

Evaluation of Lumber Lordotic Angle in Patients with Inter Vertebral Disc Prolapse using Cobb's Method

Caroline Edward Ayad¹

¹ College of Medical Radiological Science, Sudan University Of Science and Technology

Received: 11 December 2012 Accepted: 1 January 2013 Published: 15 January 2013

6

Abstract

This study was done to evaluate the lumbar lordotic angle (LLA) in patients with inter vertebral disc prolapse examined by magnetic resonance imaging (MRI) using Cobb's method. This study was conducted at Antalya Medical center and Elnilin Medical Center and extended from November 2012 up to March 2013. Total sample of 62 Sudanese subjects were included in the study, with ages ranging between (24-80 years), 50 of the total sample were 25 males and 25 females underwent MR lumbar scan and were diagnosed to have inter vertebral disc prolapse at different vertebral levels, the remaining 12 were diagnosed as normal lumbar spine and they were considered as control group. Measurement of (LLA) was done from the mid-sagittal slice of T2 MRI lumbar spine using Cobb's method; by drawing a perpendicular line to a line drawn across the superior endplate of first lumbar vertebra and the superior endplate of first sacral vertebra; the angle formed by the intersection of the two perpendicular lines is the Cobb angle or lumbar lordotic angle.

20

Index terms— cobb, inter vertebral disc, MRI.

Total sample of 62 Sudanese subjects were included in the study, with ages ranging between (24-80 years), 50 of the total sample were 25 males and 25 females underwent MR lumbar scan and were diagnosed to have inter vertebral disc prolapse at different vertebral levels, the remaining 12 were diagnosed as normal lumbar spine and they were considered as control group.

Measurement of (LLA) was done from the midsagittal slice of T2 MRI lumbar spine using Cobb's method; by drawing a perpendicular line to a line drawn across the superior endplate of first lumbar vertebra and the superior endplate of first sacral vertebra; the angle formed by the intersection of the two perpendicular lines is the Cobb angle or lumbar lordotic angle.

The Cobb angle and inter vertebral disc prolapse level were then correlated with Gender, age, weight, height, body mass index (BMI) and jobs to demonstrate if there is any degree of association.

The study concluded that Cobb angle and Disc prolapse levels have no significant relation with job, height, weight, age and BMI, no significant difference was detected between Cobb angle of the normal subjects and patients with prolapsed disc and the results did not differ among male and female patients.

Using MRI in the detection of vertebral morphological changes and end plates degeneration is recommended since it involves no ionizing radiation and has excellent demarcation of disc prolapse. The dependence upon the Cobb angle in diagnoses of disc prolapse is of no significant value.

1 Introduction

The spine is an elastic rod structure, loading of the spine leads to its deformity, strengthening its physiological S-shaped lordosis and kyphosis [1][2][3]. During loading; the disk becomes dehydrated causing the accompanying ligaments to become loosened, the disk-height is reduced and the spine loses its homogenous elasticity. In turn, localized overloading of the disk and subchondral spinal endplates may take place.

8 A) IMAGE INTERPRETATION

43 In the last few decades, MRI has become the standard imaging method; it allows direct visualization of the
44 disk and because of its high water content, the nucleus pulposus is bright on T2-weighted images. With aging and
45 degeneration, the size, character and height of the disk decline continuously [4,5] MRI can diagnose degenerative
46 changes within the bony endplates. This border region is damaged during overloading. This results probably in
47 pain and activation of fibrovascular tissue ending in neovascularization of the disk, particularly at the anterior
48 and posterior part [1,6] producing degeneration. The endplate fails before the injured annulus fails. Endplate
49 failure seems to be the precursor to disk degeneration, which means they are correlated to each others.

