

1 Synthesis and Evaluation of Quinazolinone Derivatives for 2 Cardiovascular Activity

3 Navneet Singh¹

4 ¹ Roorkee College of Engineering, Roorkee, Uttarakhand Technical University,
5 Dehradun, India

6 *Received: 8 December 2012 Accepted: 31 December 2012 Published: 15 January 2013*

7

8 **Abstract**

9 Synthesis and evaluation of 3-(p methoxybenzylidene)
10 hydrazinoacetylarnino-2-methyl-6-bromoquinazolin-4-(3H)-one and 3-(p-N,
11 N-dimethylbenzylidenylarnino)hydrazineacetylarnino-2-methyi-quina-zolin-4 (3H)-one for
12 cardiovascular activity. Synthesis and evaluation of 3-(p methoxybenzylidene)
13 hydrazinoacetylarnino-2-methyl-6bromoquinazolin-4-(3H)-one and 3-(p-N,
14 N-dimethylbenzylidenylarnino)hydrazine-acetylarnino-2methyi-quina-zolin-4 (3H)-one for
15 cardiovascular activity methy-lmono substituted
16 quinazolin-4(3H)-onyl]-5'-(sub-stitu-tedphenyl)-tetrazolinum chloride (compounds 25-34).

17

18 **Index terms**— quinazolinone derivatives, formazan, hydrazinoacetylarnino, cardiovascular, antihypertensive
19 activity.

20 **1 Introduction**

21 quinazolin-4-(3H)-one, a potent pharmacodynamic heterocyclic nucleus has gained prominence in medicinal
22 chemistry because it possess a wide spectrum of biological activities i.e. anticonvulsant [1], antibacterial
23 [2], anti-inflammatory [3], antimicrobial [4] as well as antiproliferative [5]. Substitution at 2/3-position of
24 quinazolinone ring imparts the cardiovascular activity [6][7], antitubercular activity [8], CNS depressant [9],
25 antifungal [10], anticancer [11], analgesic [12] and antihypertensive [13]. Considering quinazolinone nucleus
26 as potent pharmacophore for the cardiovascular activity, some newer derivatives of quinazolinone had been
27 synthesized (Scheme I). The purity of the compounds was checked by TLC using silica gel G. The structure of
28 all the compounds was confirmed by analytical and spectral data. All the newly synthesized compounds were
29 screened for the elemental analysis (Table ??) and their cardiovascular activity (Table ??I). The most active
30 compounds of this series were 6 and 13. The ALD 50 of these compounds were >2000 mg/kg p.o., indicating
31 good safety margin.

32 **2 II.**

33 **3 Pharmacological Result and Discussion**

34 Compounds 5, 7, 8 and 9 elicited potent immediate fall of varying degree (20-40 mmHg) and delayed fall of
35 varying degree (10-40 mmHg) and duration (45-60 minutes) (Table ??I). Compounds 5 and 7 were associated
36 with inhibition of CO and NA responses. Such a cardiovascular profile is suggestive of peripheral site of action.
37 Compounds 8 and 9 were associated with inhibition of CO without affecting the NA response which might be
38 suggestive of central site of action. In addition these compounds 8 and 9 showed increase in HR (tachycardia) of
39 1-2 beats per minutes and 3 bpm respectively. Compound 6 i.e. 3-(pmethoxybenzylidene) hydrazinoacetylarnino-
40 2-methyl-6bromoquinazolin-4 (3H)-one showed an immediate fall in blood pressure (35 mmHg) followed by potent
41 and gradual fall in blood pressure (70mmHg) as compared to the control value. The blood pressure lowering

10 IV. 3-(ETHYLACETYLAMINO)-2-METHYLMONO SUBSTITUTED QUINAZOLIN-4 (3H)-ONE: (1-2)

42 activity azolin-4(3H)-ones (compounds 1-2) were prepared by the reaction of ethylchloroacetate with 3-amino-
43 2-methylmonosubstituted quinazolin-4(3H)-one in dry acetone in the presence of anhydrous K₂CO₃ and short
44 duration (20-40 minutes). These compounds did not affect the heart rate and pressor responses (CO and NA).
45 Moreover, the conversion of these compounds into their corresponding 5-member tetrazolinum salts resulted in
46 compounds (25-34) having mild hypotensive activity (5-20 mmHg) of short duration (5-15 minutes). They appear
47 to be acting directly on the smooth muscles of blood vessels (direct vasodilators) because these compounds did
48 not affect the CO and NA responses and had short duration of action.

