

Drug-Like Properties of some Esters of Ortho-/Meta-/Para-Alkoxyphenylcarbamic Acid Containing N-Phenylpiperazine Fragment

Ivan Malik¹

¹ University, OdbojArov 10, 832 32 Bratislava

Received: 13 December 2012 Accepted: 5 January 2013 Published: 15 January 2013

8 Abstract

In recent years, in silico pharmaceutical tools have a notable impact of drug discovery as complementary methods for in vitro and in vivo assays. Such procedures help to optimize pharmacokinetic and pharmaceutical properties of (not only) drug-like candidates. Following the Lipinski's Rule of Five concept and experimental partition coefficients data as well, the majority of currently in silico investigated compounds, 8aBâ???"8iB, which structure contained so-called privileged structure, 4-(3-trifluoromethylphenyl)piperazin-1-yl fragment, would be regarded as the drugs with the physicochemical properties that could be convenient in terms of their pharmacokinetic and metabolic profiles. In addition, their ability to cross bloodâ???"brain barrier was in silico inspected. In general, the CNS drugs tend to be more lipophilic, be less polar, have shown less flexibility, had lower molecular weight and smaller molecular volume as well than the drugs applied for other therapeutic indications. Following the calculated (molecular weight, topological polar surface area, hydrogenbond acceptors count, hydrogen-bond donors count, rotatable bonds count, CLOGP data) and experimentally estimated (log Pexp) readouts, it was suggested that concerned derivatives would probably not cross bloodâ???"brain barrier by passive diffusion, thus they could not affect CNS processes.

25 *Index terms*— rule of five, n-arylpiperazines, blood-brain barrier.

1 INTRODUCTION

ore than ten years have passed since the research paper concerning the Rule of Five (RO5) by Lipinski et al. (2001) was published 1 . Assuming the evaluation of potentially orally active compounds, in the discovery setting, the RO5 predicted 1,2 that poor absorption or permeation was more likely when there were more than five hydrogen-bond donors (OH plus NH count), more than ten hydrogen -bond acceptors (O plus N atoms), the molecular weight (MW) was greater than 500 and the calculated log P value for the system octan-1-ol/water using CLOGP approach 3 was more than 5 or higher than 4.15 when applied Moriguchi MLOGP predictive method 4 , respectively. In other words, these physicochemical parameters were connected with acceptable aqueous solubility and intestinal permeability and comprised the first steps of oral bioavailability. The RO5 was M deliberately created to be a conservative predictor in an area where medicinal chemistry produced too many compounds with poor physicochemical properties 2 . Veber et al. 5 later suggested that the commonly applied MW cutoff at 500 did not itself significantly separate compounds with poor oral bioavailability from those with acceptable values. Taking into account the fact that molecular rigidity was a much more complex issue than the simple counting of rotatable bonds, their conclusions 5 also pointed out that the compounds which met only two criteria, i.e. ten or fewer rotatable bonds and the value of polar surface area (PSA) equal to or less than 140 Å 2 (or 12 or fewer hydrogen-bond donors and acceptors), would have a high probability of good oral bioavailability. Nevertheless,

2 RESULTS AND DISCUSSION

42 it is important to emphasize the limitations of these rules: (i) the RO5 applies only to the compounds which
43 are delivered by the oral route, (ii) the RO5 applies only to the compounds which are absorbed by passive
44 mechanisms, (iii) there are important exceptions (MW>500 and reduced molecular flexibility and constrained
45 PSA; natural products), (iv) passing the RO5 is no guarantee that a compound is drug-like, (v) the RO5 says
46 nothing about specific chemistry structural features found in drugs or non-drugs 2,6,7 .

47 From chemical viewpoint, currently in silico investigated molecules, labelled as 8aB-8iB, could be regarded
48 as ortho-/meta-/para-alkoxyphenylcarbamic acid-based derivatives as well as N-arylpiperazine -based structures
49 (Figure). It was previously found out that some of them (all the investigated molecules were prepared and
50 tested as the salts with hydrochloric acid) have shown relatively promising antimicrobial profile 8,9 . In general,
51 the N-arylpiperazine moiety was regarded as so-called privileged structure 10 -it represented a class of the
52 molecules capable of binding to multiple receptors with high affinity, *inter alia* by displaying key physicochemical
53 characteristics that facilitated their ability to bind to them. The use of such fragment should allow the medicinal
54 chemists to rapidly discover biologically active compounds across a broad range of therapeutic areas 11 .
55 Following mentioned, the principal objective of current paper was to evaluate if these derivatives 8aB-8iB could
56 potentially exhibit convenient physicochemical properties, which would be interactive applet of Molinspiration
57 Cheminformatics software tool (Molinspiration Cheminformatics, Slovak Republic). The CLOGP 4.0 readouts
58 were generated by using ChemBioDraw Ultra 11.0 program package (CambridgeSoft, USA). The outputs of log
59 P calculated by Moriguchi method (MLOGP) were obtained by an interactive applet of Virtual Computational
60 Chemistry Laboratory (VCChL) 13 . The ALOGP procedure of log P prediction was calculated using VCChL
61 applet based on the approach developed by Ghose and Crippen 14 .