50 The first signs of degeneration may be localized malalignments with or without rotation of the vertebral body.
51 The evaluation of lumbar attitude is commonly assessed to help guide diagnosis and plan treatment [7,8] During
52 an examination of spinal posture; lumbar lordosis should be assessed. It has been suggested that its deviation
53 may increase a person's risk of developing low back pain [9,10,11] Lumbar lordosis is defined as the curvature
54 assumed by the intact lumbar spine to compensate for the inclination of the sacrum, restore an upward spinal
55 orientation, and consequently avoid a forward inclination. Its measure, is influenced by various parameters,
56 including age, gender, pelvic bend, and thoracic curvature, among others [12,13].

57 Value of sagittal curves measurements on spine; present great variability in normal individuals with a wide
58 variation range for those, within normality limits.

59 That great measurements variation must be considered as physiological, indicative, but not normative [14]
60 Several different methods are used to measure lumbar lordosis including Centroid, Cobb, Trall, and Harrison
61 posterior tangent method. Cobb's method is commonly used for curvature analysis on lateral lumbar radiograph,
62 whereas the Centroid, Trall, and Harrison posterior tangent method are not widely used ??15] Normal lordosis
63 may range from 31 to 50 according to Cobb's method. The Cobb technique based on measurement of vertebral
64 endplates is the method most frequently adopted for clinical diagnosis. However, because of the variation in the
65 vertebral endplate architecture, the vertebral surface angle is difficult to identify. In this method, the angle of
66 interception sustained by the most tilted upper and lower vertebrae of the lumbar curvature is measured [16]
67 To our knowledge, no reliable measurements were done to the lumbar lordotic curve for Sudanese patients in
68 the open literature which may aid in the early diagnosis and management of spine conditions before irreversible
69 neurologic change ensues.

70 So this study is to evaluate lumbar lordotic angle by magnetic resonance imaging using Cobb's method in
71 patients with inter vertebral disc prolapse. To determine the effect of inter vertebral disc prolapse on the lumbar
72 lordotic curve as well as to investigate whether the angle changes according to age, weight, height, BMI and job
73 for Sudanese.

74 2 II.

75 3 Materials and Methods

76 The study was carried out during the period from November 2012 up to March 2013 in Antalya Medical Center
77 and Elnilin Medical Center.

78 4 a) Study population

79 Total sample of 62 subjects were included in the study, the average age ranging between (24-80 years), 50 of the
80 total sample were 25 males and 25 females underwent MR lumbar scan and diagnosed with inter vertebral disc
81 prolapse, the remaining 12 were diagnosed as normal lumbar spine MRI and they are the control group.

82 5 b) Machines used

83 General Electric. Signa. HD. 1.5 tesla MRI machine in Antalya medical center, Semiens. Magnetom. CI.
84 0.35tesla. Open MRI machine in Elnilin Medical Center.

85 6 III.

86 7 Lumbar mri Technique

87 Axial and sagittal slices of lumbar spine obtained with T2 weighted images while the patients in supine position
88 with their knees elevated over a foam bad , the patient positioned so that the longitudinal alignment light lies in
89 the midline, and the horizontal alignment light passes just below the lower costal margin.

90 8 a) Image interpretation

91 Measurement of lumbar lordotic angle (LLA) was done from the mid-sagittal slice of lumbar spine MRI using
92 Cobb's method. By drawing a perpendicular line to a line drawn across the superior endplate of (L1) and the
93 superior endplate of (S1); the angle formed by the intersection of the two perpendicular lines is the Cobb angle.
94 IV.

95 9 The study Variables

96 The mean of the angles was correlated with variables which are: age, height, weight, body mass index (BMI),
97 job, and the level of inter vertebral disc prolapsed. The data were analyzed through the statistical method (SPSS
98 programme) version 16.0 and included frequency tables, percentages, correlations, cross tabulation. P-Value is
99 significant at 0.05.

