

1 The Heating Value of a Different Location of Human Body Lipids

2 Kuat Oshakbayev ¹, Kuat Oshakbayev ² and Kenneth Alibek³

3 ¹ Republican scientific center foe emergency medicine

4 *Received: 10 December 2012 Accepted: 1 January 2013 Published: 15 January 2013*

5

6 **Abstract**

7 Background: Distribution character of fats can influence to emergence of different severe
8 lifethreatens diseases. Body lipids morphology is enough well investigated, but there is little
9 data on the calorific properties of various lipids, including atherosclerotic plaque (AP). Aim of
10 the study was to investigate the calorific properties of a human body lipids of various
11 anatomical sites. Methods : Trial design is a prospective randomized pilot physical
12 experimental trial. Adipose tissue in the amount of 252 samples from 36 individuals (17 female
13 sex) at autopsy. The subjects were dying from various injuries and were between 36-54 years
14 old. Interventions: Differential scanning calorimetry («Mettler Toledo», USA) was used with an
15 increments temperature of 10.37 °C per minute. In an experimental set up specimens were
16 heated up from 26.0 °C to 700.0 °C for 70.0 minutes.

17

18 **Index terms**— atherosclerotic plaques, lipids, calorific value, specific heat capacity, different localization.

19 **1 Introduction**

20 according to numerous studies an atherosclerotic plaque (AP) is the main cause of an atherosclerotic \diseases,
21 and it is a non-homogeneous structural formations [1,2]. AP shave layered structure, but they always have
22 atheromatous masses [2,3]. It is well-known fact that the body lipids are an origin of energy andthey have
23 a different diversity and structure both by location and function [3,4]. The body fats are distributed in the
24 body throughout, for instance, in subcutaneous area, in submucosa, inside and around of parenchymatous and
25 hollow organs. They are represented in different forms, such as saturated, non-saturated, atheromatous, etc.
26 [5,6]. Distribution character of fats can influence to emergence of different severe life-threatens diseases [6,7].
27 Therefore, it is a scientific interest to study a heat capacity (caloric value) of the different body fat depend on
28 a place of location. Also, there are little data on studies of the calorific properties of various lipids of the body
29 [8,9].The aim of the study was to investigate the calorific properties of human body lipids of various anatomical
30 sites.

31 **2 II.**

32 **3 Study Design**

33 A prospective randomized pilot physical experimental trial in vitro.

34 **4 a) Participants**

35 Adipose tissue in the amount of 252 samples was obtained from 36 individuals (19 males, 17 females) at autopsy.
36 The subjects had died from various injuries and were between 36-54 years old. The autopsy material (lipids)
37 was taken for research purposes after forensic medical examinations had been carried out. The criteria used for
38 inclusion of material in the research were:

39 1. sampling was performed within 2 hours after death(interval of time between death and collection); 2. tissue
40 donors had no chronic somatic diseases (such as cardiovascular, endocrine, cancer pathologies, etc.) prior to

8 DISCUSSION

41 death, and cause of death of their was road accident; 3. every Monday (after weekend) the four tissue donors were
42 included in the study during nine weeks of a summer season of a year (a total of 36 tissue donors).

43 Removal of autopsy material was performed at the Centre for Forensic Medical Examination of the city of
44 Almaty. Tissue was collected from 7 various locations: A visceral fat (VF), from the omentum and paraneoplastic
45 regions; subcutaneous fat (SF) from the buttock area, the abdomen (umbilical region), and shoulder area; APs
46 from the descending aorta: homogeneous AP, at the stage of smooth/dense plaque (hereafter referred to as dense),
47 and heterogeneous AP at the stage of destruction (loose plaque).

48 5 b) Research methods

49 Differential scanning calorimeter («Mettler Toledo», USA) was used with an increments temperature of 10.37 °C
50 per minute. In an experimental set up specimens were heated up from 26.0 °C to 700.0 °C for 70.0 minutes. The
51 calorific value of lipids was determined according to the heat capacities of lipids. The greater the temperature
52 difference between the sample (sample) and a standard (reference), the more of the heat generated, thus the
53 higher is heating value [4,8]. Heating value was determined indirectly, by measuring heat capacities of organic
54 substances.

55 The more a temperature difference between the sample (sample) and the standard (reference) the more a
56 substance releases heat [9,10].

57 Statistical analysis. Student's two-t-test (with Bonferroni correction, /2) with confidence interval (CI) were
58 used. The study data are presented in tables as mean \pm standard error of the mean ($M \pm SEM$), and P values
59 of <0.025 were considered significant. Statistical analysis was performed using SPSS for Windows version 17.0
60 (SPSS: An IBM Company, Armonk, NY) and Microsoft Excel-2010.

