

¹ Neurotoxic Syndromes Sequentially Occuring after Consumption
² of organophosphorus Compound -A Case Report By Peter
³ George & NarasimhaHegde

⁴ Peter George¹

⁵ ¹ Father Muller Medical College, Father Muller Road, Mangalore -575002, S India.

⁶ *Received: 6 December 2012 Accepted: 1 January 2013 Published: 15 January 2013*

⁷

⁸ **Abstract**

⁹ Organo-phosphorus compounds (OPC) Organo-phosphorus compounds (OPC) are among the
¹⁰ most used poisons for suicide in India, and associated toxic syndromes are well described. We
¹¹ report a young man who presented to us with alleged consumption of chlorpyrifos, a
¹² crystalline organophosphate insecticide. During hospitalization he developed acute
¹³ organo-phosphorus toxicity (type I) and intermediate syndrome (type II), both situations were
¹⁴ managed by assisted ventilation and supportive care. After 6 weeks of discharge he reported
¹⁵ with features of delayed poly neuropathy (type III). It is rare for these patients to follow up at
¹⁶ the same centre to identify and manage these toxicities. Often the type III toxicity is
¹⁷ misdiagnosed and over investigated for other causes of neuropathy. Though OPC poisoning is
¹⁸ commonly encountered in practice, only few reports have described all toxicities to occur in
¹⁹ the same patient.

²⁰

²¹ *Index terms—*

²² **1 Introduction**

²³ ccording to the report of Accidental deaths and suicides in India, 2009, Government of India, 127151 people
²⁴ committed suicide in 2009 [1] . OPC poisoning is the most commonand account to half of hospital admissions due
²⁵ to poisoning in India. Its ready availability and easy accessibilitypossibly makes it the most used suicidal agents
²⁶ in India [2], [3] , [4], [5] . The neurological toxicities of OPC poisoning can be Type I syndrome or cholinergic
²⁷ crisis, Type II syndrome or Intermediate syndromeand Type III syndrome or organophosphate induced delayed
²⁸ neuropathy (OPIDN) [6], [7], [8] .A delayed organo-phosphorus compounds induced neuropsychiatric syndrome
²⁹ due to chronic poisoning has also been described in literature. In this report we identified all three described
³⁰ types of neurotoxic syndromes due to OPC in the same individual.

³¹ **2 II.**

³² **3 Case Report**

³³ We report an interesting case of OPC poisoning who developed all the described toxic syndromes. A 36
³⁴ year old man was admitted to our hospital with alleged consumption of Chlorpyrifos(250 ml), an organo-
³⁵ phosphorus compound, with suicidal intention. He had features of type I toxicity at admission, and managed
³⁶ after Authors ? ?: Department of Medicine; Father Muller Medical College, Mangalore, India. e-mail:
³⁷ drpetergeorge2002@yahoo.com decontamination, with atropine, prali-doxime and supportive care. On day -6
³⁸ of admission he developed neckand respiratory muscle weakness, followed by weakness in allhis limbs. This being
³⁹ typical of Type -2 syndrome (intermediate syndrome), was managed with assisted ventilation and supportive

5 DISCUSSION

40 care. On day -16 he was weaned off from assisted ventilation and on day -21 was discharged from hospital with
41 no obvious neurological deficits.

42 He was readmitted to hospital after 4 weeks of discharge with history of progressive difficulty in gripping objects
43 with hand, walking and getting up from squatting position. He had distal paraesthesia in all limbs, but had no
44 sphincter disturbances. On examination, vital signs and cranial nerves were normal, with no disturbances in
45 autonomic or higher mental functions. There was wasting of distal muscles in all limbs; and had weak hand
46 grip and plantar movements. Clinically, he had distal hypotonia and proximal hypertonia in the limbs. His deep
47 tendon jerks were exaggerated, except for ankle jerks which were absent; and all modalities of sensations were
48 normal. The routine haematology and biochemistry, including electrolytes, CPK and thyroid functions, were
49 normal. Nerve conduction studies revealed predominantly axonal type of sensory-motor polyradiculoneuropathy
50 in both lower limbs. He was treated with a short course of glucocorticoids, high doses of neurotropic vitamins,
51 and physical therapy. He had little improvement even after weeks of treatment.

52 4 III.

53 5 Discussion

54 OPC poisoning cause inhibition of acetylcholinesterase (AChE), leading to the accumulation of acetylcholine
55 (ACh) in the body. OPC's are being used for over 70 years and are the most used insecticides world-over,
56 including India [2], [4], [5] . The indiscriminate use of these compounds over the decades has resulted in
57 innumerable toxicities to humans as well animals. Suicidal and occupational OP poisoning in agricultural workers
58 was prevalent in developing countries, whereas accidental OP poisoning was prevalent in developed countries [7]
59 .

