

1 Urinary Excretion and Renal Clearance of Allopurinol in Male 2 Gout Patients

3 Bilal Ahmed¹

4 ¹ University of Agriculture Faisalabad Pakistan

5 *Received: 3 February 2013 Accepted: 3 March 2013 Published: 15 March 2013*

6

7 **Abstract**

8 Drugs removed from the body either without changing from its original form or in the form of
9 its metabolite. Allopurinol drug decreases uric acid level in blood and it is used for the
10 treatment of gout and tumor lysis syndrome. Allopurinol and its active metabolite oxipurinol
11 stop the function of xanthine oxidase which forms uric acid from xanthine and hypoxanthine.
12 In this study a quantitative assay using high-performance liquid chromatography (HPLC)
13 with UV-detection was used as a method for quantification of allopurinol and oxipurinol in
14 human serum and urine samples of gout patients after allopurinol administration. The urinary
15 excretion and renal clearance was determined in male gout patients. Blood and urine samples
16 of the human male patients of gout (n=10) after the oral administration of 300mg drug were
17 taken at different time intervals. Results of this study show that there is slow metabolism of
18 allopurinol inside body due to its extensive bonding with blood proteins. Statistical analysis
19 was performed by expressing all the data as mean and \pm standard error of mean. The effect of
20 pH and diuresis on renal clearance of allopurinol was studied by regression analysis.

21

22 *Index terms—*

23 **1 Introduction**

24 Excretion is a process by which drug is removed from the site of action and eliminated from the body. The body
25 begins to eliminate the drug by hepatic or renal metabolism or in some cases both, after administration of dose.
26 The renal clearance of a substance is the volume of plasma that is completely cleared of a substance by the
27 kidney per unit time. The kidneys are the primary means for elimination waste products of metabolism that are
28 no longer needed by the body. These products include urea, creatinine, uric acid and end product of hemoglobin
29 breakdown and hormone metabolites. These waste products must be eliminated from the body as rapidly as
30 they produced. The kidneys also eliminate most toxins and other foreign substances that are either produced by
31 the body or ingested, such as pesticides, drugs and food additives. The two kidneys lie on the posterior wall of
32 abdomen, outside the peritoneal cavity. Each kidney of adult human weights about 150 grams and is about in
33 size of clenched fist. The medial side of each kidney contains an indented region called the hilum through which
34 pass the renal artery and vein, lymphatic's, nerve supply and ureter which carries the final urine from the kidney
35 to the bladder, where it is stored until emptied (Guyton and Hall, 2000).

36 Renal clearance is quantity of fluid which is filtered out from blood through kidney or 'quantity of blood
37 cleared in unit time' (Seldin, 2004). Allopurinol is structural analogue of xanthine oxidase which is enzyme
38 for uric acid production. The active metabolite of allopurinol is oxipurinol which inhibits the xanthine oxidase.
39 Xanthine oxidase converts xanthine and hypoxanthine into uric acid which increases from its limit and causes
40 gout in humans. Allopurinol is taken through injection or in the form of tablet. If allopurinol is taken orally
41 then after 1 hour it achieves high serum concentration and its bioavailability is about 67 to 90% within this time
42 period ??Mathus et al, 2007). Allopurinol first converts into oxipurinol by the enzyme aldehyde oxidase and
43 oxipurinol is metabolic product of allopurinol. In urine allopurinol remains unchanged about 10% of its total

