

1 Comparison of Possum and P-Poosum as Audit Tools in Patients
2 Undergoing Emergency Laparotomy for Secondary Bacterial
3 Peritonitis

4 SUNIL KUMAR¹

5 ¹ Guru Teg Bahadur Hospital and University College of Medical Sciences

6 *Received: 12 April 2013 Accepted: 30 April 2013 Published: 15 May 2013*

7 **Abstract**

8 Background : Though POSSUM and P-POSSUM have been proposed as accurate tools of
9 audit, our initial experience has not been encouraging. Therefore, a prospective study was
10 conducted to find their accuracy for predicting outcome in peritonitis patients who underwent
11 emergency laparotomy. Methods : 172 patients treated in single surgical unit over two years
12 were included. Expected morbidity and mortality, computed by POSSUM and P-POSSUM
13 equations using linear as well as exponential methods of analysis, were compared with
14 observed outcome by observed: expected (O:E) ratios. X²-test was done to draw statistical
15 significance; P<0.050 was taken as significant. Results : POSSUM significantly over-predicted
16 mortality with linear as well as exponential methods with O:E ratios being 0.32 (X²=57.35, 1
17 d.f. P<0.001) and 0.25 (X²=111.26, 1 d.f. P<0.001), respectively. P-POSSUM also
18 significantly over-predicted mortality by linear as well as exponential methods with O:E ratios
19 being 0.55 (X²=11.37, 1 d.f. P<0.001) and 0.27 (X²=92.30, 1 d.f. P<0.001), respectively.
20 POSSUM significantly over-predicted morbidity by linear and exponential analysis with O:E
21 being 0.76 (X²=47.94, 1 d.f. P<0.001) and 0.81 (X²=23.27, 1 d.f. P<0.001), respectively.

23

24 **Index terms**— peritonitis, risk scoring, possum, p-possum, mortality, morbidity.

25 **1 Introduction**

26 In most hospitals across the world, and especially in third world countries, surgical audit is done using crude
27 morbidity and mortality figures. Such audits that are not based on risk-adjusted analysis have gross limitations
28 and do not allow true assessment of quality of care. Clearly, such an exercise lacks educational punch by virtue of
29 ignoring the problems of case-mix. The Physiological and Operative Severity Score for enUmeration of Mortality
30 and morbidity (POSSUM) takes care of problems of case-mix and has been suggested as powerful tool of audit
31 of general surgery patients. However, some studies suggested that conventional POSSUM may over-predict the
32 mortality. [2][3][4] Author : Department of Surgery, Guru Teg Bahadur Hospital and University College of Medical
33 Sciences. E-mail : drskg_15@sify.com This prompted us to conduct a pilot study involving about 75 patients
34 with perforation peritonitis wherein accuracy of both, POSSUM and P-POSSUM for predicting the postoperative
35 outcome, was analysed. We found that neither POSSUM nor P-POSSUM were accurately predicting the outcome
36 (unpublished data), even when the recommended statistical methods were used for analysis. Therefore, a larger
37 study was undertaken to evaluate the value of POSSUM and P-POSSUM in predicting postoperative morbidity
38 and mortality in patients with bowel perforation peritonitis in our set-up. Our working hypothesis was that
39 neither equation, irrespective of the method of analysis, was accurate in predicting the postoperative outcome in
40 our hands.

9 DISCUSSION

41 2 II.

42 3 Patients And Methods

43 One hundred and seventy two consecutive adult patients, undergoing emergency laparotomy for non-traumatic
44 bowel perforation peritonitis in one of the surgical units at Guru Teg Bahadur Hospital and University College
45 of Medical Sciences were studied prospectively over two years.

46 The physiological component of POSSUM data set was collected from parameters at admission before starting
47 any kind of treatment intervention. The operative component was computed after laparotomy and revised if
48 patient underwent re-laparotomy. Patients were treated as per their individual needs throughout their hospital
49 stay. Previously given definitions 1 of postoperative complications were used while recording morbidity as yes or
50 no. Mortality was also recorded as yes or no.

51 Patients were discharged from the hospital only after satisfactory recovery. All discharged patients were
52 followed up in surgical outpatient department for a minimum of three months for treating early postoperative
53 complaints (mostly wound related) and recording death within this period if any. Expected mortality was
54 calculated from POSSUM 1 To counteract this problem the Portsmouth modification of POSSUM (P-POSSUM)
55 was evolved, 4 and proved to be more accurate than POSSUM in predicting mortality. 3,4 One recent report from
56 India found both of these to be reliable for predicting the outcome when correct methods of analysis were used.
57 5 POSSUM 4 equations using both linear as well as exponential methods as previously described. 6 Expected
58 morbidity rates were calculated using POSSUM equation only as an equation of P-POSSUM for such purpose
59 is still not available. The ratio of observed to predicted mortality and morbidity (O:E) were also calculated for
60 each analysis separately. An O:E ratio above 1.0 indicates the risk is being underestimated while an O:E ratio
61 under 1.0 indicates the risk is being over-estimated. 6 Finally, X 2 test was used to find any difference between
62 predicted and observed rates of morbidity and mortality. P<0.050 was accepted as significant.