6 III.

7 Results

61 The results of the study are shown in a Table 1. Table 1 shows that lipids from various sites have different
62 abilities to store a heat. The heat capacity of the studied different lipids decreases in a row from AP (dense) to
63 AP (loose), VF (omentum fat), SF (umbilical area), SF (shoulder area), SF (buttock area) and VF (pararenal
64 fat). APs have the highest heat capacity among the lipids, at once the dense AP ($-3, 97 \pm 0,16$ °C) has higher a
65 heat capacity ($p=0.02$) than the loose AP ($-3, 44 \pm 0,15$ °C). The lowest thermal capacity has a pararenal fat of
66 VF ($-1, 25 \pm 0,21$ °C) in compare with SF (buttock area) ($p=0.027$).

67 For a more in depth analysis of the properties of these lipids, the heat capacity values are presented in correlation
68 with temperature dynamics. Figure 1 shows how the properties of the heat capacity of the analyzed lipids change
69 during of the combustion process. The combustion process indicates the difference between the sample °C and
70 the reference °C. Figure 1 clearly shows that the atherosclerotic plaques, both dense and loose are almost below
71 zero in the scale of °C difference between the sample and the standard. This underlies an intense absorption of
72 the heat in the calorimeter. That can indicate that the APs have a relatively higher heat capacity in comparison
73 to other lipids. For example, in contrast to APs other lipids have relatively similar combustion characteristics:
74 they absorb the heat actively at approximately 200 °C, and they actively release the heat starting from 300 °C
75 to 500 °C and completely burns after 600 °C.

76 It is interesting to note that the lipids from the omentum area have an intermediate position between the
77 atherosclerotic plaques and the rest of the lipids from other locations. This can suggest that the omentum fat,
78 at least according to physical parameters of the heat capacity, are close to atherosclerotic fats, and they have a
79 high thermal capacity as the APs.

80 According to the Table 1 and the Figure 1 we can conclude firstly, that all lipids have the ability to store
81 a heat. Secondly, the lipids of various locations of the body have different abilities to store a heat. Third,
82 atherosclerotic plaques carry a higher energy potential in compare with the rest of the body lipids. So, the dense
83 and loose APs have the highest heat capacity. It is known that a heat capacity of substances depends on its
84 chemical composition, structure, and biological nature [11, ??2].

85 IV.

8 Discussion

86 The fact, that different body fats have different biophysical and biochemical properties, has also been confirmed
87 by others ??13]. The study of the mRNA expression of proteins secreted by adipocytes in the subcutaneous and
88 visceral adipose tissue in humans have shown that visceral and subcutaneous adipocytes have different properties
89 with regard to the synthesis of bioactive molecules ??14].

90 Fats are energy accumulators, but not all fats are the same between themselves [15]. Triglycerides containing
91 saturated fatty acids are main energy source in the body. The harder the fat, the greater is the content of
92 saturated fatty acids ??16, ??7].

93 Heating value of lipids according to the chemistry rules depends on the content of saturated and branched
94 hydrocarbon chains ??18].

98 Appearance of APs in the body precedes transient, sometimes permanent hyperlipidemia ??19]. Because of
99 a reserve capacity of the body accumulation of APs takes some years ??20, ??1]. Could we guess that genesis
100 of APs is the result of the transformation of body fats which were not used? Despite the small volume APs
101 intrinsically possess a high heating value. Therefore, over time a certain amount of excess fat within the body is
102 transformed into a more compact, but energy consuming lipid. Perhaps this process of increasing density of fats
103 is a deliberate and intentional process which is required for saving body space without loss of energy resources?

104 The research result revealed that the lipids of a human body have different heating capacities depending on
105 their location where APs have had the greatest heating capacity among of the studied lipids. Our findings can
106 allow to look at the nature of an atherosclerosis occurrence and development is not just from the standpoint of
107 pathology, but it is possible to tell from the position of "physiological" changes of body fats. The results of the
108 study suggest that an atherosclerotic plaque is not an accidental phenomenon in the body, but it is a logical
109 pathophysiological process in result of fats compaction. This point may allow to develop new treatment methods
110 of atherosclerotic diseases in the future.

111 V.

112 9 Conclusion

113 The fats of a human body have different calorific properties depending on a location.

114 The lipids of various locations of the body (dense AP, loose AP, VF from omentum fat, VF from pararenal fat,
115 SF from umbilical area, SF from shoulder area, SF from buttock area) have different abilities to store a heat.
116 Atherosclerotic plaques carry the highest energy potential in comparison to the other body lipids, especially the
117 dense APs have the highest heat capacity. The lipids from omentum area have an intermediate position between
118 lipids of atherosclerotic plaque and the rest lipids from other locations. The lowest thermal capacity has pararenal
119 fats.

