

1 Infestation of Nematodes in *Phlebotomus Argentipes* Annandale
2 and Brunetti (Diptera: Psychodidae), Bihar, India

3 D.S. Dinesh¹

4 ¹ Rajendra Memorial Research Institute of Medical Sciences

5 *Received: 13 February 2013 Accepted: 5 March 2013 Published: 15 March 2013*

6

7 **Abstract**

8 Visceral Leishmaniasis (VL) is a major health problem in Bihar, India. The disease is caused
9 by a protozoan parasite *Leishmania donovani* and transmitted by the established vector
10 *Phlebotomus argentipes* (Diptera: Psychodidae) in India. *P. argentipes* transmits viral and
11 bacterial pathogens. Nematodes were isolated from the body of *P. argentipes* for the first time
12 in India. Its role as pathogen is yet to be established.

13

14 **Index terms**— visceral leishmaniasis, *phlebotomus argentipes*, nematodes.

15 **1 Introduction**

16 Visceral Leishmaniasis (VL) is a vector borne parasitic disease caused by a protozoan parasite *leishmania*
17 *donovani* and transmitted by the established vector *Phlebotomus argentipes* Annandale and Brunneti (Diptera
18 : psychodidae) in Bihar, India. *P. argentipes* also transmits virus and bacteria to the human beings. The
19 transmission of Nematodes is not known so far. The Nematodes or roundworms (Phylum: Nematoda) are the
20 most diverse pseudocoelomates. There are more than 28,000 species of Nematodes (Hugot et al. 2001), of
21 which over 16,000 are parasitic. Sand flies are the main vector of Leishmaniasis. Out of 700 hundred worldwide
22 populations of sand flies, approximately 70 are responsible for transmission of disease to human (Lane 2009).
23 However, these are carrying some entomopathogens like viruses, bacteria, protozoa, fungi, nematods and mites.
24 Phlebotomine sandflies spend most of their lives in dark habitat with stable temperature and high humidity.
25 Their developmental stages from eggs to pupae are passed in crevices, tree buttresses, caves rodent burrows with
26 organic debries like leaf litter and dungs ??Killick-Kendrik 1979, 1987). Even adult also prefer the dark and
27 humid diurnal resting sites. These circumstances might be conducive to the development of entomopathogens in
28 sandflies.

29 It is difficult to find out immature stages of sandflies in nature (Killick-Kendrick 1987), hence, natural
30 pathogens in immature stages in sand flies have not been reported so far. Most of the pathogens were identified
31 from adult sand flies while doing the research Authors ? ? : Rajendra Memorial Research Institute of Medical
32 Sciences (Indian Council of Medical Research), Agamkuan, Patna-800007, India. e-mail: drdsdinesh@yahoo.com
33 work on leishmaniasis ??ewis 1977, 1980). This study reveals the presence of nematodes inside the body of *P.*
34 *argentipes* in nature.

35 **2 II.**

36 **3 Material and Methods**

37 Sandflies were collected early in the morning from indoor habitats of dwellings using aspirator and flash light as
38 well as CDC (Centre for Disease Control) light trap. The dissection of gravid females was made in normal saline
39 under dissecting binocular microscopes (Zeiss) and observation was made in high magnification.

6 DISCUSSION

40 4 III.

41 5 Results

42 In the present study 25% *P. argentipes* were found infested with Nematodes in Bihar, India out of 100 dissected
43 wild populations for the first time collected from villages of Muzaffarpur districts (Figure ??.