63 4 III.

64 5 Results

65 Indications for laparotomy are given in table 1. Mean (s.e.m.) age was 31.74 (2.42) and 138 (80%) were males.
66 Mean (s.e.m.) length of hospital stay was 12.79 (0.98) days. One hundred and ninety four (194) episodes of
67 postoperative complications were seen in 109 patients (table 2). Twenty-three patients died during the stay in
68 the hospital. During follow-up in outpatient department there were no dropouts and deaths.

69 6 a) Mortality by POSSUM Equation

70 The results with linear and exponential methods of analysis are shown in table 3 and 4, respectively. Both
71 methods significantly over-predicted the risk of death. The overall O:E ratio with linear analysis was 0.32 (X 2
72 =57.35, 1 d.f, P<0.001). The overall O:E ratio with exponential analysis was 0.25 (X 2 =111.26, 1 d.f, P<0.001).

73 7 b) Mortality by P-Possum Equation

74 The results of linear and exponential methods of analysis are shown in table 5 and 6, respectively. Both methods
75 significantly over-predicted the risk of death. The overall O:E ratio with linear analysis was 0.55 (X 2 =11.37,
76 1 d.f, P<0.001). The overall O:E ratio with exponential analysis was 0.27 (X 2 =92.30, 1 d.f, P<0.001).

77 8 c) Morbidity by linear and exponential analysis from POS- 78 SUM equation

79 These results are shown in table 7 and 8, respectively. Liner method significantly over-estimated the risk of
80 morbidity, overall O:E being 0.76 (X 2 =47.94, 1 d.f., P<0.001).

81 Similarly, exponential analysis significantly over-predicted the risk of morbidity, with O:E being 0.81 (X 2
82 =23.27, 1 d.f., P<0.001).

83 Table 9 gives the summary of above findings.

84 IV.

85 9 Discussion

86 A number of risk-adjusted scoring systems have been developed to suit audit of specialty-based practices such
87 as cardiovascular 7,8 and gastrointestinal [9][10][11] diseases and ICU-care. 12 One of the most widely used
88 scoring system is APACHE II. Though ideal for intensive care patients, its application has been validated in
89 general surgical patients also. However, some of its well known limitations namely, need for repeated measure
90 of variables for 24 h, too many variables, failure to take into account operative aspects, need for weighing tables
91 for individual disease states and failure to predict morbidity, do not make it a popular choice with surgeons.
92 Therefore, to audit the quality of care across the general surgical spectrum a simple scoring system, POSSUM,
93 was developed in 1991. 1 Following its development a number of trials proved its validity in general surgery setup.
94 6,[13][14][15] However, some authors subsequently reported that it over-predicted the outcome. 4,16 Therefore,

95 P-POSSUM was evolved and a new equation was recommended. 4 This equation has also been modified since
96 then for better prediction. 17 It was suggested that the over-estimation of the outcome by POSSUM is largely
97 because of employment of linear method of analysis instead of exponential, much against the recommendations of
98 Copeland et al. 6,18 This resulted in renewed interest in the use of POSSUM. A recent review heavily favors the
99 use of POSSUM with proper analytical method but cautions against its use in patients with low risk of mortality.
100 19 Despite this general advocacy for use of POSSUM and P-POSSUM as the risk-scoring system for audit purpose
101 sufficient evidence from tropical countries is lacking. This is desirable as the patients and treatment facilities
102 in these countries tend to be quite different from those in developed countries. Patients here tend to present
103 late, suffer from malnutrition and do not have access to world-class medical services. Our preliminary study
104 involving 75 patients with perforation peritonitis suggested that neither POSSUM nor P-POSSUM were accurate
105 in predicting the outcome (unpublished).

106 Subsequently, this larger study was undertaken. Predicted mortality rates were derived using equations of
107 both scoring systems and linear as well as exponential methods of analysis. Since P-POSSUM equation has been
108 not been proposed for deriving expected morbidity, it was used only for deriving expecting mortality. 4 Expected
109 morbidity was derived using POSSUM equations with linear as well as exponential methods of analysis.