120 Competing interests: Conflicts of interest were not declared by any author.

121 10 VI.

122 11 Endnotes

123 Study limitation. Several limitations of the study deserve comment. First, the design of the present study was
124 experimental-based, which is susceptible to selection bias. Second, the sample size was small, limiting its ability
125 to detect significant results. Third, the physical investigations indicated only some of organic substances, and
126 calorific value was estimated by specific heat capacity. Fourth, the heterogeneous content of organic substances
127 in the human fats was not analyzed in the present study. Finally, it is important to mention that our study was
128 performed on Kazakhstan citizens, and our findings may not be relevant to people of other countries. ¹

¹© 2013 Global Journals Inc. (US) © 2013 Global Journals Inc. (US)

1

Figure 1: Figure 1 :

1

Trial national registration: State registration # 0109RK000079, code O.0475 at the National Center for Scientific and Technical Information, the Republic of Kazakhstan.

Trial International registration ClinicalTrials.gov NCT01700075.

Funding: Foundation Grant "Fund of the First President of the Republic of Kazakhstan" for 2009-2010, Grant #69-09 from 23.06.2009, and Order #28 from 06.05.2009.

Figure 2: Table 1 :

129 Acknowledgements: We thank the grant from "Fund of the First President of the Republic of Kazakhstan".
130 We are grateful to scientific staff of "Institute of Chemical Sciences named A.B.Bekturov", PhD, DSc Espenbetov
131 A.A., PhD, DSc Kurmankulov N.B., and PhD Daurenbekov K.N. We are also grateful to staff of the Almaty
132 Center of Forensic Medicine, director Erezhepov N.M., experts Ismailov N. and Abdraimov M. Special thank
133 Elmira Nurakhanova for language and logistic support and for technical assistance.

134 [Dahlback and Ahnstrom] , B Dahlback , J Ahnstrom , Christoffersen .

135 [Chang et al. ()] 'A systematic review of body fat distribution and mortality in older people'. S-H Chang , T S
136 Beason , J M Hunleth , G A Colditz . *Maturitas* 2012. 72 (3) p. .

137 [Ch ()] 'Apolipoprotein M: structure and function'. Ch . *Future Lipidology* 2008. 3 (5) p. .

138 [Britton et al. ()] 'Body Fat Distribution, Incident Cardiovascular Disease, Cancer, and All-Cause Mortality'. K
139 A Britton , J M Massarojmmurabito , B E Kreger , U Hoffmann , C S Fox . *Journal of the American College*
140 *of Cardiology* 2013. 62 (10) p. .

141 [Ge et al. ()] 'Chemical properties, microbial biomass, and activity differ between soils of organic and conven-
142 tional horticultural systems under greenhouse and open field management: a case study'. T Ge , S Nie , J
143 Wu . *Journal of Soils and Sediments* 2011. 11 (1) p. .

144 [Guan ()] 'Discovering novel brain lipids by liquid chromatography/tandem mass spectrometry'. Z Guan . *J*
145 *Chromatogr B AnalytTechnol Biomed Life Sci* 2009. 877 (26) p. .

146 [Khalil et al. ()] 'Lipid sources differ in caloric value for growing rats'. D A Khalil , C F Hanson , F N Owens .
147 *Nutrition Research* 1992. 12 (3) p. .

148 [Leyva and Ma ()] 'Quantitative and qualitative methods using fluorescence microscopy for the study of modified
149 low density lipoproteins uptake'. F J Leyva , Ma . *Scanning* 2009. 31 (4) p. .

150 [Kubo et al. ()] 'The Dynamic Nature of Coronary Artery Lesion Morphology Assessed by Serial Virtual
151 Histology Intravascular Ultrasound Tissue Characterization'. T Kubo , A Maehara , G S Mintz . *Journal*
152 *of the American College of Cardiology* 2010. 55 (15) p. .

153 [Delapp et al. ()] 'Thermodynamic properties of several soil-and sediment-derived naturalorganic materials'. R
154 C Delapp , E J Leboeuf , K D Bell . *Chemosphere* 2004. 54 (4) p. .

155 [Leskovac et al. ()] 'Thermodynamics of Fatty Acid Degradation'. V Leskovac , S Trivic , D Pericin . *Journal of*
156 *Physical Chemistry* 2010. 114 (49) p. .

157 [Omi et al. ()] *Ultrastructural assessment of cellulite morphology: clues to a therapeutic strategy?Laser Ther*, T
158 Omi , S Sato , S Kawana . 2013. 22 p. .