

1 In Vitro Antidiabetic Activity of Cardiospermum Halicacabum 2 leaves Extracts

3 Stalin¹

4 ¹ Raos college of pharmacy

5 *Received: 7 December 2012 Accepted: 5 January 2013 Published: 15 January 2013*

6

7 **Abstract**

8 The present study was designed to investigate the glucose uptake of (antidiabetic activity)
9 crude n-hexane,ethanol, methanol and aqueous leaf extracts of Cardiospermum
10 Halicacabum.Methods: of Cardiospermum Halicacabumleaf extracts were subjected to
11 inhibitory effect of glucose utilization using specific standard in vitro procedure.Results:
12 results in four different leaf extracts revealed that, the methanol extract at a concentration of
13 50g plant extract/1 was found to be more potent than other extracts with the lowest mean
14 glucose concentration of 201 ± 1.69 mg/dl at the end of 27 hrs.Conclusions: The present
15 findings suggest that, the methanolic extract showed a significant inhibitory effect on glucose
16 diffusion in vitro thus validating the traditional claim of the plant.

17

18 **Index terms**— cardiospermum halicacabum, antidiabetic activity, glucose diffusion method.

19 **1 Introduction**

20 The plant Cardiospermum halicacabum Linn.

21 (Sapindaceae) is an annual or sometimes perennial climber, commonly found as a weed throughout India. The
22 tender, young shoots are used as a vegetable, fodder, diuretic, stomachic, and rubefacient [5,6]. It is used in
23 rheumatism, lumbago, nervous diseases, and as a demulcent in orchitis and in dropsy. In Sri Lanka, it is used
24 for the treatment of skeletal fractures. The juice of the herb is used to cure ear-ache and to reduce hardened
25 tumours [7]. It exhibits significant analgesic, anti-inflammatory and vaso-depressant activity, which is transient
26 in nature. In Authors ? ? ?: Department of Pharmacology, Rao's college of pharmacy, Nellore. e-mail:
27 stalinmpcol@gmail.com vitro studies have revealed its antispasmodic and curative actions confirming the use of the
28 herb in Ayurvedic medicine [8]. The leaves of this plant mixed with castor oil are administered internally to treat
29 rheumatism and to check lumbago [9]. The present investigation is directed to the exploration of the antidiabetic
30 activity based on the study of the various extracts of Cardiospermum halicacabum which show inhibitory effect
31 of glucose utilization and are in use as hypoglycemic agent in traditional system of medicine.

32 **2 II.**

33 **3 Materials and Methods**

34 **4 a) Plant material**

35 The fresh plants of Cardiospermum halicacabum were collected from Nellore (Andhra Pradesh) and authenticated
36 by Dr.P.Jayaraman, Ph.D., Director, Plant Anatomy Research Centre, Medicinal Plants Research Unit,
37 Tambaram, Chennai-45. A portion of the sample was kept in the department museum for further reference
38 (PARC/2010/579).

11 DISCUSSION

39 5 b) Preparation of extracts

40 The shade dried powdered form of leaves of *Cardiospermum halicacabum* was taken and subjected to successive
41 extraction using n-hexane, Ethanol, and methanol by continuous percolation process in soxhlet apparatus. The
42 aqueous extract was prepared by the maceration with double distilled water. Each extract was concentrated by
43 distilling off the solvent and evaporated to dryness. The extracts were dissolved in 1% carboxy methyl cellulose
44 (CMC) and used for the present study.

45 6 c) Effects of Various Extracts on In vitro Inhibitory

46 Glucose Diffusion A simple model system was used to evaluate the effects of *Cardiospermum halicacabum* leaf
47 extracts on glucose movement in vitro. The model was adapted from a method described by Edwards et al. [10]
48 which involved the use of a sealed dialysis tube into which 15ml of a solution of glucose and sodium chloride
49 (0.15M) was introduced and the appearance of glucose in the external solution was measured. The model used in
50 the present experiment consisted of a dialysis tube (6cmX15mm) into which 1ml of 50g/litre plant extract in 1%
51 CMC and 1ml of 0.15M sodium chloride containing 0.22M D-glucose was added. The dialysis tube was sealed at
52 each end placed in a 50ml centrifuge tube containing 45ml of 0.15M sodium chloride. The tubes were placed on
53 an orbital shaker and kept at room B

54 Diabetes mellitus is a metabolic disorder characterized by a loss of glucose homeostasis with disturbances of
55 carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both [1].
56 According to WHO, it is estimated that 3% of the world's population have diabetes and the prevalence is expected
57 to double by the year 2025 to 6.3% [2]. Management of diabetes without any side effect is still a challenge to
58 the medical community. The use of the drugs is restricted by their pharmacokinetic properties, secondary failure
59 rates and accompanying side effects [3]. Thus searching for a new class of compounds is essential to overcome
60 diabetic problems. There is continuous search for alternative drugs [4]. D temperature. The movement of glucose
61 into the external solution was monitored at set time intervals.