3 B) COLLECTION OF URINE SAMPLES

44 and about 70% is converted in the form of its metabolite oxipurinol form remaining 20% is excreted through
45 feaces (Hande et al, 1984). The patients of renal dysfunction should receive low concentration of allopurinol
46 because increased oxipurinol concentration in plasma is very toxic for this type of patients (Perez et al, 2005). In
47 case of renal impairment the allopurinol dose adjustment should be done by analyzing the creatinine clearance
48 of that patient or it can be optimized by observing the serum concentration level of oxipurinol (Takada et al,
49 2005). Active metabolic product of allopurinol (oxipurinol) and allopurinol itself are the inhibitors of the enzyme
50 xanthine oxidase which main function is the conversion of hypoxanthine into the xanthine and then xanthine into
51 uric acid. Allopurinol mainly used in the management of long-lasting gout and the condition of hyperuricaemia
52 linked with leukaemia. Allopurinol is a purine base isomer of significance as an anti gout agent. (Rodolfo and
53 Juvencio 2003). Through the process of excretion allopurinol eliminated from the body and removed mostly
54 through urine within certain time period. All metabolic products of allopurinol are removed through excretion.
55 The kidney is a main organ for excretion of allopurinol in almost all mammals (Namazi, 2004). The purine base
56 heterocyclic family of drugs and their basic equivalents are related in pharmacologic and biochemical procedures.
57 From these heterocyclic allopurinol (pyrazolo ??3,4-d] heart alongside harm due to free oxygen base radicals
58 (ROS) on patients suffering heart bypass operation. But however the mechanism behind this protection is yet
59 not well known. Allopurinol is an anti oxidizing drug that inhibits the xanthine oxidase enzyme necessary for
60 uric acid synthesizing inside the body (Veller et al. 1994). The xanthine oxidase produces reactive oxidizing
61 species in ischemic situation inside body which causes hyperuresemia and raises uric acid level and cause gout
62 however a direct hunting ability of allopurinol and its metabolite oxipurinol alongside extremely oversensitive per
63 oxidants as hydroxide free radical and hypochlorous acid radical. Allopurinol has showing to apply an inhibitory
64 action counter to copper mediated ascorbic acid and DNA oxidation (Domenico et al. 1998). The allopurinol
65 producing companies clearly demonstrate that therapeutic range of oxipurinol in human serum must be 5-15
66 mg/liter (Hande et al, 1998). If allopurinol and uricosauric drugs are coadministered then oxipurinol renal
67 clearance increases. These drugs used for decreasing serum urate level by interaction with (URAT1) transporter
68 ??Iwanageer et al, 2005). The uricosauric drugs combination with allopurinol is only done in the condition of
69 severe gout patients but whatever a condition the serum oxipurinol level should be optimized. The patient use
70 allopurinol monitored by therapeutic drug monitoring for verification of patient adherence for proper handling
71 of complications (Stamp et al, 2000). Allopurinol lowers the uridine and uric acid concentrations in plasma and
72 the urinary elimination of uric acid but increased oxypurines and orotidine plasma concentration while urinary
73 excretion of benzboromarone lowers the concentration of uric acid in plasma and increased the excretion of uric
74 acid in urine. However it did not alter the plasma level of uridine or oxypurines or the urinary excretion
75 of oxypurines or orotidine (Tetsuya et al. 1997). Serum uric acid level is typically increased in gout patients.
76 The recommended serum uric acid level must be lowered to a range of < 6 mg/dL for the management of gout
77 symptoms and to decreased acute gout risks (Shoji et al, 2004). Uric acid is excreted through kidney however
78 if kidney function is impaired hyperuricemia may occur this can also happens in the individuals with normal
79 renal function. If there is a hyperuricemia it may be correlated with incidence of renal impairment and raised
80 the healthcare operation and expenses (Avram and Krishnan, 2008). In case of chronic kidney disease treatment
81 of gout is complicated due to the full treatment by allopurinol. The renal impaired patients had recommended
82 that they should take reduced amounts of allopurinol as they may be at risk for allopurinol toxicity (Hande et al,
83 1984). Allopurinol is a uric acid lowering drug used in the treatment of gout and the prevention of tumor lysis
84 syndrome. Therapeutic drug monitoring is an important option for evaluation and optimization of allopurinol
85 treatment in case of renal impairment interaction with uricosauric drugs or to verify patient adherence (Mattheus
86 et al. 2007).