62 The readouts of partition coefficient logarithms, which were experimentally estimated in octan-1-ol/buffer
63 (pH=7.0) medium, were adopted from the research paper 15 of Sedlárová et al. (2007).

64 The observed differences between calculated (CLOGP 4.0, MLOGP, miLogP 2.2 and ALOGP, respectively)
65 and experimentally estimated (log P exp) log P values were expressed by the Absolute Average Residual Sums
66 (AARS). If the AARS output was in the range of 0.000-0.490, the MLOGP, CLOGP 4.0, miLogP 2.2 and ALOGP
67 approach, respectively, was qualified as acceptable, while AARS value within the area of 0.500-0.999 indicated
68 that respect predictor tool was viewed as disputable and, finally, if calculated AARS readout exceeded 1.000, it
69 was then classified as an unacceptable predictive procedure 16 . Table ?? The descriptors which characterized
70 currently in silico inspected derivatives 8aB-8iB III.

71 2 RESULTS AND DISCUSSION

72 Presently in silico calculated outputs revealed that almost all the inspected molecules completely met the RO5
73 (Table ??). In detail, the substances 8aB-8iB have shown MW less than 500, nON=7 and nOHNH=2 as well.
74 The calculation of PSA in a classical way, however, was rather time consuming, because of the necessity to The
75 data, which characterized molecular weight (MW), hydrogen-bond acceptors count (nON), hydrogen-bond donors
76 count (nOHNH), topological polar surface area 12 (TPSA), rotatable bonds count (nrotb) and the predicted
77 logarithms of partition coefficient for the system octan-1-ol/water by applying miLogP 2.2 substructure approach,
78 of investigated compounds 8aB-8iB were calculated by using generate a reasonable 3D molecular geometry and
79 to determine the surface itself. Additionally, such calculations required specialized software to generate the 3D
80 molecular structures and to determine the surface. The methodology for the calculation of used TPSA was
81 described in details in the paper 12 . Briefly, such procedure was based on the summation of tabulated surface
82 contributions of polar fragments (atoms regarding also their environment). These fragment contributions were
83 determined by least squares fitting to the single conformer 3D PSA for 34,810 drugs from the World Drug Index.
84 Topological polar surface area (TPSA) provided results of practically the same quality as the classical 3D PSA,
85 the calculations, however, were two to three orders of magnitude faster. The values of TPSA for all studied
86 compounds 8aB-8iB were 74.27 Å 2 .

87 As suggested by Clark 17 , the criterion for poor absorption of PSA>140 Å 2 appeared to be an efficient
88 method of computationally screening large numbers of compounds. Following given, all the studied derivatives
89 fulfilled the requirement for good absorption.

90 Palm and coworkers 18 found out that excellent correlation could be obtained between dynamic polar van der
91 Waals' surface areas (PSA d) and Caco-2 permeabilities when evaluated a series of antagonists of ?-adrenergic
92 receptors (ARs). However, the major drawback of such parameter, it was computationally expensive, made it
93 inappropriate for large database screening.

94 However, the RO5 violation was clearly indicated in terms of the rotatable bonds count for the compounds
95 bearing meta-/para-propoxy or para-butoxy side chain, namely 8eB, 8hB and 8iB, respectively. Such descriptor
96 was a widely used filter following the finding that greater than ten rotatable bonds correlated with decreased
97 oral bioavailability in animal models 5 .

98 Additionally, the same derivatives have shown the predicted values of log P by CLOGP 4.0 approach higher
99 than 5. Following the AARS readouts, the CLOGP 4.0 method was considered unacceptable because of providing
100 ARRS=1.067. The main disadvantage of using such relatively inconvenient (but required, actually) fragmental-
101 based procedure for current investigation of homological series 8aB-8iB was that it did not take into account the
102 position of alkoxy side chain attached to lipophilic aromatic ring -identical values were observed when in silico
103 evaluated corresponding positional isomers (Table ??). Similar situation was encountered when analyzing the

104 data related to Moriguchi MLOGP. Given fragmental approach did not reflect the position of attached alkoxy
105 side string, as expected. Surprisingly, calculated output of AARS=0.258 identified this in silico procedure as
106 an acceptable tool for the prediction of log P. It was also documented that MLOGP>4.15 was generated for
107 para-butoxy derivative (8iB) only.