62 7 d) Statistical Analysis

63 Data are expressed as mean \pm S.E.M. Statistical comparisons between groups were done by one way analysis
64 of variance (ANOVA) followed by Tukey Kramer multiple comparison tests to analyze the differences. $p<0.001$
65 were considered as significant.

66 8 III.

67 9 Results

68 10 a) Effect on Glucose Diffusion

69 With the distinctive traditional medical opinions and natural medicines mainly originated in herbs, traditional
70 medicine offers good clinical opportunities and shows a bright future in the therapy of diabetes mellitus and its
71 complications. The effect of *Cardiospermum halicacabum* leaves as anti-diabetic agents has been studied. All
72 extracts showed varying effect on glucose utilization. These extracts caused a significant decrease in glucose
73 concentration during the experiment.

74 The effects of *Cardiospermum halicacabum* leaves extracts on glucose diffusion inhibition were summarized in
75 Table ??1. At the end of 27 hrs, glucose movement of control (without plant extract) in the external solution
76 had reached a plateau with a mean glucose concentration above 300mg/dl (314 ± 2.89). It was evident from the
77 table that the methanol and aqueous extracts were found to be potent inhibitors of glucose diffusion ($p<0.001$)
78 compared to control. The methanol extract was found to be more potent than other extracts showing the lowest
79 mean glucose concentration of 201 ± 1.69 mg/dl at the end of 27 hrs (Table .1) IV.

80 11 Discussion

81 Diabetes mellitus is a debilitating and often life threatening disorder with increasing incidence throughout the
82 world. There is a steady rise in the rate of incidence of Diabetes mellitus and estimated that 1 in 5 may be
83 diabetic by 2025 [11]. Antihyperglycemic activities of most effective plants were in part explained by the ability
84 of the phytoconstituents to increase glucose transport and metabolism in muscle and/or to stimulate insulin
85 secretion [12]. In the present study, research has been carried out to evaluate the potential of various extracts
86 to additionally retard the diffusion and movement of glucose in the intestinal tract [13].

87 A decoction of *Cardiospermum halicacabum* leaves is used worldwide for the treatment of various ailments
88 including antidiabetic. The numerous polyphenolic compounds, triterpenoids and other chemical compounds
89 present in the plant may account for the observed antidiabetic effects of the leaf extracts.

90 A Decoction of *Cardiospermum halicacabum* leaves was screened for hypoglycaemic activity on alloxan-induced
91 diabetic rats. In both acute and sub-acute tests, the water extract, at an oral dose of 250 mg/kg, showed
92 statistically significant hypoglycaemic activity [14]. The treatment with *Cardiospermum halicacabum* aqueous
93 leaf extract (0.01-0.625 mg/mL) showed significant inhibition on LDL glycation in a dose-dependent manner.
94 Tannins, flavonoids, apigenin, pinitol and luteolin, and other chemical compounds present in the plant are

95 speculated to account for the observed hypoglycaemic and hypotensive effects of the leaf extract. Values are
96 expressed as mean \pm SEM of triplicate; Data were analysed using one way ANOVA followed by Tukey-Kramer
97 multiple comparison test; ***P<0.001 compared to control.

98 V.

99 12 Conclusion

100 The present study demonstrates the ability of various extracts of *Cardiospermum halicacabum* to inhibit glucose
101 diffusion using an in vitro model of glucose absorption. In particular, methanol and aqueous extracts represent
102 potential inhibitory of glucose diffusion supplements that may be useful for allowing flexibility in meal planning in
103 type II diabetes. Further studies are required to elucidate whether in vitro effects represent therapeutic potential
by limiting postprandial glucose absorptions and for improving glycemic control in type 2 diabetic subjects.^{1 2}

1

Extract	tube over 27hr incubation period				
	1h	3h	5h	24h	27h
Control(in the absence of extract)					

Figure 1: Table 1 :

104

¹© 2013 Global Journals Inc. (US)

²()BIn Vitro Antidiabetic Activity of *Cardiospermum Halicacabum* leaves Extracts

105 [Gandhi and Sasikumar ()] 'Antidiabetic effect of MerremiaemarginataBurm. F. in streptozotocin induced di-
106 abetic rats'. Rajiv Gandhi , G Sasikumar , P . *Asian Pacific Journal of Tropical Biomedicine* 2012. 2 p.
107 .