87 Material and Methods. This study was conducted to analyze the urinary excretion and renal clearance
88 of allopurinol and endogenous creatinine in blood and urine. Samples of male gout patients after the oral
89 administration of 300 mg allopurinol were collected. The experiments were conducted on 10 male gout patients.
90 The gout patients who offered to participate were included in this study. The complete demographic data including
91 the age, body weight, height, blood pressure and body temperature of gout patients were recoded and presented
92 in Table 3.1. Blank blood and urine samples were taken from each gout patients.

93 2 Sampling Procedure a) Collection of blood samples

94 The blood samples of each gout patients were collected after 1 and 3 hours of post medication. After the oral
95 intake of allopurinol 300mg (Zyloric) then take serum from these blood samples and stored in ependorf tubes at
96 -20°C until use for the analysis.

97 3 b) Collection of urine samples

98 Urine samples of gout patients were collected after 2, 4, 6, 8, 12 and 24 hours after drug administration. These
99 urine samples were stored in plastic bottles in freezer at -20°C until analysis.

100 **4 III.**

101 **5 Hplc Analysis**

102 Concentration of allopurinol was determined by HPLC.
103 IV.

104 **6 Chromatographic System**

105 Chromatography was performed with a high performance liquid chromatography. The HPLC system was
106 consisted of Shimadzu SCL-10A system controller, UV visible SPD-10AV detector and LC-10AT pump with
107 FUC-10AL VP flow controller wall. Separation was achieved at ambient temperature with Hypersil C18 BDS
108 250x4.6 column pore size of 5 micron. Chromatographic data was collected and analyzed using CSW32 software.
109 V.

110 **7 Chromatographic Conditions**

111 Quantitative analysis of allopurinol was achieved by using an isocratic mode. UV detector was use for the
112 detection of allopurinol. Hypercil C18 BDS 250*4.6 column was used. Flow rate was maintain at 1ml/min with
113 20 min run time.

114 **8 a) Preparation of mobile phase**

115 The mobile phase was prepared by dissolving 2.72 g NaCH₃COO·3H₂O in 3000mL distilled water and correcting
116 the pH to 4.5 with acetic acid 30%. The mobile phase was filtered and degassed before use. The mobile phase was
117 filtered in vacuum filtration assembly having cellulose filter which have pore size 0. 45um (Sartorius company).
118 Filtered mobile phase was solicited for the removal of bubbles for 10 minutes. (eyela sonicator) VI.

119 **9 Standards Preparation**

120 Stock solution Stock standard solution of allopurinol (0.25 mg/mL) was prepared in deionized water. Stock
121 solution was stored for further analysis.

122 **10 a) Preparation of working standards in serum**

123 Drug free serum was taken firstly and added working standard of allopurinol of specific concentration 10, 20, 30,
124 40, 50 and 300?g/ml and mix it with 10% per chlorig acid solution (50?L). After cooling in the refrigerator for
125 10 min dichloromethane (200?L) was added. After shaking the mixture for 30 s, it was centrifuged at 4000 rpm
126 for 5 min. The aqueous supernatant solution was taken. Supernatant was filtered with micro syringe filtration
127 assembly and injected (20?l) into the HPLC instrument for the standard curve. Peak area (mv) versus serum
128 concentration ?g/mL of standard allopurinol was plotted and a linear relationship was obtained. This is given
129 in Table ??2. Preparation of working standards in urine. Drug free urine was taken firstly and added working
130 standard of allopurinol of specific concentration 10, 20, 30, 40, 50 and 300?g/ml and mix it with 10% per chlorig
131 acid solution (50?L). After cooling in the refrigerator for 10 min dichloromethane (200?L) was added. After
132 shaking the mixture for 30 s, it was centrifuged at 4000 rpm for 5 min. The aqueous supernatant solution was
133 taken. Filter and a linear relationship was obtained. The data related to standard concentration of allopurinol
134 in urine were presented in Table ??his supernatant with micro syringe filtration assembly then injected (20?l)
135 into the HPLC instrument for the standard curve. Peak area (mv) versus urine concentration ?g/mL of standard
136 allopurinol was plotted