108 Ghose and Crippen proposed that the qualifying range of calculated log P for drug-like molecules was from
109 -0.4 to 5.6 by fragmental ALOGP procedure. The mean ALOGP was set to 2.3 and the preferred interval was
110 1.3-4.1, as published in 14 . Following given, propoxy-and butoxysubstituted derivatives were out of the range.
111 In addition, the AARS for ALOGP was 0.506 so this procedure was considered disputable.

112 When inspecting the AARS readout assigned to miLogP 2.2, relatively convenient value was indicated (0.478).
113 It seemed that, except for the MLOGP procedure, the miLogP 2.2 could be considered an acceptable prediction
114 method for the in silico investigation of concerned compounds.

115 From structural viewpoint, currently studied derivatives could be also regarded as arylcarbamoyloxyamino-
116 propanols, i.e. a class of the compounds which act as the antagonists of β -ARs. Side effects of these drugs,
117 which are connected with their central nervous system (CNS) activity, are well-known; for instance lethargy,
118 depressions, psychoses 19,20 or visual hallucinations 21 , respectively. Early assessment of the physicochemical
119 properties of potentially active CNS drugs in terms of their ability to cross blood-brain barrier is extremely
120 important.

121 Additionally, CNS active drugs have shown notably fewer rotatable bonds count (five or less) than other drug
122 classes 26 .

123 Considering the log P data (log P exp), Hansch and Leo 27 found out that blood-brain barrier penetration
124 was optimal when mentioned readout was within the interval of 1.5-2.7.

125 For the complexity of information, in paper 26 were summarized some essential attributes of successful CNS
126 drugs. Some of them were as follows: MW<450, CLOGP<5, nOHNH<3, nON<7, nrotb<8, hydrogen bonds<8
127 and PSA<60-70 \AA 2 , respectively. Kelder et al. 22 previously found out that non -CNS drugs transported
128 passively and transcellularly needed a PSA of 120 \AA 2 or less, whereas the drugs can be targeted to the CNS
129 with a PSA less than 60-70 \AA 2 . On the other hand, following the van de Waterbeemd research 23 , the cutoff for
130 PSA cutoff for CNS penetration was set to 90 \AA 2 or below and molecular weight cutoff of 450. Levin suggested
131 the molecular weight cutoff 400 or lower 24 . It was also previously documented that PSA value was dependent
132 upon hydrogen bonding and donating atoms 25,26 . Because the hydrogen bonding was primarily associated with
133 oxygen (O) and nitrogen (N) moieties in a molecule, then, if the sum of the N and O atoms in the structure was
134 five or less, the compound has shown a high probability of entering the CNS. Moreover, if following difference
135 CLOGP -(N+O) was higher than 0, then the compound had a high probability of entering the CNS.

136 Rather than trying to predict absorption-related quantities, researchers tried to find out general principles to
137 distinguish drug-like from non-drug-like molecules by inspecting the drugs and non-drugs databases. Current
138 article was focused on the in silico evaluation of some highly lipophilic N-arylpiperazine based compounds
139 containing 2-hydroxypropan-1,3-diyl connecting chain and substituted alkoxyphenylcarbamoyloxy fragment as
140 well, in terms of their drug -like properties. It seemed that majority of all the substances inspected successfully
141 met the criteria which were previously pioneered especially by Christopher Lipinski in his famous Rule of Five and
142 Daniel Veber, respectively. It could be assumed that focused compounds would potentially shown good absorption
143 and permeation after an oral administration. In addition, following the molecular weight, PSA (TPSA), hydrogen-
144 bond acceptors count, rotatable bonds count, CLOGP 4.0 readouts and estimated log P exp data as well, it could
145 be hypothesized that all currently inspected derivatives would not be able to cross blood-brain barrier passively
146 and consequently not to involve CNS -related side effects.