100 V.

101 10 Results

102 The Following tables and figures presented the data obtained from 25 males and 25 females came to MRI
103 department for lumbar spine examination as they all were complaining of Lower backache, the Cobb angle was
104 measured to study the relations regarding the Cobb angle variations. Discussion 50 patients were examined
105 by MRI, (25 males and 25 females), their ages ranged between 24-80 years old as seen in table [1], all were
106 complaining of Lower backache and were diagnosed to have intervertebral disc prolapsed at different levels. The
107 males and the females mean age, weight, height; BMI and Cobb angle were presented in table [2] The mean
108 Cobb angle was measured from the superior end plate of L1 to the superior end plate of S1, The level where
109 the disc prolapse was taken place had been evaluated, and the mean Cobb angle was found to be 38.8 ± 9.96 .
110 For the female patients the mean Cobb angle was 40.8 ± 8.80 , where the mean Cobb angle for male patients was
111 36.9 ± 10.84 . It is higher in female than male but the difference is not significant, similar findings was found by
112 [17] The disc prolapse may affect one or more inter vertebral disc, the study showed that the most affected level
113 was between L4 and L5 in both gender as presented in table [3] The largest Cobb angle was found when the level
114 of disc prolapse affected more than three vertebral disc at the level of (L2 L3, L4, L5) where the higher mean age
115 of the patients affected with disc prolapse was found at the level of (L3, L4, L5) and it was found to be greater
116 than the other above or below levels. But the Cobb angle was neither correlated significantly with the patient
117 age nor the level of prolapse (p -value=90.385, 0.360) respectively [table4], reverse results were found by Ghassan
118 [17] who had mentioned that the age can be predictors of the level of lumbar disc herniation.

119 The association between the levels of inter vertebral disc prolapse with weight, height, BMI was found to
120 be insignificant at P -value, 0.272, 0.930, 0.270 correspondingly as presented in table [4] Cobb angle in cases
121 with intervertebral disc prolapse was found to have insignificant relation with the Sudanese patients characters
122 including age, weight, height and BMI at P value (0.309, 0.402, 0.599, 0.206), in respectively as seen in table [5] but
123 different findings were found by Khodadad et al who found that obesity, gender, body mass index have significant
124 effects on low back pain and lumbar total and segmental lordosis [18] According to the job classification, the
125 largest Cobb angle was found in the unemployed patients followed by the workers then the employee as presented
126 in table [6]. Our study showed that Lumbar lordosis Cobb angle has insignificant correlation (P -value=0.439) with
127 the job as Sudanese may do different work load related physical activity in their residence, that lifestyle might
128 cause lower back pain and may affected the lumbar lordosis angle [19] From table [7] there is no association
129 (P -value =0.244) with the different level of inter vertebral disc prolapse and the patients jobs.

130 Different results were found in the Cobb angle difference related gender and age; Amonoo-Kuofi [20], Guigui
131 et al. [21], Gellb et al [22] and Damasceno et al [14] By testing the correlation between Cobb angles in cases with
132 inter vertebral disc prolapse and the control group as presented in table [8]; the study showed that there was no
133 significant difference between Cobb angle measured in patients with inter vertebral disc prolapse and the control
134 group.

135 MRI is a valuable tool to demonstrate the vertebral body end plate borders which have value in applying the
136 Cobb method as well as to diagnose inter vertebral disc prolapse at the same level of measurement. The study
137 concluded that Cobb angle has no significant relation with height, weight, age and BMI. Disc prolapse levels have
138 no association with, work intensity, age, weight, height, BMI and Cobb angle.

139 The study recommend to use MRI in detecting and monitoring vertebral morphological changes and end plates
140 degeneration since it involve no ionizing radiation and has excellent demarcation of disc prolapse. More studies
141 are needed in this area with bigger sample to determine the normal range of lumbar lordotic angle in normal
142 Sudanese individuals.

10 RESULTS

Abstract-This study was done to evaluate the lumbar lordotic angle (LLA) in patients with inter vertebral disc prolapse examined by magnetic resonance imaging (MRI) using Cobb's method.