137 **11 Calculations a) Diuresis**

138 The rate of urine flow in a time period was calculated as Volume of urine in a col-
139 lection time period Diuresis mL/min/kg = Volume of urine in a collection time period
140 Time (min) x body weight (kg)

141 VIII.

142 **12 Renal Clearance**

143 Renal clearance was calculated by the following formula.
144 Renal

145 **13 Urinary Excretion**

146 Amount of Allopurinol (mg) excreted in urine at different time intervals were calculated by
147 using formula: Amount excreted (mg) = Concentration of drug (?g/mL) x urine volume
148 1000

149 Percentage dose of allopurinol excreted in urine at different time intervals was calculated by formula: Percent-
150 age dose (%) = Amount excreted (mg) _____ x 100 Amount of dose (mg) Cumulative

21 C) CREATININE CONCENTRATION IN SERUM

151 percentage dose excreted = Cumulative amount excreted _____ x 100
152 Amount of dose (mg)

153 14 XI. Determination of Allopurinol in Samples

154 The procedure for determination of allopurinol in serum and urine sample is similar to that of standard solution.

155 15 Creatinine Analysis

156 Creatinine analysis was performed by creatinine colorimetric detection kit of (merck company). Some important
157 parameters due to which this method was preferred upon conventional method. The Creatinine colorimetric
158 detection kit utilizes a single-step liquid detection reagent that is safer and less time consuming than other assay
159 methods. This kit is calibrated against the NIST standard and offers reproducible results with less than 6%
160 inter-and intra-assay variation.

161 16 Creatinine

162 (2-amino-1-methyl-5H-imadazol-4one) is a metabolite of phosphocreatine (p-creatine), a molecule used as a store
163 for high-energy phosphate that can be utilized by tissues for the production of ATP. Creatine either comes from
164 the diet or is synthesized from the amino acids arginine, glycine, and methionine. This occurs in the kidneys
165 and liver, although other organ systems may be involved and species-specific differences may exist. Creatine
166 and p-creatine are converted non-enzymatically to the metabolite creatinine, which diffuses into the blood and
167 is excreted by the kidneys. In vivo, this conversion appears to be irreversible and in vitro it is favored by higher
168 temperatures and lower pH. Creatinine forms spontaneously from p-creatine, and under normal conditions, its
169 formation occurs at a relatively constant rate. Intra-individual variation of creatinine levels is <15% from day
170 to day, making it a useful marker for normalizing levels of other molecules found in urine. Altered creatinine
171 levels may be associated with conditions that result in decreased blood flow, such as diabetes and cardiovascular
172 disease.

173 17 XIII.

174 18 Statical Calculations

175 The data on renal clearance was tabulated. The statical calculations were done according to the standard method
176 and results are given as average standard error. The correlation between diuresis and serum concentration of
177 drug and renal clearance was determined by mean off regression / correlation analysis (Steel and Torrie, 2001)

178 19 Results

179 The urinary excretion and renal clearance of allopurinol was investigated in ten male gout patients after the
180 oral administration of 300 mg tablet. Blood and urine samples were taken at different time intervals post
181 medication and concentration of allopurinol in each sample was determined by HPLC method. The volume of
182 urine, concentration of creatinine and allopurinol in the urine and serum were measured to calculate diuresis, renal
183 clearance of creatinine and drug and clearance ratio. The results of urinary excretion of allopurinol were expressed
184 in terms of amount excreted in mg, percentage dose excreted, cumulative amount excreted and cumulative
185 percentage dose excreted. Concentration (?g/mL) of allopurinol in urine At 2 hours after drug administration
186 Mean \pm SEM value of concentration (?g/mL) of allopurinol in urine was 3.818 ± 0.326 . At 4 hours after drug
187 administration Mean \pm SEM value of concentration (?g/mL) of allopurinol in urine was 23.4160 ± 5.838 . At 6
188 hours after drug administration Mean \pm SEM value of concentration (?g/mL) of allopurinol in urine was 17.30
189 ± 3.61 . At 8 hours after drug administration Mean \pm SEM value of concentration (?g/mL) of allopurinol in
190 urine was 11.72 ± 3.18 . At 12 hours after drug administration Mean \pm SEM value of concentration (?g/mL) of
191 allopurinol in urine was 5.77 ± 1.20 . At 24 hours after drug administration Mean \pm SEM value of concentration
192 (?g/mL) of allopurinol in urine was 4.16 ± 0.60 . Peak concentration in urine of allopurinol is achieved within 6
193 to 8 hours while before and after this the concentration is very low this is due to the reason that the metabolism
194 of allopurinol inside the human body is slow may be due