2 RESULTS AND DISCUSSION

Figure 1: Figure :

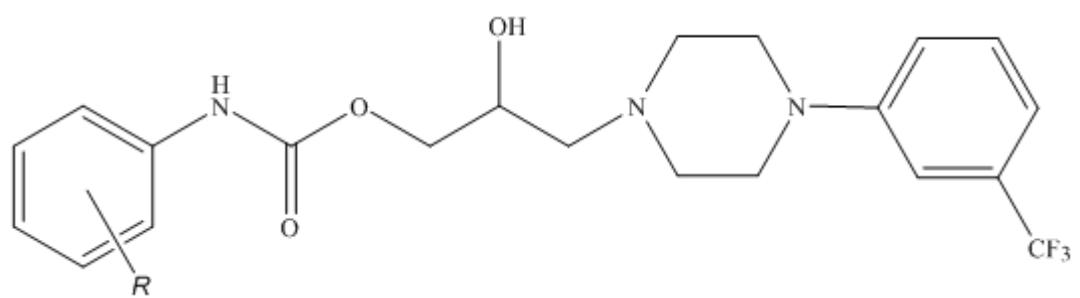


Figure 2:

147 Following current in silico calculated outputs and previously estimated data 15 as well, the compounds under
 148 the study 8aB-8iB probably would not permeate cross blood-brain barrier so they would not probably involve
 149 the CNS side effects.

150 .1 IV.

151 CONCLUSION

152 [Keller et al. ()] 'A practical view of "druggability'. T H Keller , A Pichota , Z Yin . 10.1016/j.cbpa.2006.06.014.
 153 DOI:dx.doi.org/10.1016/j.cbpa.2006.06.014 *Current Opinion in Chemical Biology* 2006. 10 p. .

154 [Malík et al. ()] 'Antimicrobial activity of meta -alkoxyphenylcarbamates containing substituted N -
 155 phenylpiperazine fragment'. I Malík , M Bukovský , F Andriamainty , J Gali?inová . 10.1590/S1517-
 156 838220120003000016. *Brazilian Journal of Microbiology* 2012. 43 p. .

157 [Malík et al. ()] 'Antimicrobial effect of paraalkoxyphenylcarbamic acid esters containing substituted N-
 158 phenylpiperazine moiety'. I Malík , M Bukovský , F Andriamainty , J Gali?inová . 10.1590/S1517-
 159 83822013000200018.reallymeasure. DOI: 10.1049/ip- sen:20010506. DOI:dx.doi.org/10.1590/S1517-83822013000200018.reallymeasure *IEE Proceedings-Software Engineering*, 2013. 44 p.
 161 .

162 [Ghose and Crippen ()] 'Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships. I. Partition coefficients as a measure of hydrophobicity'. A K Ghose , G M Crippen . 10.1002/jcc.540070419. <http://dx.doi.org/10.1002/jcc.540070419> *Journal of Computational Chemistry* 1986. 7 p. .

163 [Leo ()] 'Calculating log P oct from structures'. A J Leo . 10.1021/cr00020a001. *Chemical Reviews* 1993. 93 p. .

164 [Palm et al. ()] 'Correlation of drug absorption with molecular surface properties'. K Palm , K Luthman , A.-L
 165 Ungell , G Strandlund , P Artursson . 10.1021/js950285r. *Journal of Pharmaceutical Sciences* 1996. 85 p. .

166 [Van De Waterbeemd et al. ()] 'Estimation of blood-brain barrier crossing of drugs using molecular size and
 167 shape, and H-bonding descriptors'. H Van De Waterbeemd , G Camenish , G Folkers , J R Chretien , O A
 168 Raevsky . 10.3109/10611869808997889. *Journal of Drug Targeting* 1998. 6 p. .

169 [Lipinski et al. ()] 'Experimental and computational approaches to estimate solubility and permeability in drug
 170 discovery and development settings'. C A Lipinski , F Lombardo , B W Dominy , P J Feeney . 10.1016/S0169-
 171 409X(00)00129-0. *Advanced Drug Delivery Reviews* 2001. 46 p. .

172 [Ertl et al. ()] 'Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its
 173 application to the prediction of drug transport properties'. P Ertl , B Rohde , P Selzer . 10.1021/jm000942e.
 174 *Journal of Medicinal Chemistry* 2000. 43 p. .

175 [Lipinski ()] 'Lead and drug-like compounds: the rule-of-five revolution'. C A Lipinski .
 176 10.1016/j.ddtec.2004.11.007. *Drug Discovery Today: Technologies* 2004. 1 p. .

177 [Clardy and Walsch ()] 'Lessons from natural molecules'. J Clardy , C Walsch . 10.1038/nature03194. *Nature*
 178 2004. 432 p. .