49 III.

50 4 Conclusion

51 The intensive study of the cardiovascular profile of the synthesized compounds suggested that compounds 6
52 and 13 i.e. 3-(p-methoxybenzylidene) hydrazinoacetylaminomono-2-methyl-6-bromoquinazolin-4 (3H)-one and 3-(p-N,
53 N-dimethylbenzylideneamino)hydrazinoacetylaminomono-2-methyl-quinazolin-4(3H)-one respectively had excellent
54 cardiovascular activity. Therefore, these compounds should attract the interest of researchers and pharmaceutical
55 companies for clinical studies and other applications in the therapy of cardiovascular diseases.

56 5 IV.

57 6 Experimental Protocols a) Chemistry

58 The melting point of the compounds was determined in open glass capillary with the help of themionic melting
59 point apparatus and is uncorrected. Elemental analysis of all the newly synthesized compounds were determined
60 by a Perkin-Elmer 2400 elemental analyzer, and results were found within the KBR on a Perkin-Elmer spectrum
61 RX-I, spectrometer. ¹H NMR spectra were recorded by Bruker AC-300 F instrument using CDCl₃ /DMSO-Cl₆
62 as solvent and tetra methyl silane (TMS) as internal reference standard. All chemical shift values were recorded
63 as ? (ppm). Mass spectra were determined on a VG-70-S instrument.

64 7 b) General procedure for the preparation of compounds i. 65 6-bromoanthranilic acid (a)

66 This was prepared according to the method of Wheeler and Oats [14]. Bromine (0.8 mol) in acetic acid (20
67 ml) was added drop wise to the solution of anthranilic acid (0.4 mol) in absolute AcOH (50 ml). The solid was
68 separated to give 6-bromoanthranilic acid. The solid product thus crystallized out, was washed with water and
69 dried. It was recrystallized from ethanol/water M.P. 208 °C, Yield 50%.

70 8 ii. Acetanthranils (b)

71 These were prepared according to the method of Bogert and Soil [15]. A mixture of appropriate anthranilic acid
72 (0.01mol) and acetic anhydride (0.02 mol) were refluxed for 2-3 hours with occasional stirring. The excess of
73 acetic anhydride was distilled off. On cooling, a solid separated out, which was filtered, washed with petroleum
74 ether (40-60 °C) and dried in vacuo. The acetanthranils thus synthesized are given below: a) Acetanthranils
75 M.P. 78 °C b) 6-Bromoacetanthranils M.P. 172 °C

76 9 iii. 3-amino-2-methyl monosubstitutedquinazolin-4(3H)ones: 77 (c)

78 These were prepared according to the method of Kumar et al [16]. A mixture of appropriate acetanthranils (0.01
79 mol) and hydrazine hydrate (99%, 0.02 mol) in methanol (dry, 50ml) were refluxed for 8 hours. The excess of
80 solvent was distilled off in vacuo. The residue on cooling gave a crystalline solid, which was recrystallized from
81 methanol-water (1:2).

82 10 iv. 3-(ethylacetylaminomono-2-methylmono substituted 83 quinazolin-4 (3H)-one: (1-2)

84 A mixture of 3-amino-2-methyl mono substitutedquinazolin-4(3H)-one (0.01 mol), ethylchloroacetate (0.01 mol)
85 and anhydrous K₂CO₃ (5.0g) in acetone (dry 80ml) were refluxed for 20 hours on water bath. The acetone was
86 distilled off and the resulting solid mass poured into water, filtered and the separated solid recrystallized from
87 methanol/water to give compounds (1-2).

88 **11 v. 3-(hydrazinoacetylamino) -2 -methylmono substituted-**
89 **quinazolin -4 (3H) -one : (3-4)**

90 A mixture of compounds (1-2) (0.01 mol) and hydrazine hydrate (0.02 mol) in methanol (dry, 50ml) were
91 refluxed for 6-8 hours. The excess of solvent was distilled off. On cooling a crystalline solid is obtained which
92 was recrystallized from methanol/water.

93 **12 vi. 3-(substitutedarylidene)-hydrazinoacetyl-amino-**
94 **2methylmono substitutedquinazolin-4(3H)-ones: (5-14)**

95 To a solution of compounds (3-4) (0.01 mol) in absolute ethanol (50 ml), substitutedbenzaldehyde (0.01 mol)
96 and a few drops of glacial acetic acid were refluxed for 8 hours. The solvent was distilled off and the viscous mass
97 thus obtained was recrystallized from ethanol/water to give compounds (5)(6)(7)(8)(9)(10)(11)(12)(13)(14).