195 20 Figure :

196 Cumulative amount of allopurinol excreted in urine of ten male gout patients at different time intervals after oral
197 administration of (300 mg) allopurinol.

198 21 c) Creatinine Concentration in Serum

199 The mean \pm SE value of serum concentration of creatinine was 2.91 ± 0.081 ?g/ml while it varied from 2.40 to
200 3.30?g/ml.

201 **22 d) Creatinine Concentration in Urine**

202 Creatinine concentration in urine varied from 3.89 to 29.5?g/ml and its mean value is 18.98 ± 3.63 ?g/ml.

203 **23 e) Renal clearance of creatinine**

204 Mean \pm SEM value for renal clearance of endogenous creatinine was 7.16 ± 3.83 ml/min/kg. While it varied from
205 0.58 to 33.83 ml/min.kg.

206 **24 Volume XIII Issue VI Version I g) Allopurinol concentration
207 in serum**

208 The mean \pm SEM value of serum concentration of allopurinol was 55.76 ± 1.91 ?g/ml while it varied from 46.76 to
209 64.76?g/ml.

210 **25 f) Allopurinol clearance**

211 Renal clearance of allopurinol was determined in ten human male gout patients after oral administration of 300
212 mg allopurinol tablet. Results are presented.

213 **26 h) Allopurinol concentration in urine**

214 Allopurinol concentration in urine varied from 7.34 to 19.36 while its mean \pm SE value was 11.039 ± 1.13 ?g/mL.

215 **27 i) Renal clearance of allopurinol**

216 The mean \pm SEM value of renal clearance of allopurinol calculated was 0.037 ± 0.009 ml/min/kg and it ranged
217 from 0.0004 to 0.0012 ml/min/kg.

218 **28 Table :**

219 Mean data of renal clearance of allopurinol and endogenous creatinine in ten healthy male gout patients after
220 oral administration of allopurinol (100mg)

221 XV.

222 **29 Discussion**

223 Since the mid-1980s the most frequently used technique in the bio analysis of drugs has been highperformance
224 liquid chromatography (HPLC). HPLC usually exhibits its resolving power at ambient or slightly raised
225 temperatures in the liquid phase with the key requirements being that the analyte has some solubility in the
226 liquid mobile phase and some affinity for the solid stationary phase. It is the relative strength of the analytes
227 affinity for each of these phases that gives the technique its separating capability. Another factor in the emergence
228 of HPLC in pharmaceutical applications has been the types of detectors that may be used generically for wide
229 varieties of drugs and which are compatible with HPLC. The most obvious example is the ultra-violet (UV)
230 absorption detector which has found extremely wide use as most drugs have a chromophore which will absorb
231 UV light of the appropriate wavelength. In HPLC separation occurs due to partitioning between a stationary
232 phase contained in a column and a liquid phase which is pumped under pressure through this column (David N.
233 M., 2004). The principle rout of the drug excretion is the urine. Our kidneys produce urine which contains urea,
234 excess salts, drug metabolites and excess water. Kidneys perform two grand functions.