108 [Abdalla et al. ()] 'Antidiabetic Effects of Fenugreek (Trigonellafoenum -graecum) Seeds in the Domestic Rabbit
109 (Oryctolaguscuniculus)'. M Abdalla , Mariam Y Abdelatif , Mahmoud S Ibrahim . *Res J of Medicinal Plant*
110 2012. 6 p. .

111 [Reddy et al. ()] 'Antimicrobial screening of the plant extracts of Cardiospermum halicacabum L., Against
112 selected microbes'. Thirupal Reddy , B , Ali Moulali , D Anjaneyulu , E Ramgopal , M , Hemanth Kumar ,
113 K Lokanatha , O Guruprasad , M Balaji , M . *Ethnobotanical Leaflets* 2010. 14 p. .

114 [Ming-Hsinghuanga et al. ()] 'Antioxidant and anti-inflammatory properties of Cardiospermum halicacabum and
115 its reference compounds ex vivo and in vivo'. Ming-Hsinghuanga , Shyh-Shyunhuangb , Bor-Senwangc , Ming-
116 Jyhsheud Chieh-Hsiuwud , Wen-Chi Houe , Guan-Jhonghuangb Shiang-Shioulinb . *J Ethnopharmacol* 2011.
117 133 p. .

118 [Muthumani et al. ()] 'Chemical Investigation Of Tod-daliaAsiaticaLinn, AndCardiospermum Halicacabum
119 Linn'. P Muthumani , R Meera , DeviP , Mohamed Sheik Arabath , S A Seshukumarkoduri , L V Sivara-
120 Mmanavarthi . *International Journal of Drug Formulation & Research* 2010. 1 (3) p. .

121 [Annamalai et al. ()] 'Effect Of Drying Treatment On The Contents Of Antioxidants In Cardiospermum
122 Halicacabum Linn'. A Annamalai , G Ponmari1 , R Sathishkumar , P T Lakshmi . *International Journal of
123 Pharma and Bio Sciences* 2011. 2 (1) p. .

124 [Vishwakarma et al. ()] 'Evaluation of effect of aqueous extract of Enicostemmalittorale Blume. In streptozotocin
125 induced type 1 diabetic rats'. S L Vishwakarma , S Rakesh , M Rajani , R K Goyal . *Indian J ExpBiol* 2010.
126 48 p. .

127 [Priyadarshini et al. ()] 'Hypolipidaemic and Renoprotective study on the Ethanolic & Aqueous extracts of leaves
128 of Ravenalamadagascariensis Sonn. onalloxan induced diabetic rats'. S S Priyadarshini , Vadivu , N Jayshreeet
129 . *International J Pharm Sci* 2010. 2 p. .

130 [Palanuvej et al. ()] 'In Vitro Glucose Entrapment and Alpha-Glucosidase Inhibition of Mucilaginous Substances
131 from Selected Thai Medicinal Plants'. C Palanuvej , S Hokputsa , T Tunsaringkarn , N Ruangrungsi . *Sci
132 Pharm* 2009. 77 p. .

133 [Gray and Flatt ()] 'Insulin-like and insulin-releasing actions of the traditional antidiabetic plant Sambucusnigra
134 (elder)'. A M Gray , Abdel-Wahab Y H A Flatt , PR . *J Nutr* 2000. 130 p. .

135 [Datta et al. ()] 'Phytochemical and biological evaluation of Cardiospermum halicacabum'. S Datta , A Ghosh ,
136 P Pal , M Das , P K Kar , Pharmacognostical . *Int J Pharm Sci Bio* 2010. 1 (1) p. .

137 [Mittal et al. ()] 'Phytochemistry and pharmacological activeities of psidiumguajava: a review'. P Mittal , V
138 Gupta , G Kaur , K G Ashish , Amarjeet Singh . *International J Phar Sci Res* 2010. 1 p. .

139 [Syamsudin ()] 'Standardization of extract of Leucaenaleucocephala (lmk) De Wit seeds by ?glucosidase
140 inhibitor'. Syamsudin . *International Journal of Phytomedicine* 2010. 2 p. .

141 [Edwards et al. ()] 'Viscosity of food gums determined in vitro related to their hypoglycemic actions'. C A
142 Edwards , N A Black Burn , L Craigne , P Daavidson , J Tomlin , K Sugden , I T Johnson , N W Read .
143 *Am J ClinNutr* 1987. 46 p. .