This study was conducted at Antalya Medical center and Elnilin Medical Center and extended from November 2012 up to March 2013.

Figure 1:

1

Age Classes	Frequency	Age Classes	Frequency	Age Classes	Frequency
Male	And	Female	And	Total Sam- ple	And
24-34	4(16%)	27-35	3(12%)	24-34	7(14%)
35-45	9(36%)	36-44	6(24%)	35-45	17(34%)
46-56	7(28%)	45-53	5(20%)	46-56	12(24%)
57-67	3(12%)	54-62	8(32%)	57-67	10(20%)
68-78	1(4%)	?62	3(12%)	68-78	3(6%)
?78	1(4%)	-	-	?78	1(2%)
Total	25(100%)	-	25(100%)	-	50(100%)

Figure 2: Table 1 :

2

Variables	Age	Weight	Height	BMI	Cobb Angle*
Male	46.96±12.8	74.88±12.2	171.32±8.4	25.50±3.79	36.9±10.84
Female	48.71±7.5	73.44±16.87	160±6.7	28.53±5.1	40.8±8.80
Total	48.4±12.4	74.12±5.4	165.64±9.5	27.02±4.7	38.8±9.96
	Min:24.0	Min:55.0	Min:145.0	Min:19.7	Min:20.0
	Max:82.0	Max:127.0	Max:198.0	Max:41.5	Max:60.0

BMI = Body Mass Index, Min=Minimum, Max=Maximum.* Cobb's angle in the cases of disc prolapsed and (P-value = 0.172)

Figure 3: Table 2 :

3

Diagnosis/ intervertebral disc prolapse level	Gender	Total	
	Male	Female	
L2,L3	1.0(4.0%)	0.0(0.0%)	1.0(2.0%)
L3,L4	1.0(4.0%)	2.0(8.0%)	3.0(6.0%)
L4,L5	7.0(28.0%)	9.0(36.0%)	16.0(32.0%)
L5,S1	4.0(16.0%)	5.0(20.0%)	9.0(18.0%)
L1,L2,L3	1.0(4.0%)	0.0(0.0%)	1.0(2.0%)
L3,L4,L5	1.0(4.0%)	1.0(4.0%)	2.0(4.0%)
L4,L5,S1	9.0(36.0%)	6.0(24.0%)	15.0(30.0%)
L2,L3,L4,L5	0.0(0.0%)	2.0(8.0%)	2.0(4.0%)
L3,L4,L5,S1	1.0(4.0%)	0.0(0.0%)	1.0(2.0%)
Total	25.0(100.0%)	25.0(100.0%)	50.0(100.0%)

Diagnosis stands for all cases examined by MRI and diagnosed to have intervertebral disc prolapse at different levels by the expertise Radiologist.

Figure 4: Table 3 :

4

Diagnosis/ intervertebral disc prolapse level	Age	Weight	Height	BMI	Cobb's angle
L2,L3	43.0 ± 0.0	66.0 ± 0.0	167.0 ± 0.0	23.7 ± 0.0	38.0 ± 0.0
L3,L4	50.7 ± 17.5	61.7 ± 11.5	159.7 ± 16.8	24.2 ± 1.8	30.0 ± 8.0
L4,L5	52.9 ± 11.0	76.3 ± 18.3	167.8 ± 12.8	27.1 ± 5.8	41.6 ± 10.0
L5,S1	40.4 ± 11.5	83.0 ± 15.8	166.2 ± 8.8	30.0 ± 5.0	38.9 ± 9.4
L1,L2,L3	37.0 ± 0.0	73.0 ± 0.0	164.0 ± 0.0	27.1 ± 0.0	31.0 ± 0.0
L3,L4,L5	59.5 ± 0.7	62.5 ± 10.6	165.5 ± 6.4	22.7 ± 2.1	37.5 ± 6.4
L4,L5,S1	48.0 ± 13.4	69.6 ± 8.1	164.6 ± 5.7	25.8 ± 3.4	38.0 ± 10.8
L2,L3,L4,L5	47.0 ± 12.7	81.0 ± 1.4	160.0 ± 0.0	31.7 ± 0.5	48.5 ± 0.7
L3,L4,L5,S1	42.0 ± 0.0	85.0 ± 0.0	171.0 ± 0.0	29.0 ± 0.0	23.5 ± 0.0
P-value	.360	.272	.930	.270	.385