110 Our results show that POSSUM grossly overpredicted mortality by both linear as well as exponential method
111 of analysis. P-POSSUM equitation also overpredicted mortality when analysed by either methods though linear
112 analysis gave slightly better results than the other.

113 POSSUM equation also over-predicted morbidity when analysed by either method though exponential analysis
114 gave slightly better results than the linear method.

115 It is difficult to find the exact cause(s) of overprediction in our study especially with availability of contrasting
116 results of almost similar trial from another ??

117 —— government institution in Delhi. 5 Under-reporting of the in-hospital outcome and mortality beyond the
118 period of the stay in hospital may be two important causes. However, we rule out under-reporting in our study
119 as the consultant (SK) monitored the outcome on regular basis using strict suggested definitions. We also rule
120 out any deaths beyond the period of stay in the hospital as we followed-up all discharged patients in outpatient
121 department for three months postoperatively. This means that evidence is probably not sufficient to advocate
122 the use of POSSUM or P-POSSUM in our kind of set-up. It is quite possible that a different regression equation
123 is needed for predicting the outcome of the patients with life-threatening sepsis (such as secondary peritonitis)
124 requiring emergency laparotomy. It is also possible that more variables are needed to generate a new 'usable'
125 score as many a factors, known to have an impact on outcome, 4 have not been taken into account.

126 Overall, the issue of suitability of either POSSUM or P-POSSUM in our kind of set-up requires further
127 evidence by way of larger studies involving similar patients. Thus, it can be summarized that both equations
128 have not proved successful for accurate prediction of the outcome from perforation peritonitis in our hands. As
129 suggested earlier, this may be because of many factors related to patients, treatment-practices or database. We
130 feel that further studies are needed from third world countries addressing the suitability of either scoring system
131 by standard analytical methods before employing the same freely for meaningful audit purposes. ??—————

132 —————— 40-60 7 2 4 0.57 50-60 5 1 3 0.36

134 10 Global Journal of

135 Medical Research

136 1

9

Figure 1: 9 Volume

1

013

2

Year

Figure 2: Table 1 :

2

: Postoperative complications (seen in 109 patients; number of complications is larger than number of patients because some had multiple complications)

Complication	Number
Wound infection	80
Deep (intra-abdominal) infection	27
Anastomotic leak	23
Wound dehiscence	21
Chest infection	18
Septicemia	09
Others	16

Figure 3: Table 2

3

Mortality group (%)	Patients (n)	Actual deaths (n)	Predicted deaths (n)	O:E ratio
<10	4	0	0	-
10-20	30	1	5	0.20
20-30	35	2	9	0.22
30-40	23	1	8	0.13
40-50	21	6	9	0.67
50-60	20	2	11	0.18
60-70	17	3	11	0.27
70-80	8	2	6	0.33
80-90	6	2	5	0.40
>90	8	4	8	0.50
0-100	172	23	72	0.32

Figure 4: Table 3 :

4

Mortality group (%)	Patients (n)	Actual deaths (n)	Predicted deaths (n)	O:E ratio
0-10	4	0	0	0.00
0-100	172	23	86	0.27

Figure 5: Table 4 :

5

Mortality group (%)	Patients (n)	Actual deaths (n)	Predicted deaths (n)	O:E ratio
<10	60	2	3	0.67
10-20	35	4	5	0.80
20-30	29	5	7	0.71
30-40	14	1	5	0.20
40-50	11	2	5	0.40
50-60	6	3	3	1.00
60-70	3	0	2	0.00
70-80	4	1	3	0.33
80-90	7	3	6	0.50
>90	3	2	3	0.67
0-100	172	23	42	0.55

Figure 6: Table 5 :

6

Mortality group (%)	Patients (n)	Actual deaths (n)	Predicted deaths (n)	O:E ratio
0-100	172	23	86	0.27
10-100	112	21	62	0.34
20-100	77	17	46	0.37
30-100	48	12	31	0.38
40-100	34	11	24	0.46
50-100	23	9	17	0.52
60-100	17	6	14	0.44
70-100	14	6	12	0.50
80-100	10	5	9	0.56
90-100	3	2	3	0.70
0-100	172	23	86	0.27

Figure 7: Table 6 :

7

Morbidity group (%)	Patients (n)	Actual morbidity (n)	Predicted morbidity (n)	O:E ratio
<10	0	0	0	-
10-20	0	0	0	-
20-30	1	0	0	0.00
30-40	2	0	1	0.00
40-50	2	1	1	1.00
50-60	5	1	3	0.33
60-70	16	8	10	0.80
70-80	33	17	25	0.68
80-90	37	21	31	0.68
>90	76	61	72	0.85
0-100	172	109	143	0.76

Figure 8: Table 7 :

8

Morbidity group (%)	Patients (n)	Actual morbidity (n)	Predicted morbidity (n)	O:E ratio
0-100	172	109	86	1.27
0-40	3	0	1	0.00
-	-	-	-	-

Figure 9: Table 8 :

Figure 10: Table 9 :

137 [Br J Surg ()] , *Br J Surg* 2003. 90 p. .

