athymic nude mice of the KSN strain were purchased from Japan SLC (Hamamatsu,
72 Japan) and maintained under specific pathogen-free conditions. The health of the mice was monitored by daily
73 observation. Chlorinated water and food autoclaved for five min were provided ad libitum, and the animals were
74 kept in a controlled light : dark cycle (

75 2 Results

76 cells in 0.2 mL Hank's balanced salt solution (HBSS) were injected subcutaneously (sc) into the left abdominal
77 flanks of male nude mice. When the subcutaneous tumors developed to approximately eight mm maximal
78 diameter, treatment with intraperitoneal injection (ip) of Cetuximab (one mg/ mouse, twice a week) or PSK
79 alone (2.5 mg/mouse, every two days) or a combination (same doses as above) or vehicle (ip, 400 ?L/mouse,
80 twice a week) was performed for four to five weeks (6 mice/group). The maximal tumor diameter (L) and the
81 right angle diameter to that axis (W) were measured twice a week. Tumor volume was estimated by the following
82 formula: L x W x W x 1/2. Mice were sacrificed after five weeks of treatment according to the ethical guideline
83 of UKCCR as described above. Subcutaneous tumors were then removed and weighed.

84 3 a) Flow Cytometric Analyses

85 The expression of EGFR on the cell surface was evaluated by flow cytometry. Expression was the highest on
86 MKN-28 and HT-29 in gastric and colorectal cancer cell lines, respectively (Fig. 1). Thus, we used these two
87 cell lines in the following assays.

88 4 b) Proliferation Assay

89 We evaluated MKN-28 and HT-29 cell growth using several concentrations of Cetuximab (one to 100 µg/mL),
90 or PSK (five to 500 ?g/mL) (Fig. 2). Neither Cetuximab nor PSK alone showed in vitro antitumor cell growth
91 activity with MKN-28 or HT-29 even at the maximum concentrations. The numbers of viable cells in the control
92 group and in the highest concentration of PSK (500 ?g/mL) were almost the same. On the other hand, Cetuximab
93 suppressed tumor cell growth in a dose-dependent manner. However, the suppression was incomplete. c) Tumor
94 Xenografts Xenografted tumor sizes are shown in Fig. 3. Tumors were xenografted subcutaneously in the mouse
95 inguinal region and were resected and evaluated after treatment. In both HT-29-and MKN-28-induced tumors,
96 PSK alone failed to suppress tumor growth compared with the control group. Cetuximab alone did very little,
97 and the difference was not significant statistically. However, when PSK was added to Cetuximab, the anticancer
98 effect of combination therapy was enhanced remarkably (p=0.01, compared with Cetuximab group), as tumor
99 volume was reduced 41% in HT-29 and 42% in MKN-28 compared with those control group. Similar results
100 were seen in tumor weights. The resected tumor weights of control, PSK alone and Cetuximab alone groups
101 were not different significantly. However, the weights of tumors in the HT-29 and MKN-28 groups treated with
102 a combination of drugs were 42% (p=0.01) and 51% less than the control groups, respectively.

103 **5 IV.**

104 **6 Discussion**

105 Chemotherapy for colorectal cancer patients has changed dramatically over the past decade. Oxaliplatin and
106 Irinotecan are used in two standard therapies as FOLFOX and FOLFIRI, respectively. Furthermore, two kinds
107 of monoclonal antibodies, anti-VEGF antibody and anti-EGFR antibody, can make variation for these standard
108 therapies [5][6][7]. Currently, the survival of patients with unresectable or recurrent colorectal cancer can be
109 prolonged more than two years 8.

110 Many kinds of monoclonal antibodies have been established as therapeutic drugs. Some of them are used for
111 neutralization of certain ligands, and others are used to block cell surface signals. There are many receptors on
112 cancer cell surfaces that promote cell proliferation via activation and the initiation of downstream signal cascades.
113 Many monoclonal antibodies against these receptors function by attaching to the cancer cell surface and blocking
114 these signals.

115 On the other hand, some of these monoclonal antibodies possess an Fc region that can stimulate NK cells and
116 enhance ADCC activity. Thus, Bevacizumab, which neutralizes VEGF cannot promote ADCC, and anti-EGFR
117 antibody can.

118 Cetuximab and Panismumab are well-known anti-EGFR antibodies used for the treatment of colorectal cancer
119 patients. The anticancer effect is caused by the inhibition of EGFR signaling. Cetuximab and Panismumab are
120 structurally different. Whereas Cetuximab is a chimeric IgG 1 antibody, Panismumab is a complete human
121 monoclonal IgG 2 antibody. Whereas Cetuximab might cause allergic or anaphylactoid reactions, the structure
122 contributes to immunologic anticancer effects, such as CDC and ADCC 9,10. However, there has not been
123 a significant difference in outcome between Cetuximab and Panismumab when they were used under standard
124 clinical conditions 11. We previously reported that Cetuximab activity can be enhanced in gastric cancer when
125 NK cell activity is stimulated by daily injections of IL-2 12. However, daily use of IL-2 is clinically difficult.