Values are express as Mean ± SD

Figure 5: Table 4 :

5

Cobb's angle	Age	Weight	Height	BMI
Correlation Coefficient	.147	.121	-.076	.182
P-value	.309	.402	.599	.206

Figure 6: Table 5 :

10 RESULTS

6

Occupation	Mean \pm SD
Employee	37.0 \pm 12.8
Worker	37.6 \pm 9.2
Unemployed	41.0 \pm 8.3

Figure 7: Table 6 :

7

intervertebral disc prolapse level	Employee	Occupation	Total
	Worker	Unemployed	
L2,L3	0.0(0.0%)	1.0(6.3%)	1.0(2.0%)
L3,L4	0.0(0.0%)	1.0(6.3%)	3.0(6.0%)
L4,L5	5.0(35.7%)	3.0(18.8%)	16.0(32.0%)
L5,S1	1.0(7.1%)	3.0(18.8%)	9.0(18.0%)
L1,L2,L3	1.0(7.1%)	0.0(0.0%)	1.0(2.0%)
L3,L4,L5	1.0(7.1%)	0.0(0.0%)	2.0(4.0%)
L4,L5,S1	6.0(42.9%)	7.0(43.8%)	15.0(30.0%)
L2,L3,L4,L5	0.0(0.0%)	0.0(0.0%)	2.0(4.0%)
L3,L4,L5,S1	0.0(0.0%)	1.0(6.3%)	1.0(2.0%)
Total	14.0(100.0%)	16.0(100.0%)	50.0(100.0%)

Figure 8: Table 7 :

8

Cobb angle in cases with inter vertebral disc prolapse	Correlations		Cobb angle in the Control Group
	Pearson Correlation	Sig. (2-tailed)	
Cobb angle in cases with inter vertebral disc prolapse	N		50 12
Cobb angle in Control Group	Pearson Correlation	-.132- 1	
	Sig. (2-tailed)	.683	
	N	12	12

VI.

Figure 9: Table 8 :

143 [Gelb et al. ()] 'An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers'.
144 D E Gelb , L G Lenke , K H Bridwell , K Blanke , K W Mcenery . *Spine* 1995. 20 p. .

145 [Eslam Babai et al ()] 'An Innovative Software Method for Measuring Lumbar Lordosis'. *Annals of Biological
146 Research* Eslam Babai et al (ed.) 2012. 3 (1) p. .

147 [Hs ()] 'Changes in the lumbosacral angle, sacral inclination and the curvature of the lumbar Spine. During
148 aging'. Amonoo-Kuofi Hs . *Acta Anat* 1992. 145 p. .

149 [Smith et al. ()] 'Classification of sagittal thoracolumbo pelvic alignment of the adolescent spine in standing and
150 its relationship to low back pain'. A Smith , P O'sullivan , L Straker . *Spine* 2008. 33 p. .

151 [O'sullivan (ed.) ()] *Clinical instability' of the lumbar spine: its pathological basis, diagnosis and conservative
152 management*, P B O'sullivan . Boyling J, Jull G (ed.) 2004. Singapore: Churchill Livingstone. (Grieve's
153 Modern Manual Therapy. 3rd ed)

154 [Sahrmann ()] *Diagnosis and Treatment of Movement Impairment Syndromes*, S A Sahrmann . 2002. Missouri:
155 Mosby Inc.