235 **30 Volume XIII Issue VI Version I**

236 First is to get rid of waste materials and second is to control the composition of the body fluids and the body
237 volume. For water and all electrolytes in the body, balance between output (due to excretion or metabolic
238 consumption) and intake (due to ingestion or metabolic production) is maintained largely by kidneys. The
239 kidneys perform their important function by filtering plasma and removing substances from filtrated at variables
240 rates, depending on the needs of the body itself. Ultimately kidneys clear the wasteful materials from the filtrate
241 by excreting them in the urine while returning substances that are needed by the body back to the blood. Kidneys
242 also eliminate most toxic material and other foreign substances that are either produced by the body or ingested,
243 such as pesticides, drugs and food additives. Renal excretion accounts for most drug correlation between the pH
244 and urine concentration. It means pH did not affect the urinary excretion of drug.

245 The main functions of kidney are urine formation and water conservation and this is the major channel of
246 water excretion as compared to intestine, skin and lungs (Ganong, 2005). Creatinine is an anhydride end product
247 of creatine metabolism in muscle. The total creatinine in muscle is 10 mg only. The clearance of creatinine is only
248 slightly higher than GFR this metabolite is filtered at the glomerulus but neither secreted nor reabsorbed by the
249 tubules so its clearance gives the GFR. The functional unit of the kidney is nephron 1.2 million nephrons make
250 up each human kidney. The glomerulus is a modified capillary network that delivers an ultra-filtrate of plasma
251 to Bowman's capsule, the most proximal portion of the nephron. These glomeruli collectively produce 120 to 180

252 liters of ultra-filtrate daily. The volume of the urine excreted (averaging 1.5L/ day or 1mL/ min) represent the
253 sum of two large, directionally opposite processes namely, ultrafiltration of 180L/day and reabsorption of more
254 than 99% of this filtrate by transport process in the renal tubules. Renal blood flow accounts for about 20%
255 of resting cardiac output, yet the kidneys comprise only about 1% of total body weight. This disproportionate
256 allocation of cardiac output is required for the process of ultrafiltration. These processes glomerular filtration,
257 tubular reabsorption and active tubular secretion are involved in the secretion of all metabolites through kidneys
258 (Choi et al., 1993). In ten male gout patients the renal clearance of allopurinol was studied and results have
259 been discussed below. The Mean value of allopurinol renal clearance was 359 ± 9.7 mL/min (Dowling et al., 2001)
260 while another study suggests that the value is 310 ml/min. The mean value of renal clearance of our study was
261 found to be $11.83 \pm 0.6.58$ mL/min/kg. The difference between these values is due to different temperature and
262 environment. Within 24 hours of oral administration, some 50-70% of the dose mean was excreted in the urine
263 as unchanged drug.

264 Over the dose range of 0.3-30 mg/kg allopurinol, there was no dose-dependent effect on total or renal clearance
265 10% of a allopurinol dose being excreted unchanged in urine with the major site of elimination which occurs by
266 renal mechanisms. At the glomerulus allopurinol is mainly secreted. The difference in the urinary excretion of
267 allopurinol under local conditions and reported in literature is due to environmental and genetic influences on
268 glomerular filtration rate which significantly affect the fate of drug in the body. These differences have been
269 elucidated by original term geonetics (Jeffrey et al, 1998). Studies on allopurinol suggest that it is extensively
270 secreted from urine even though when given in small amounts. At serum concentrations up to 30-fold the tubular
271 secretion rate of allopurinol gradually increases and higher than those values which are achieved during 300
272 mg/day typical oral dosing. The retention time for the present study was 9 min for plasma and 10 min for
273 urine. The difference is probably due to storage of urine and plasma samples, environmental conditions and/or
274 temperature. The present percent dose is lower calculated as 66.30 ± 2.18 .

275 There is difference between present study value and earlier study value due to difference in environment,
276 temperature but major difference in the values is due to non-fasting gout patients (Konrad et al. 2002).