98 **13 vii. 3-[(acetylamino-2-methylmonosubstitutedquinazolin-**
99 **4(3H)-onyl)]-1'--(substitutedphenyl)-3'-**

100 (substitutedaryl)-formazans: (15-24) Substituted phenyl (0.01 mol) was dissolved in 4ml glacial acetic acid and
101 3ml of concentrated HCl was added to 0-5 o C. A solution of NaNO 2 (1 gm in 5 ml of water) was added drop
102 wise. The diazonium salt solution thus prepared was added with stirring to compounds (5-14) (0.01mol) in 50 ml
103 toluene. During the addition the temperature was maintained below 10 o C. The reaction mixture thus obtained
104 was left at room temperature for several hrs and then poured into 250 ml of cold water, The dark red solid
105 which separated out was washed with water, filtered and recrystallized from methanol/water to give compounds
106 (15)(16)(17) ??18) ??19) ??20) ??21) ??22) ??23) ??24).

107 **14 ii. 3-(hydrazinoacetylamino)-2-methyl-6-bromoquinazolin-**
108 **4(3H)-one: 3**

109 C of aromatic ring);

110 **15 iv. 3-[(acetylamino-2-methyl-6-bromo-quinazolin-**
111 **4(3H)onyl)]-1'--(o-chloroaniline)-3'-(p-hydroxyphenyl)formazan:**
112 **19**

113 C of aromatic ring);

114 **16 v. 2'-(p-hydroxyphenyl)-4'-[3-acetylamino-2-methyl-**
115 **6bromo-quinazolin-4(3H)-onyl)]-5'-(o-chloroaniline)tetrazolinum**
116 **chloride: 29**

117 C of aromatic ring), 1425 (N=N), 1260 (C-N); Preliminary cardiovascular activity tests were carried out on albino
118 rats 100-120g of either sex (the pregnancy was excluded) for all the synthesized indole derivatives. The newly
119 synthesized compounds (test drugs) were administered intravenously (from right femoral vein) by dissolving them
120 in propylene glycol and the effect on blood pressure (B.P), heart rate (HR) and pressor responses evoked either
121 by carotid occlusion (CO) or intravenous noradrenalin (NA) 1-2 ?g/Kg injection was observed. Injection of .20
122 mL of propylene glycol induced a mild and transient decrease of 1-2 mmHg in blood pressure without affecting
123 the CO and NA response. The blood pressure was recorded from the left common carotid artery by means of a
124 mercury manometer from femoral artery on one channel of "Encardiorite" (India) polygraph using stathus P25
125 (25-34) X + (CH 3 CO) 2 O O C N X O CH 3 O C N X N NH 2 CH 3 NH 2 NH 2 .H 2 O O C N X N NHCH 2
126 COOC 2 H 5 CH 3 ClCH 2 COOC 2 H 5 Anhydrous K 2 CO 3 O C N X N NHCH 2 CONHNH 2 CH 3 NH 2
127 NH 2 .H 2 O Glacial acetic acid Absolute ethanol R OHC R' Cl -N + N O C N X N NHCH 2 CONHN CH 3 R
128 HC R N N O C N X N NHCH 2 CONHN C CH 3 R' H 2 O 2 , ¹

Figure 1:

Figure 2:

1

Co- X	R	R'	M.P.	Yield	Recrystall	Molecular	Element		
							(%)	Calcd.(Found)	
md.							C	H	N
					Solvent				
1	6-Br	-	-	160	65	Methanol/Water	C13H14N3O3B45.88(45.90)	4.11(4.14)	12.35(12.37)
2	H	-	-	120	60	Methanol/Water	C13H15N3O3	59.77(59.72)	5.74(5.70)
	6-Br	-	-	220	60	Methanol/Water	C11H12N5O2B40.49(40.45)	3.68(3.65)	21.47(21.45)
3	H	-	-	180	55	Methanol/Water	C11H13N5O2	53.44(53.40)	5.26(5.30)
	6-Br	H	-	170	42	Methanol/Water	C18H16N5O2B52.17(52.14)	3.86(3.83)	28.34(28.30)
5	6-Br	4-OCH3	-	182	45	Acetic acid/Water	C19H18N5O4B49.56(49.52)	3.91(3.88)	15.21(15.23)
7	6-Br	3-OCH3,	-	240	40	Benzene/Hexane	C19H18N5O4B49.56(49.52)	3.91(3.88)	15.21(15.23)
8	6-Br	4-N(CH3)2	-	186	42	THF	C20H21N6O2B52.51(52.54)	4.59(4.63)	18.38(18.35)
9	6-Br	4-OH	-	198	45	Ethanol/Water	C18H16N5O3B50.23(50.20)	3.72(3.70)	16.27(16.30)
10	H	H	-	170	48	Petroleum/Ethe	C18H17N5O2	64.47(64.45)	5.07(5.04)
11	H	4-OCH3	-	194	46	Ethanol	C19H19N5O3	62.46(62.44)	5.20(5.24)
12	H	3-OCH3,	-	200	42	Benzene	C19H19N5O4	59.84(59.80)	4.98(4.94)
		4-OH							18.37(18.40)
13	H	4-N(CH3)2	-	160	45	Benzene	C20H22N6O2	63.49(63.52)	5.82(5.80)
14	H	4-OH	-	170	45	Acetone	C18H17N5O3	61.53(61.57)	4.84(4.82)
15	6-Br	H	m-Cl	142	40	Methanol/Water	C24H19N7O2C3B12(52.10)	3.43(3.46)	19.94(19.90)
16	6-Br	4-OCH3	H	195	42	Methanol/Water	C25H22N7O3B54.74(54.78)	4.01(4.05)	17.73(17.70)
17	6-Br	3-OCH3,	o-Cl	238	40	Methanol/Water	C25H21N7O4B50.12(50.16)	3.50(3.54)	16.37(16.35)
		4-OH							
18	6-Br	4-N(CH3)2	p-OCH3	210	40	Methanol/Water	C27H27N8O3B54.82(54.80)	4.56(4.52)	18.95(18.98)
		6-Br	4-OH	230	40	Methanol/Water	C24H19N7O3C3B165(50.62)	3.34(3.37)	17.23(17.23)
19	H	H	o-OCH3	190	42	Methanol/Water	C25H23N7O3	63.96(63.98)	4.90(4.94)
			Cl						20.89(20.86)
21	H	4-OCH3	o-Cl	185	45	Methanol/Water	C25H22N7O3C39.58(59.56)	4.36(4.34)	19.46(19.48)
22	H	3-OCH3,	H	235	40	Methanol/Water	C25H23N7O4	61.85(61.88)	4.74(4.72)
		4-OH							20.20(20.22)
23	H	4-N(CH3)2	m-Cl	142	40	Methanol/Water	C26H25N8O2C60.40(60.42)	4.84(4.88)	21.68(21.70)
24	H	4-OH	o-OCH3	195	45	Methanol/Water	C25H23N7O4	61.85(61.88)	4.74(4.78)
			5						20.20(20.24)

**2'-(P-HYDROXYPHENYL)-4'-[3-ACETYLAMINO-2-METHYL-6BROMO-
QUINAZOLIN-4(3H)-ONYL]-5'-(O-CHLOROANILINE)TETRAZOLINUM
CHLORIDE: 29**