156 [Norton et al. ()] 'Differences in measurements of lumbar curvature related to gender and low back pain'. B J
157 Norton , S A Sahrmann , L R Van Dillen . *Journal of Orthopaedic and Sports Physical Therapy* 2004. 34 (9)
158 p. .

159 [Ghassan et al.] 'Effect of Age and Lordotic Angle on the Level of Lumbar Disc Herniation Advances in'. S
160 Ghassan , Skaf , M Chakib , Nathalie T Ayoub , Massud J Domloj , Cherine Turbay , H El-Zein , Hourani .
161 10.4061/2011/950576. *Orthopedics* 2011.

162 [Nourbakhsh (2001)] 'Effects of lifestyle and work-related physical activity on the degree of lumbar lordosis and
163 chronic low back pain in a Middle East population'. M R Nourbakhsh . *Journal of spinal disorder* 2001. Aug.
164 14 (4) p. .

165 [Enzinger and Weiss ()] 'General considerations'. F M Enzinger , S W Weiss . *Soft tissue tumors*, F M Enzinger,
166 S W Weiss (ed.) (St. Louis) 1995. p. . (3rd edn. CV Mosby)

167 [Khodadad Letafatkar et al Effects of weight, gender and number of pregnancies on lumbar total and segmental lordosis and low
168 'Khodadad Letafatkar et al Effects of weight, gender and number of pregnancies on lumbar total and
169 segmental lordosis and low back pain'. *Journal of Research in Rehabilitation Sciences* 1387. 4 (2) .

170 [Damasceno ()] 'Lumbar lordosis: a study of angle values and of vertebral bodies and intervertebral discs role'.
171 Damasceno . *Acta ortop bras*, (São Paulo) 2006. 2006. 14.

172 [Sundaram et al. ()] 'Magnetic resonance imaging of soft tissue masses: an evaluation of fiftythree histologically
173 proven tumors'. M Sundaram , M H McGuire , D R Herbold . *Magn Reson Imaging* 1988. 6 p. .

174 [Cheng et al. ()] 'Measurements of vertebral shape by radiographic morphometry: sex differences and relation-
175 ships with vertebral level and lumbar lordosis'. X G Cheng , Y Sun , S Boonen . *Skeletal Radiology* 1998. 27
176 (7) p. .

177 [Kransdorf and Murphey ()] 'Radiologic evaluation of soft-tissue masses: A current perspective'. M J Kransdorf
178 , M D Murphey . *AJR Am J Roentgenol* 2000. 175 p. .

179 [Mettlin et al. ()] 'Results of the national soft-tissue sarcoma registry. Analysis of survival and prognostic factors'.
180 C Mettlin , R Priore , U Rao , D Gamble , W Lane , G P Murphy . *J Surg* 1982. 19 p. .

181 [Kuo et al. ()] 'Sagittal spinal posture after pilatesbased exercise in healthy older adults'. Y Kuo , E A Tully ,
182 M P Galea . *Spine* 2009. 34 p. .

183 [Rydholm and Berg ()] 'Size, site and clinical incidence of lipoma. Factors in the differential diagnosis of lipoma
184 and sarcoma'. A Rydholm , N O Berg . *Acta Orthop Scand* 1983. 54 p. .

185 [Kendall et al. ()] *Testing and Function with Posture and Pain*, F P Kendall , E K McCreary , P G Provance .
186 2005. London: Lippincott Williams & Wilkins. (5th ed)

187 [Kransdorf and Murphey ()] 'The use of gadolinium in the MR evaluation of soft tissue tumors'. M J Kransdorf
188 , M D Murphey . *Semin Ultrasound CT MR* 1997. 18 p. .

189 [Guigui et al. ()] 'Valeur physiologique des paramètres pelviens et rachidiens de l'équilibre sagittal du rachis -
190 analyse d'une série de 250 volontaires'. P Guigui , N Levassor , L Rillardon , P Wodecki , L Cardine . *Rev
191 Chir Orthop* 2003. 89 p. .