277 drug and its absorption from the tubules. Most of the drugs are either weak acids or weak bases. Acidic drugs
278 are more readily ionized in alkaline urine and alkaline drugs are more readily ionized in acidic urine. Ionized or
279 polar substances are more soluble in water so readily dissolve in the body fluids for excretion (Lin et al., 1988).
280 The present study revealed the result non-significant control the excretion of certain drugs from the body. Urine
281 pH plays an important role in the ionization of the elimination that are predominately ionized at physiological pH
282 and for polar drugs, drug metabolites with low lipid solubility. Renal drug excretion decreases with aging. Drugs
283 bound to plasma proteins remain in the circulation; only unbound drug is contained in the glomerular filtrate.
284 Un-ionized forms of drugs and their metabolites tend to be reabsorbed readily from tubular fluids (Guyton and
285 Hall, 2000).Urine pH has a great influence on whether a drug is excreted readily or slowly and in some clinical
286 situations urine pH is maintained to ^{1 2 3}

¹© 2013 Global Journals Inc. (US)

²© 2013 Global Journals Inc. (US) Year

³()

Figure 1: F

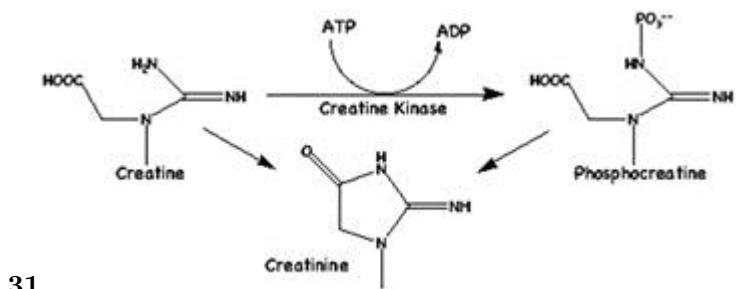


Figure 2: Figure 3 . 1 :

31

Urinary

[Note: © 2013 Global Journals Inc. (US) II.]

Figure 3: Table 3 . 1 :

32

[Note: : Concentration and peak area of standard solution of allopurinol in serum]

Figure 4: Table 3 . 2

Sr. No	Concentration (µg/ml)	Peak area(mv)
1	10	7.5
2	20	10.7
3	30	13.3
4	40	29.1
5	50	32.7
6	300	153.25

Volume XIII Issue VI Version
I

[Note: Table :]

Figure 5:

XIV.

Figure 6:

287 [Gastrointestinal Endoscopy] , *Gastrointestinal Endoscopy* 48 p. .

288 [Shoji et al. ()] 'A retrospective study of the relationship between serum urate level and recurrent attacks of
289 gouty arthritis'. A Shoji , H Yamanaka , N Kamatani . *J. Arthritis Rheum* 2004. 51 p. .

290 [Mattheus et al. ()] 'A simple method for quantification of allopurinol and oxipurinol in human serum by high-
291 performance liquid chromatography with UV-detection'. K Mattheus , L C Reinders , N Nijdam . *Journal of
292 Pharmaceutical and Biomedical Analysis* 2007. 45 p. .

293 [Ganong ()] *Allopurinol excretory mechanism. Review of medical physiology*, W F Ganong . 2005. 7 p. . (22th
294 ed.)

295 [Choi et al. ()] 'allopurinol improves the accuracy of creatinine clearance as an indicator for glomerular filtration
296 rate'. K C Choi , J Lee , S W Kim , N H Kim , K H Moon , K K Park , H S Bom , Y J Kang . *The Korean
297 J Internal Med* 1993. 8 p. .

298 [Domenico et al. ()] 'Antioxidant activity of allopurinol on copper-catalysed human lipoprotein oxidation'. L
299 Domenico , S Gioia , G Ciofani , F Cuccurullo . *J. Febs letters* 1998. 409 p. .

300 [Perez et al. ()] 'Basic clinical importance of drugs'. I F Perez , I Hernando , Villar . *J. Clin* 2005.

301 [Stamp et al. ()] 'Basics of clearance concept in humans'. L Stamp , P Gow , K Sharples , N . *Z. Aust* 2000. 30
302 p. . (J. Med.)