138 [Linn ()] 'A protein energy malnutrition scale (PEMS)'. B S Linn . *Ann Surg* 1984. 200 p. .

139 [Whiteley et al. ()] 'An evaluation of POSSUM surgical scoring system'. M S Whiteley , D R Prytherch , B
140 Higgins , P C Weaver , W G Prout . *Br J Surg* 1996. 83 p. .

141 [Mcilroy and Copeland ()] 'An evaluation of POSSUM surgical scoring system'. B S Mcilroy , G P Copeland .
142 *Br J Surg* 1996. 83 p. .

143 [Midwinter and Ashley ()] 'An evaluation of the POSSUM surgical scoring system'. M J Midwinter , S Ashley .
144 *Br J Surg* 1996. 83 p. 1653. (letter)

145 [Knaus et al. ()] 'APACHE-II: a severity of disease classification system'. W A Knaus , E A Draper , D P Wagner
146 , J E Zimmerman . *Crit Care Med* 1985. 13 p. .

147 [Domaingue et al. ()] 'Cardiovascular risk factors in patients for vascular surgery'. C M Domaingue , M J Davis
148 , K D Cronin . *Anaesth Intensive Care* 1982. 10 p. .

149 [Cooperman et al. ()] 'Cardiovascular risk factors in patients with peripheral vascular disease'. M Cooperman ,
150 B Pflug , E W MartinJr , W E Evans . *Surgery* 1978. 84 p. 5059.

151 [Sagar et al. ()] 'Comparative audit of colorectal resection with POSSUM scoring system'. P M Sagar , M N
152 Hartley , B Maneey-Jones , P C Sedman , J May , J Macfie . *Br J Surg* 1994. 81 p. .

153 [Whiteley et al. ()] 'Comparative audit of colorectal resection with the POSSUM scoring system'. M S Whiteley
154 , D R Prytherch , B Higgins , P C Weaver , W G Prout . *Br J Surg* 1992. 82 p. .

155 [Wijesinghe et al. ()] 'Comparison of POSSUM and Portsmouth predictor equation for predicting death following
156 vascular surgery'. L D Wijesinghe , T Mahmood , Dja Scott , D C Berridge , P J Kent , R C Kester . *Br J
157 Surg* 1998. 85 p. .

158 [Greenburg et al. ()] 'Influence of age on mortality of colon surgery'. A G Greenburg , R P Saik , D Pridham .
159 *Am J Surg* 1985. 150 p. .

160 [Mohil et al. ()] 'POSSUM and P-POSSUM for riskadjusted audit of patients undergoing emergency laparotomy'.
161 R S Mohil , D Bhatnagar , L Bahadur , Rajneesh , D K Dev , M Magan . *Br J Surg* 2004. 91 p. .

162 [Prythererch et al. ()] 'POSSUM and Portsmouth POSSUM for predicting mortality'. D R Prythererch , M S
163 Whiteley , B Higgins , P C Weaver , W G Prout , S G Powell . *Br J Surg* 1998. 85 p. .

164 [Copeland et al. ()] 'POSSUM: a scoring system for surgical audit'. G P Copeland , D Jones , M Walters . *Br J
165 Surg* 1991. 78 p. .

166 [Copeland et al. ()] 'Risk adjusted analysis of surgeon performance: a 1-year study'. G P Copeland , P Sagar ,
167 J Brennan , G Roberts , J Ward , P Cornford . *Br J Surg* 1995. 82 p. .

168 [Altaca et al. ()] 'Risk factors in perforated peptic ulcer disease: comparison of a new score system with
169 Mannheim Peritonitis Index'. G Altaca , I Sayek , D Onat , M Cakmakci , S Kamiloglu . *Eur J Surg
170* 1992. 158 p. .

171 [Midwinter and Ashley ()] 'Risk stratification in vascular patients using modified POSSUM scoring system'. M
172 Midwinter , S Ashley . *Br J Surg* 1997. 84 p. A568.

173 [Neary et al.] *The Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity*,
174 W D Neary , B P Heather , J J Earnshaw . POSSUM.

175 [Copeland ()] 'The POSSUM system of surgical audit'. G P Copeland . *Arch Surg* 2002. 137 p. .