60 The Accidental deaths and suicides in India, 2009, Ministry of Home Affairs, Government of India, poisoning
61 with pesticides contributed to 20.4 % of suicides in India, with most arising out of family problems [1] . OPC's
62 are the most commonly used suicidal agent in India [2], [4], [5] .OPC poisoning occurs from gastrointestinal tract
63 following suicidal consumption or absorption through skin, mucous membranes and respiratory tract following
64 accidental exposure [5] .

65 These compounds after absorption are hydrolysed by esterases, and competitively bind to the esteratic site of
66 the enzyme acetylcholinesterase (AChE), resulting in its phosphorylation. Depending on the compound involved
67 the binding may be stable and takes hours or weeks disintegrate. The accumulation of excess acetylcholine (ACh)
68 at the cholinergic nerve endings result in the characteristic clinical manifestations [2], [3], [6] .

69 The toxic syndromes after acute exposure to OPC are well described in literature. Type I and II toxicities,
70 the cholinergic and intermediate syndrome respectively are common in the emergency department. After
71 acute exposure of OPC, type III toxicity or organophosphate-induced delayed polyneuropathy (OPIDP) is also
72 described. A chronic organophosphateinduced neuropsychiatric disorder (COPIND), at times described as type
73 IV toxicity, occurs in chronic OPC exposure.

74 Type I or cholinergic syndrome results from excessive stimulation of muscarinic receptors, resulting in
75 bradycardia, diarrhoea, vomiting, fasciculation, sweating, salivation and micturition [6], [7], [8] . Type 2 or
76 Intermediate syndrome follow type I toxicity, and occurs due to excessive Ach at the neuromuscular junction
77 causing down-regulation of nicotinic receptors resulting dysfunction of neuromuscular junction. Develop in about
78 20%-50% of cases depending on the ingested quantity, its duration, and the compound. Usually occur 24 to 96
79 hours after the recovery from the cholinergic crisis. It is marked by predominant proximal limb muscles and neck
80 flexor weakness, with or without cranial-nerve palsies. The intermediate syndrome may last from 5 to 18 days
81 [9], [10] .

82 As with other poisoning the first step in the management of these patients is gastrointestinal and skin
83 decontamination. Atropine is used as antidote, in type I syndrome, to counter the muscarinic effects of
84 acetylcholine. Pupillary dilation, drying up of secretions, tachycardia and fever are features of atropinisation.
85 Once achieved, should be maintained for 3-5 days, depending upon the clinical situation. If respiratory muscle
86 paralysis supervenes, mechanical ventilation must be instituted. Type II syndrome is supportive with mechanical
87 ventilation and recovery is the rule, muscles of respiration being the last to recover [11], [12] . The use of oximes
88 in cholinergic phase as rejuvenators of the enzyme cholinesterase is controversial [13] .

89 Our patient had features of type -I toxicity at admission, and after decontamination was managed with
90 atropine, pralidoxime and supportive care. He did not require assisted ventilation during the type I toxicity.
91 On day -6 of admission he developed neck and respiratory muscle weakness, followed by weakness in all his
92 limbs; typical of Type -2 syndrome. He required assisted ventilation for 10 days along with supportive care. He
93 responded well, and on day -21 was discharged from hospital with no neurological deficits. As described, our
94 patient also developed the type I & II syndromes and recovered well with the supportive management.

95 Type III syndromes, often named as organophosphate induced delayed neuropathy (OPIDN), usually occurs
96 about 1-3 weeks after consumption of OPC. It occurs from phosphorylation and inhibition of neuropathy target
97 esterase (NTE) in axons causing degeneration of long axons. This is often a pure motor or axonal neuropathy
98 [9] .

99 Our patient reported to hospital after 4 weeks with difficulty in gripping objects with hand; walking and
100 getting up from squatting position; distal paraesthesia of the limbs, but had no sphincter disturbances. He

101 was found to have a mixture of upper and lower motor neuron signs on examination, which was classical of
102 type III toxicity. There are a few reports of type III syndromes in literature resulting from chlorpyrifos and
103 other organo-phosphorus compounds [14][15] [16] . In addition to these neurological syndromes following acute
104 exposure; individuals with low dose chronic exposure, develop several neuro-behavioural changes termed together
105 as 'chronic organophosphate induced neuropsychiatric disorders' (COPIND) or type IV syndrome.

106 The researches with newer molecules and drugs have been inspiring in last decades. Bioscavengers, nano
107 carriers, recombinant bacterial phosphodiesterases have been very encouraging in recent years. Alkalisation,
108 intravenous magnesium sulphate, hemofiltration and antioxidants have shown to reduce neurotoxicity. The recent
109 advances in treatment of organophosphorous poisoning must be accessible to clinicians for its morbidity, magnitude
110 and socioeconomic implications [3], [17] .