44 IV.

45 6 Discussion

46 Particular work on pathogens of phlebotomines has been conducted by (Killick-Kendrick et al. 1989; Warburg
47 1991). Many pathogens were found transmitting the diseases. The transmission of phlebovirus, family
48 Bunyaviridae was found infecting mammals (Tesh 1988). The bacterial pathogen like *Bartonella bacilliformis*,
49 the causative agent of human diseases in some Andean regions of Peru, Ecuador and Colombia is transmitted
50 by *Lutzomyia* spp. as a group of protozoan kinetoplastids apart from *leishmania* spp species of *Endotrypanum*
51 and Trypanosomes are also transmitted by sandflies to vertebrates other than man (Killick-Kendrick 1979; Shaw
52 1981). In New World *Plasmodium* spp. the causative agent of reptilian malaria are transmitted by sandflies
53 (Ayala 1977; Klein et al. 1988). Entomophthoralean fungi may constitute important pathogens of adult sand flies
54 *L. pia* in Colombia (Warbug 1991). Saprophytic fungi are found in adult sand flies (Warburg 1991) which may
55 influence the development of *Leishmania* infections (Schlein et al. 1985). Mites (Acarina) collected from sandflies
56 comprise 21 species reported to affecting some 39 species of sand flies hosts. In India mites were found from the
57 body surface of *P. argentipes* and in laboratory preying the larvae (unpublished).

58 Nematodes were reported from different countries in sandflies. Encapsulated third stage spirurid nematodes
59 (rodent infecting *Mastophorus muris*) have been reported in *P. arisasi* ??Killick Kendrick et al. 1976). Sand
60 fly parasitic nematode i.e tetrandonematid was found in *P. papatasi* and *P. sergenti* in Afganistan. In adults the
61 nematode interfered with blood feeding by female sandflies (Killick Kendrick et al. 1989). Tylenchid nematodes
62 have been recorded in *L. sanguinaria*, *L. vespertilionis* and *L. panamensis* ??Mc Conell and Correa 1964) and *L.*
63 *shanoni* (Warburg 1991). Eggs, free juveniles and gravid females were recorded in *P. papatasi* and *P. sergenti*
64 in Syria by R. Killick-Kendrick was previously in Bagdad (Alder and Theodor 1929). Gregarines(Ascogregarina
65 *saraviae*) and nematodes (Tylenchida and Spiruda) were recorded in *Lutzomyia* spp. (Warburg et al. 1991).
66 Infestation of a nematode parasite was observed in the natural population of *P. papatasi* in Pondicherry, India.
67 Of the 877 males and 959 females sandflies examined for the natural infection, 11 females were found infested
68 with nematodes (0.59%). The presence of a stylet at the opening of the dorsal oesophageal duct suggests that
69 the parasite belongs to the super family Tylenchoidea (Srinivasan et al. 1992). It requires detail studies on sand
70 flies to find out any role of *P. argentipes* in transmission of helminthes diseases in human in India.

71 V. ¹ ²

Figure 1:

6 DISCUSSION

72 .1 Acknowledgements

73 Authors are thankful to Mr. N.K.Sinha, Mr. M.Prasad, Mr. S.A.Khan and Mr. A.K.Mandal for providing
74 technical support while collection of sandflies from field and dissection in the laboratory.

75 [Bull. WHO] , *Bull. WHO* 55 p. .

76 [Hugot et al. ()] 'Biodiversity in helminths and nematodes as a field of study: an overview'. J P Hugot , P
77 Baujard , S Morand . doi:10.1163/ 156854101750413270. *Nematology* 2001. 3 p. .

78 [Killick-Kendrick ()] 'Breeding Places of Phlebotomus ariasi in the Cevennes focus of leishmaniaisi in the south
79 of France'. R Killick-Kendrick . *Parasitologia* 1987. 29 p. .

80 [Gamelin et al. ()] 'Effect of high intensity intermittent training on heart rate variability in prepubescent
81 children'. F X Gamelin , G Baquet , S Berthoin , D Thevenet , C Nourry , S Nottin , L Bosquet .
82 10.1007/s00421-008-0955-8. *Eur J Appl Physiol* 2009. 105 p. .

83 [Warburg ()] 'Entomopathogens of Phlebotomine sand flies: Laboratory experiments and natural infections'. A
84 Warburg . *J. Invertbr. Pathol* 1991. 58 p. .