179 [Pajouhesh and Lenz ()] 'Medicinal chemical properties of successful central nervous system drugs'. H Pajouhesh
 180 , G R Lenz . 10.1602/neurorx.2.4.541. *NeuroRx, The Journal of the American Society for Experimental Neuro*
 181 *Therapeutics* 2005. 2 p. .

182 [Evans et al. ()] 'Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin
 183 antagonists'. B E Evans , K E Rittle , M G Bock , R M Dipardo , R M Freidinger , W L Whitter , G F
 184 Lundell , D F Veber , P S Anderson , R S Chang , V J Lotti , D J Cerino , T B Chen , P J Kling , K A
 185 Kunkel , J P Springer , J Hirshfield . 10.1021/jm00120a002. *Journal of Medicinal Chemistry* 1988. 31 p..

186 [Veber et al. ()] 'Molecular properties that influence the oral bioavailability of drug candidates'. D F Veber , S
 187 R Johnson , H.-Y Cheng , B R Smith , K W Ward , K D Kopple . 10.1021/jm020017n. *Journal of Medicinal*
 188 *Chemistry* 2002. 45 p. .

189 [Kelder et al. ()] 'Polar molecular surface as a dominating determinant for oral absorption and brain penetration
 190 of drugs'. J Kelder , P D J Grootenhuis , D M Bayada , L P C Delbressine , J.-P Ploemen .
 191 10.1023/A:1015040217741. *Pharmaceutical Research* 1999. 16 p. .

192 [Österberg and Norinder ()] 'Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics'. T Österberg , U Norinder . 10.1021/ci0000651. *Journal of Chemical Information and*
 193 *Computer Sciences* 2000. 40 p. .

194 [Parker ()] 'Propranolol-induced depression and psychosis'. W A Parker . *Clinical Pharmacy* 1985. 4 p. .

195 [Mcgahan et al. ()] 'Propranolol-induced psychosis'. D J Mcgahan , A Wojslaw , V Prasad , S Blankenship . *Drug*
 196 *Intelligence and Clinical Pharmacy* 1984. 18 p. .

197 [Clark ()] 'Rapid calculation of polar molecular surface area and its application to the prediction of transport
 198 phenomena. 1. Prediction of intestinal absorption'. D E Clark . 10.1021/js9804011. *Journal of Pharmaceutical*
 199 *Sciences* 1999. 88 p. .

2 RESULTS AND DISCUSSION

204 [Levin ()] 'Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary
205 permeability'. V A Levin . 10.1021/jm00180a022. *Journal of Medicinal Chemistry* 1980. 23 p. .

206 [Moriguchi et al. ()] 'Simple method of calculating octanol/water partition coefficient'. I Moriguchi , S Hirono ,
207 Q Liu , Y Nakagome , Y Matsushita . *Chemical and Pharmaceutical Bulletin* 1992. 40 p. .

208 [Sedlárová et al. ()] 'Study of lipophilicity of phenylcarbamic acid derivatives with substituted N-
209 phenylpiperazine moiety'. E Sedlárová , I Malík , F Andriamainty , S Ke?ké?ová , J Csöllei . *Farmaceutický
210 Obzor* 2007. 76 p. .

211 [Hansch and Leo ()] *Substituent constant for correlation analysis in chemistry and biology*, C Hansch , A J Leo
212 . 10.1002/jps.2600690938. 1979. New York: Wiley. 339.

213 [Horton et al. ()] 'The combinatorial synthesis of bicyclic privileged structures or privileged substructures'. D A
214 Horton , G T Bourne , M L Smythe . 10.1021/cr020033s. *Chemical Reviews* 2003. 103 p. .

215 [Tetko et al. ()] 'Virtual computational chemistry laboratory -design and description'. I V Tetko , J Gasteiger
216 , R Todeschini , A Mauri , D Livingstone , P Ertl , V A Palyulin , E V Radchenko , N S Zefirov , A S
217 Makarenko , V Tanchuk , Yu , V V Prokopenko . 10.1007/s10822-005-8694-y. *Journal of Computer-Aided
218 Molecular Design* 2005. 19 p. .

219 [Sirois ()] 'Visual hallucinations and metoprolol'. F J Sirois . 10.1176/appi.psy.47.6.537. <http://dx.doi.org/10.1176/appi.psy.47.6.537> *Psychosomatics* 2006. 47 p. .

220 [Kitchenham et al. ()] *What accuracy statistics*, B A Kitchenham , L M Pickard , S Macdonell , G Shepperd ,
221 MJ . 2001.