111 Even though we encounter many organophosphorus compound poisoning in practice with type I & II toxicities,
112 type III is very rare. The chances of overlooking type III syndrome are high, as it is uncommon and also due to
113 similarity with other neuropathies. We were able to identify type III syndrome as the patient reported back for
114 follow up. He was managed with a short course of glucocorticoids, high dose neurotropic vitamins, and physical
115 therapy; but had little improvement after weeks of treatment [11], [12] .

116 IV.

117 **6 Conclusion**

118 Organo-phosphorus compound consumption is among the commonest poisoning, and the treatment outcome for
119 type I & II syndromes are excellent with early identification and institution of treatment. The regular follow
120 up of patients after discharge from hospital could possibly identify the type III and IV syndromes. No specific
121 treatment exists to prevent occurrence of the neuropathy following exposure. ^{1 2 3}

¹© 2013 Global Journals Inc. (US)

²()

³Neurotoxic Syndromes Sequentially Occuring after Consumption of organophosphorus Compound -ACase Report

6 CONCLUSION

122 [Pillay ()] , V V Pillay . *Comprehensive Medical Toxicology* 2008. p. . (Paras Medical Publisher)

123 [Toxicollett ()] , Toxicollett . 2010. 192 p. .

124 [Accidental deaths and suicides in India. Ministry of Home Affairs ()] *Accidental deaths and suicides in India. Ministry of Home Affairs*, <http://ncrb.nic.in/CD-ADSI2009/suicides-09.pdf> 2009. New Delhi, Government of India. National Crime Records Bureau

127 [Awson et al. ()] 'Acute human lethal toxicity of agricultural pesticides: a prospective cohort study'. A H Awson , M Eddleston , L Senarathna , F Mohamed , I Gawarammana , S J Bowe . *PLoS Med* 2010. 7 p. e1000357.

128 , M Eddleston , L Senarathna , F Mohamed , I Gawarammana , S J Bowe . *PLoS Med* 2010. 7 p. e1000357.

129 [Wadia et al. ()] 'Delayed neurotoxicity after an episode of poisoning with dichlorovos'. R S Wadia , S N Shinde , S Vaidya . *Neurology India* 1985. 33 p. .

131 [Das ()] 'Encephalopathy, intermediate syndrome and delayed polyneuropathy in acute Black Donadar (Phorate IOCQ) poisoning'. B Das . *J Assoc Phys India* 2000. 48 p. .

133 [Dharmani and Jaga ()] 'Epidemiology of acute organophosphate poisoning in hospital emergency room patients'. C Dharmani , K Jaga . *Rev Environ Health* 2005. 20 p. .

135 [Roberts and Aaron ()] 'Management of acute organophosphorus pesticide poisoning'. D M Roberts , C K Aaron . *BMJ: British Medical Journal* 2007. 334 p. .

137 [Eddleston et al. ()] 'Management of acute organophosphorus pesticide poisoning'. M Eddleston , N A Buckley , P Eyer , A H Dawson . *Lancet* 2008. 371 p. .

139 [Singh and Sharma ()] 'Neurological syndromes following organophosphate poisoning'. S Singh , N Sharma . *Neurol India* 2000. 48 p. 308.

141 [Okanovi? and Kosanovi? ()] 'Neurotoxic effects in patients poisoned with organophosphorus pesticides'. M Okanovi? , M Kosanovi? . *Environ Toxicol Pharmacol* 2010. 29 p. .

143 [Okanovi? et al. ()] 'Organophosphate induced delayed polyneuropathy in man: an overview'. M Okanovi? , M Kosanovi? , D Brki? , P Vukomanovi? . *ClinNeuroNeurosurg* 2011. 113 p. .

145 [Merick et al.] *Organophosphorus-induced delayed neuropathy: a simple and efficient therapeutic strategy*, G L Merick , R G Peccinini , G H De Oliveira .

147 [Buckley et al. ()] 'Oximes for acute organophosphate pesticide poisoning'. N A Buckley , M Eddleston , Y Li , M Bevan , J Robertson . *Cochrane Database Syst Rev* 2011. (2) p. D005085.

149 [Husain et al. ()] 'Pharmacological agents in the prophylaxis/treatment of organophosphorous pesticide intoxication'. K Husain , R A Ansari , L Ferder . *Indian J Exp Biol* 2010. 48 p. .

151 [Balali-Mood and Saber ()] 'Recent Advances in the Treatment of Organophosphorous Poisonings'. H R Balali-Mood , Saber . *Iran J Med Sci* 2012. 37 p. .

153 [Dash et al. ()] 'Sociodemographic profile of poisoning cases'. S K Dash , M K Mohanty , S Mohanty . *Journal of Indian Academy of Forensic Medicine* 2005. 27 p. .

155 [Chatterjee and Sarma ()] 'Unusual neurological complications in a case of organophosphate poisoning'. M Chatterjee , P S Sarma . *Neurol India* 2003. 51 p. .