85 [Schlein et al. ()] 'Mycoses, bacterial infections and antibacterial activity in sand flies (Psychodidae) and their
86 possible role in the transmission of leishmaniasis'. Y Schlein , I Polaczeck , B Yuval . *Parasitol* 1985. 90 p. .

87 [Srinivasan et al. ()] 'Occurrence of entomophilic nematode infestation among phlebotomid sandfly, Phle-
88 botomies papatasi-a preliminary report'. R Srinivasan , K N Panicker , V Dhanda . *J. Commun. Dis* 1992.
89 24 p. .

90 [Kellick-Kendrick et al. ()] 'Parasites of Phlebotomus ariasi'. R Kellick-Kendrick , A J Leaney , D H Molyneux
91 , J A Rioux . *Trans. R. Soc. Trop. Med. Hug* 1976. 70 p. 22.

92 [Young and Lewis (ed.) ()] *Pathogen of Psychodidae (Phlebotomine sand flies)-Bibliography on Pathogens of
93 medically important arthropods*, D G Young , D J Lewis . D.W. Roberts & J.M. Castillo (ed.) 1977.

94 [Warburg et al. ()] 'Pathogens of Phlebotomine sand flies: A review'. A Warburg , K Ostrovska , P G Lawyer .
95 *Parasitologia* 1991. 33 p. .

96 [Lane ()] *Phlebotomine sand flies-Manson's Tropical Diseases*, 22th Edn. Sauders, R P Lane . www.elsevierhealth.com 2009. Elsevier.

98 [Ayala (ed.) ()] *Plasmodia of Reptiles*, S C Ayala . Parasitic Protozoa (J.P. Kreier Ed (ed.) 1977. 3 p. .

99 [Killick-Kendrick et al. ()] 'Preliminary observations on a tetradonematid nematode of phelobotamine Sabd flies
100 of Afghanistan'. R Killick-Kendrick , Killick-Kendrick M Quala , N A Nawi , R W Ashford , R W Tang , Y .
101 *Ann. Parasitol. Hum. Comp* 1989. 4 p. .

102 [Klein et al. ()] 'Sporogony , development and ultra structure of extrinsic stages of Plasmodium mexicanum'. T
103 A Klein , D C Akin , D G Young , S R Telford , J F Butler . *Int. J. Parasitol* 1988. 18 p. .

104 [Tesh RB (1988) the genus Phlebovirus and its Vectors Annu. Rev. Entomol] 'Tesh RB (1988) the genus Phle-
105 bovirus and its Vectors'. *Annu. Rev. Entomol* 33 p. .

106 [Shaw ()] *The behavior of Endotrypanum schaudinni (Kinetoplastida: Trypanosomatidae) in three species of
107 laboratory-bred Neotropical sandflies (Diptera : Psychodidae) and its influence on the classification of the
108 genus Leishmania-Parasitological Tropics (E.U. Canning Ed.)*, J J Shaw . 1981. USA: Allen Press. p. .

109 [Killick-Kendrick (ed.) ()] *the biology of Leishmainia in Phlebotomine sandflies-Biology of the*, R Killick-Kendrick
110 . Kinetoplastida (W.H.R) Lumsden & D.A. Evans Eds (ed.) 1979. London/New York: Academic Press. 2 p. .

111 [Adler and Theodor ()] 'The distribution of sand flies and leishmaniais in Palestine, Syria and Mesopotamia'.
112 S Adler , O Theodor . *Ann. Trop.Med.Parasitol* 1929. 23 p. .

113 [Mcconnel and Correa ()] 'Trypanosomes and other microorganisms from Panamanian Phlebotomus sand flies'.
114 E Mcconnel , M Correa . *J. Parasitol* 1964. 50 p. .

115 [Young and Lewis ()] D G Young , D J Lewis . *Pathogens of Psychodidae (Phlebotomine sand flies*, 1980.