126 An herbal drug, PSK, is obtained from a species of mushroom. This drug is administered by daily oral intake
127 and has been used safely in Japan for cancer therapy. However, its antitumor activity has not been clarified.
128 Recent studies have revealed that PSK can induce apoptosis in a pancreatic cancer cell line 13. Polysaccharide
129 K has also been known to stimulate a patient's immune system. Polysaccharide K has been used in Japan for
130 treatment of gastrointestinal cancer.

131 The drug is usually used with another chemotherapeutic drug such as 5-FU. Some investigators have reported
132 that PSK stimulates NK cells and enhances ADCC activity. Our study showed that PSK or Cetuximab alone
133 had no remarkable suppressive activity on HT-29 in vitro. Furthermore, PSK alone had no anticancer effect on
134 either cell line following subcutaneous xenografting in mice. Cetuximab decreased tumor volume compared with
135 controls, however the difference was very small. On the other hand, combination therapy of PSK and Cetuximab
136 showed significant tumor growth suppression. One possible reason of this result is caused by ADCC.

137 Anti-EGFR monoclonal antibody is not recommended for use in colorectal cancer patients who have a mutation
138 in KRAS 14. This is because blocking EGF signaling by EGFR is not useful when EGF signaling is constantly
139 activated by this mutation. Thus, these patients currently have no choice for third line therapy after earlier
140 failures. However, ADCC is not influenced by KRAS mutations. Thus, this combination therapy might provide
141 an option for patients carrying a KRAS mutation and who otherwise could not undergo anti-EGFR therapy as
142 third line treatment.

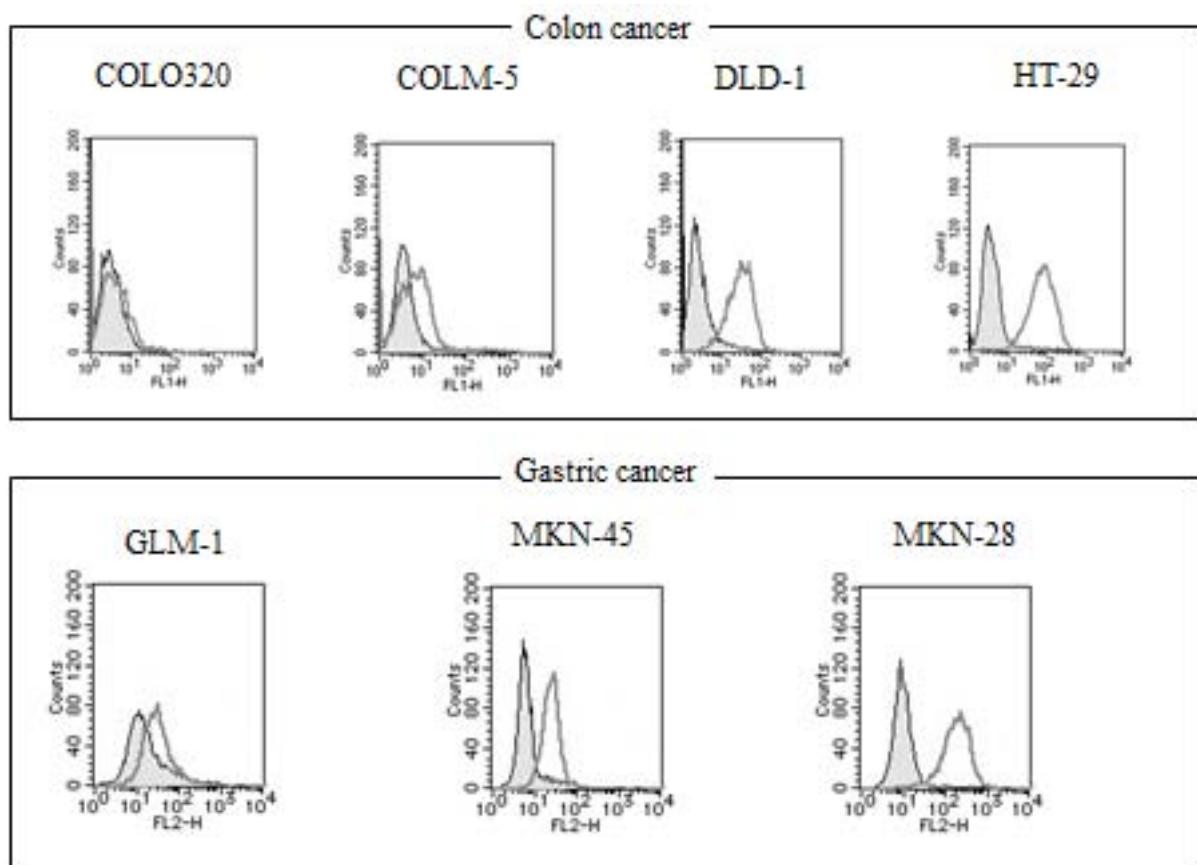
143 V.