303 [Namazi ()] 'Cetirizine and allopurinol as novel weapons against cellular autoimmune disorders'. M R Namazi .
304 *International Immunopharmacology* 2004. 4 p. .

305 [Lin et al. ()] 'D-Isomer of gly-tyr-pro-cys-pro-his-pro peptide: a novel and sensitive in vitro trapping agent to
306 detect reactive metabolites by electrospray mass spectrometry'. J E Lin , S Auricle , M Pasanen , R O Juvonen
307 . *J.of Toxicol* 1988. 25 p. .

308 [Rheumatol ; Rodolfo and Juvencio ()] 'Density functional theory study of the free and cobalt-coordinated
309 allopurinol ligand'. R Rheumatol ; Rodolfo , Juvencio . *Journal of Molecular Structure: THEOCHEM* 2003.
310 11 p. .

311 [Guyton and Hall ()] *Drug metabolism. Text book of medical physiology*, A C Guyton , J E Hall . 2000. W. B.
312 Saunders Company. 301 p. . (10th ed.)

313 [Tetsuya et al. ()] 'Effect of allopurinol and benz bromarone on the concentration of uridine in plasma'. Y Tetsuya
314 , Y Moriwaki , S Takahashi , Z Tsutsumi , J Yamakita , K Higashino . *Metabolism* 1997. 46 p. .

315 [Takada et al. ()] 'Effect of allopurinol and benz bromarone on the concentration of uridine in plasma'. M Takada
316 , H Okada , T Kotake . *J. Clin. Pharm. Ther* 2005. 30 p. .

317 [David ()] *High performance liquid chromatography in pharmaceutical bioanalysis. A handbook of bioanalysis and
318 drug metabolism*, N M David . 2004. 8 p. .

319 [Dowling et al. ()] *Inhibitory action of allopurinol. E1 Pediatric physiology*, E Dowling , F Prasna , D Tongella
320 . 2001. 7 p. .

321 [Iwanaga et al. ()] 'Metabolic products of allopurinol'. T Iwanaga , D Kobayashi , M Hirayama . *Drug Metab.
322 Dispos* 2005. 33 p. .

323 [Jeffrey et al. ()] *Pretreatment with allopurinol diminishes Volume XIII Issue VI Version I*, M M Jeffrey , J D
324 Brian , B L Shillingstad , D F Youngelman , M A Schweitzer , R H Lash . 1998.

325 [Steel et al. ()] *Principles and procedures of statistics: A biochemical approach*, R D Steel , J H Torrie , D A
326 Dickey . 2001. 3 p. . (3rd Ed)

327 [Konrad et al. ()] 'Remark on utility and error rates of the allopurinol test in detecting mild ornithine
328 transcarbamylase deficiency'. O Konrad , L Bonafe , B Steinmann . *Molecular Genetics and Metabolism*
329 2002. 76 p. .

330 [Veller et al. ()] 'Renal allograft preservation: a comparison of University of Wisconsin solution and of hypother-
331 mic continuous pulsatile perfusion'. M G Veller , J R Botha , R S Britz , G R Gecelter , P G Beale , L P
332 Margolius , K E Meyers . *Clin Transplant* 1994. 8 p. .

333 [Hande et al. ()] 'severe allopurinol toxicity: Description and guidelines for prevention in patients with renal
334 insufficiency'. K R Hande , R M Noone , W J Stone . *Am J. Med* 1984. 76 p. .

335 [Hande et al. ()] 'Structural analysis of allopurinol'. K Hande , E Reed , B Chabner . *Clin. Pharmacol Ther* 1998.
336 23 p. .

337 [Seldin ()] 'The development of the clearance concept'. D W Seldin . *J. Nephrol* 2004. 1 p. 171. (Biomedical
338 importance of allopurinol)

339 [Avram and Krishnan ()] *where nephrology meets rheumatology. A hand book Rheumatology (Oxford)*, Z Avram
340 , E Krishnan . 2008. 47 p. .