2

CoX mpd.	R	R'	Dose Change in mean blood pressure mmHg					Change in effect of		
			Mg/kg Control		Immediate Delayed		Duration in minutes	in resting HR bpm	CO bpm	
			i.v.	Mean± SE	Mean± SE	Mean± SE				
6-Br H	-		2.5	138±11.51	118.6±12.12* [†] ±12.02	49.6±1.67	-	Inhibitor		
6-Br 4-OCH ₃	-		1.25	151±5.94	136±4.18* [†] ±4.04***	72.4±6.38	-	Inhibitor		
			2.5	154.4±4.98	119±5.76* [†] ±4.52***	95±5.00	-	Inhibitor		
			5.0	158.4±5.87	108.4±6.68* [†] ±5.20***	134.8±7.59	-	Inhibitor		
6-Br 3-OCH ₃ , 4-OH	-		2.5	138.4±8.96	114±7.48* [†] ±9.00***	45.2±2.16	-	Inhibitor		
6-Br 4-N(CH ₃) ₂	-		2.5	138.2±11.54	104.6±11.10* [†] ±12.77***	60.8±1.09	Potentiated Inh 1- 2 bpm			
6-Br 4-OH	-		2.5	146±7.41	106.8±6.18* [†] ±5.93**	56.67±2.81	Potentiated Inh 3 bpm			
H H	-		2.5	145.5±7.46	116.6±5.70* [†] ±5.60***	74.4±3.08	-	Inhibitor		
H 4-	-		2.5	145.6±6.50	126.2±4.30* [†] ±4.04***	59.8±2.86	-	Blocked		
	OCH									
	3									
H 3-OCH ₃ , 4-OH	-		2.5	141±13.87	91.6±13.84* [†] ±16.19	59±2.64	-	Inhibitor		
H 4-	-		1.25	159.6±7.30	124.6±8.79* [†] ±9.81***	99.6±2.96	-	Inhibitor		
	N(CH ₃) ₂									
	2									
H 4-	-		2.5	156.4±6.98	104.2±7.35* [†] ±6.79***	128.2±2.86	-	Inhibitor		
	OH									
	5.0									
6-Br H	m-Cl		2.5	136±4.18	-	76±3.80***	30.6±1.94	-	-	
6-Br 4-OCH ₃	H		2.5	134±4.18	-	69±7.21***	29.2±2.28	-	-	
6-Br 3-OCH ₃ , 4-OH	o-Cl		2.5	139±9.61	-	99.8±9.98***	42.33±2.51	-	-	
6-Br 4-N(CH ₃) ₂	p-OCH ₃		2.5	138.2±11.54	-	104.6±11.61**	29±2.64	-	-	
6-Br 4-OH	m-Cl		2.5	137.4±6.06	-	120±7.21***	23.8±2.77	-	-	
	Cl									
H H	p-OCH ₃		2.5	139±9.61	-	99.8±9.98***	22.6±3.97	-	-	
H 4-	o-Cl		2.5	134.2±13.04	-	105±11.57***	39.2±2.20	-	-	
	OCH									
	3									
H 3-OCH ₃ , 4-OH	H		2.5	137.6±11.67	-	95±12.18***	21.6±2.70	-	-	
H 4-	m-Cl		2.5	138.4±8.97	-	104.6±9.01***	29.6±1.67	-	-	
	N(CH ₃) ₂									
	2									
H 4-	o-CH ₃		2.5	135±9.61	-	93.4±9.86***	30±1.41	-	-	
	3									
6-Br H	m-		2.5	132.6 ⁶ ±8.13	-	122±8.68	0.6±1.81	-	-	

129 [Bogert et al. ()] , M T Bogert , H A Soil H A , J Amer . *Chem. Soc* 1907. 29 p. 517.

130 [Wheeler and Oats ()] , A A Wheeler , W M Oats . *J. Amer. Chem. Soc* 1910. 32 p. 770.

131 [Brogdon et al. ()] , R N Brogdon , R C Hell , T M Speight , G S Avery . *Drugs* 1977. 14 p. 163.

132 [Kumar et al. ()] , A Kumar , S Gurtu , J N Sinha , K P Bhargava , K Shanker . *Eur. J. Med. Chem* 1985. 20
133 (1) p. .

134 [Kumar et al. ()] , A Kumar , S Sinha , A K Saxena , K Shanker , Ind . *J. Chem* 1988. 27 p. 443.

135 [Shah et al. ()] , B R Shah , J J Bhatt , H H Patel , N K Undavia , P B Trivedi , N C Desai . *Ind. J. Chem*
136 1995. 34 p. .

137 [Raffa et al. ()] , D Raffa , G Daidone , B Maggio , D Schillaci , F Plescia . *Pharmazie* 1999. 332 p. .

138 [Helby ()] , M H Helby . *Acta Pharma* 2003. 53 p. .

139 [Grover and Kini ()] , G Grover , S G Kini . *Eur. J. Med. Chem* 2006. 41 p. .

140 [Pattan et al. ()] , S R Pattan , V V K Reddy , F V Manvi , B G Desai . *A.R. Bhat, Ind. J. Chem* 2006. 45 p. .

141 [Grover and Kini ()] , G Grover , S G Kini . *Eur. J. Med. Chem* 2006. 41 p. .

142 [Patel and Patel ()] , N B Patel , V N Patel . *Iran. J. Pharm. Research* 2007. 6 p. .

143 [Jatav et al. ()] , P Jatav , S Mishra , Kashaw . *Eur. J. Med. Chem* 2008. 43 p. .

144 [Giri et al. ()] , R S Giri , H M Thaker , T Giordano , J Williams . *Eur. J. Med. Chem* 2009. 44 p. .

145 [Mohamed et al. ()] , M S Mohamed , M M Kamel , E M M Kassem , A Nageh , S M Nofal , F A Marwa . *Acta
146 Poloniae Pharm. Drug Res* 2009. 66 p. .

147 [Arora et al. ()] , R Arora , A Kapoor , N S Gill , A C Rana . *IRJP* 2011. 2 (12) p. .

148 [Smith ()] *Pharmacological Screening tests progress in Medicinal Chemistry*, Q E Smith . 1960.0. 1,Butteworths,
149 London.