144 **7 Conclusions**

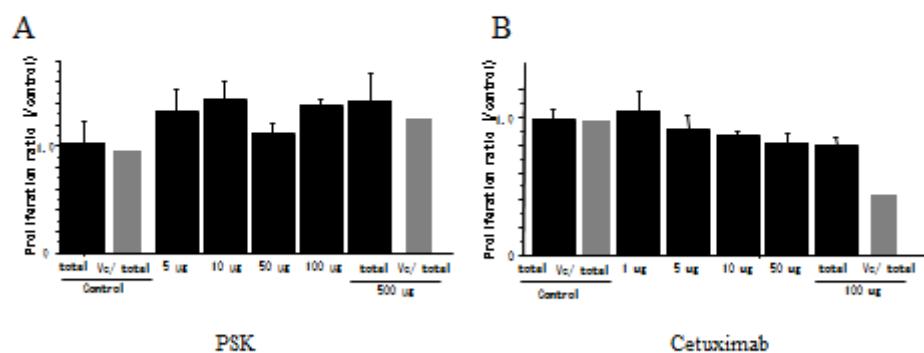
145 As with monoclonal antibodies, PSK's synergic activity enhanced Cetuximab's anticancer effect on a gastroin-
146 testinal cancer cell line's growth in vivo. This might be an option for Cetuximab therapy for colorectal cancer
147 patients. The expression of EGFR on the cell surface in various cell lines.

148 **8 Volume Issue III Version I**

149 These cell lines had differing levels of expression of EGFR. Among colorectal cancer cell lines, HT-29 had the
150 highest expression, and among gastric cancer cell lines, MKN-28 was highest. The proliferation of HT-29 in
151 several concentrations of PSK or Cetuximab.


152 HT-29 cells were cultured with several concentrations of PSK (5, 10, 50, 100 or 500 μ g/mL) or Cetuximab
153 (1, 5, 10, 50 or 100 μ g/mL). PSK had no suppressive activity on the proliferation of HT-29. Even at the highest
154 concentration, viable cell numbers (VC/ total cell) of PSK 500 μ g/mL (97%, grey bar) were almost the same as
155 that of controls (95%, grey bar). On the other hand, Cetuximab suppressed both proliferation of HT-29 and the
156 proportion of viable cells in 100 μ g/mL (52%, grey bar) compared with that of control (94%, grey bar). However,
157 the number of total cells was not different significantly. Tumor volumes were measured after a four-or five-week
158 treatment (vehicle; PSK alone: 2.5 mg/ mouse every two days; Cetuximab alone: one mg/mouse twice/week;
159 PSK and Cetuximab combined). Tumors in the control, PSK alone, and Cetuximab alone groups were not
160 significantly different after xenografting either HT-29 or MKN-28 cells (A, B). However, growth was significantly

161 suppressed when PSK was used with Cetuximab ($p=0.01$). Similar results were seen in tumor weight (C and D).
Cx: Cetuximab, ¹


Figure 1:

162

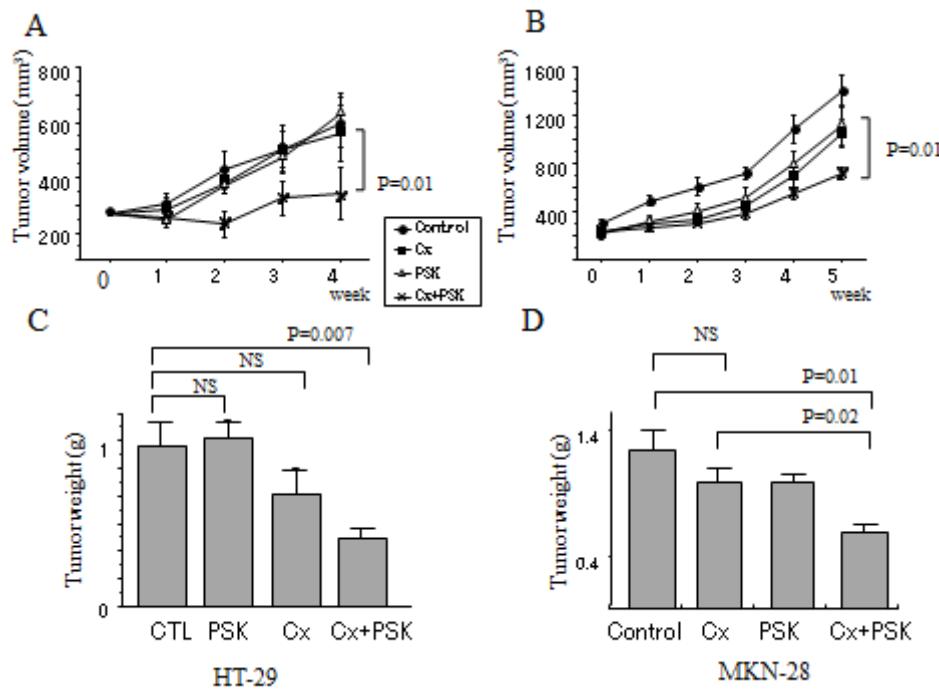

2

Figure 2: Figure 2 :

3

Figure 3: Figure 3 :

1

Figure 4: Figure 1 :

f) Animal Experiments

To examine the anti-tumor activity of Cetuximab and PSK *in vivo*, growing tumor cells were harvested with trypsin-EDTA, washed with PBS, and 5×10^6 III.

Figure 5:

163 [Calgb/Swog C80405 ()] 'A phase III trial of FOLFIRI or FOLFOX with bevacizumab or cetuximab or both
164 for untreated metastatic adenocarcinoma of the colon or rectum'. Calgb/Swog C80405 . *Clinical advances in*
165 *hematology & oncology : H&O* 2006. 4 p. .

166 [Ohwada ()] 'Adjuvant immunochemotherapy with oral Tegafur/Uracil plus PSK in patients with stage II or III
167 colorectal cancer: a randomised controlled study'. S Ohwada . *British journal of cancer* 2004. 90 p. .

168 [Ohwada ()] 'Adjuvant therapy with proteinbound polysaccharide K and tegafur uracil in patients with stage II
169 or III colorectal cancer: randomized, controlled trial'. S Ohwada . *Diseases of the colon and rectum* 2003. 46
170 p. .

171 [Moosmann and Heinemann ()] 'Cetuximab plus oxaliplatin-based chemotherapy in the treatment of colorectal
172 cancer'. N Moosmann , V Heinemann . *Expert review of anticancer therapy* 2008. 8 p. .

173 [Van Cutsem ()] 'Challenges in the use of epidermal growth factor receptor inhibitors in colorectal cancer'. E
174 Van Cutsem . *The oncologist* 2006. 11 p. .

175 [Terstrijp and Grothey ()] 'First-and second-line therapy of metastatic colorectal cancer'. S Terstrijp , A Grothey
176 . *Expert review of anticancer therapy* 2006. 6 p. .

177 [Hara ()] 'Interleukin-2 potentiation of cetuximab antitumor activity for epidermal growth factor receptor-
178 overexpressing gastric cancer xenografts through antibody-dependent cellular cytotoxicity'. M Hara . *Cancer*
179 *science* 2008. 99 p. .

180 [Ito ()] 'Long-term effect of 5-fluorouracil enhanced by intermittent administration of polysaccharide K after
181 curative resection of colon cancer. A randomized controlled trial for 7-year follow-up'. K Ito . *International*
182 *journal of colorectal disease* 2004. 19 p. .

183 [Rosendahl et al. ()] 'Polysaccharide-K (PSK) increases p21(WAF/Cip1) and promotes apoptosis in pancreatic
184 cancer cells'. A H Rosendahl , C Sun , D Wu , R Andersson . *Pancreatology* 2012. 12 p. .

185 [Politano ()] 'Second-line chemotherapy use in metastatic colon cancer varies by disease responsiveness'. S
186 Politano . *Clinical colorectal cancer* 2008. 7 p. .

187 [Saif ()] 'Successful desensitization with cetuximab after an infusion reaction to panitumumab in patients with
188 metastatic colorectal cancer'. M W Saif . *Cancer and pharmacology* 2009. 65 p. .

189 [Saif et al. ()] 'Successful rechallenge with panitumumab in patients who developed hypersensitivity reactions
190 to cetuximab: report of three cases and review of literature'. M W Saif , J Peccerillo , V Potter . *Cancer*
191 *chemotherapy and pharmacology* 2009. 63 p. .

192 [Lin ()] 'The status of EGFR-associated genes could predict the outcome and tumor response of chemo-refractory
193 metastatic colorectal patients using cetuximab and chemotherapy'. J K Lin . *Journal of surgical oncology* 2011.
194 104 p. .

195 [Lu ()] 'TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted
196 monoclonal antibody therapy'. H Lu . *Clinical cancer research : an official journal of the American Association*
197 *for Cancer Research* 2011. 17 p. .