

1 Diagnostic Role of the Bethesda System for Reporting Thyroid 2 Lesions: Effective Tool for Managing Thyroid Lesions

3 Dr Peeyush Kumar Saini¹

4 ¹ Government Medical College, Surat.

5 *Received: 6 December 2013 Accepted: 1 January 2014 Published: 15 January 2014*

6

7 **Abstract**

8 Introduction: As Fine needle aspiration cytology (FNAC) is the primary investigation for the
9 management of thyroid lesions, its interpretation is very crucial. The Bethesda System for
10 Reporting Thyroid Cytopathology (TBSRTC) for clarity of communication recommends that
11 each case should be reported in 1 of 6 general diagnostic categories facilitating communication
12 among the managing team of doctors and leaves almost no confusion regarding the
13 management of thyroid lesions. Aim: To study utility of The Bethesda system of reporting
14 thyroid cytopathology. Materials and Method: During period of 1 year from 1st January to
15 31st December 2012 aspiration cytology has been carried out in 160 thyroid swellings referred
16 to cytology department of a tertiary care hospital in Surat. Fine needle aspiration cytology
17 was performed using mainly non-aspiration and aspiration techniques. All the cases were
18 reported using TBSRTC. Cases were followed whenever possible.

19

20 **Index terms**— FNAC, non aspiration technique, thyroid lesions, the bethesda.

21 **1 Introduction**

22 Thyroid enlargement is a common occurrence in most regions of the world including India. Being tertiary care
23 hospital we frequently encounter such cases because southern Gujarat and surrounding mountainous areas are
24 one of the endemic goitre belt in India.

25 Thyroid lesions are one of the most common lesions subjected to the cytopathology as Fine needle aspiration
26 cytology (FNAC) is the first line investigation apart from other investigations like ultrasonography (USG), thyroid
27 function tests, thyroid scan, and antibody levels are done subsequently to select the patients who require surgery
28 and those that can be managed conservatively. [1,2] For the primary evaluation of patients FNAC has proven
29 to be a rapid, cost-effective, safe and reliable method of investigation like in lesions of breast, lymph nodes and
30 others. [3,4] However, the success of FNAC is dependent on several important contributing influences including
31 aspirator experience, skilful interpretation rational analysis and its application in management. Data from the
32 Surveillance Epidemiology and End Results (SEER) registry show an increasing prevalence of differentiated
33 thyroid cancer worldwide, [5,6] The increasing prevalence of thyroid cancer and improvements in the technology
34 and resolution of ultrasound machines have led to an increasing number of cytological diagnostic procedures.
35 [7] So being the primary investigation, interpretation and application of FNAC findings is very crucial for
36 further management of thyroid lesions especially for ruling out need of surgery. Uniform communication
37 amongst the cytopathologist, surgeons, endocrinologists, radiologists, and other health care providers will
38 eliminate confusion regarding management. Few borderline thyroid lesions often create confusions regarding
39 treatment. To eliminate such dilemma National Cancer Institute USA in 2007 conference meet was organised in
40 Bethesda with one of the objectives being to standardize the diagnostic terminology for the reporting of thyroid
41 cytopathology results. The recommendations resulting from this conference led to the formation of The Bethesda
42 System for Reporting Thyroid Cytopathology (TBSRTC). This classification scheme has achieved its purpose
43 of standardization of thyroid-reporting cytopathology, as evidenced by several publications. [8] Materials and

7 DISCUSSION

44 Method: During period of 1 year from 1 st January to 31 st December 2012 aspiration cytology has been carried
45 out in 160 thyroid swellings referred to cytology department of a tertiary care hospital in Surat. Fine needle
46 aspiration cytology was performed using mainly non-aspiration and aspiration techniques. All the cases were
47 reported using TBSRTC. Cases were followed whenever possible.

48 Observations and Results: The cytological samples were assessed by qualified consultant pathologists and were
49 categorized in category 1 to 6,six tier system according to TBSRTC criteria given by National Cancer Institute
50 USA. Fine needle aspiration cytology analysis revealed 149 (93.12%) non-neoplastic and 11(6.88%)neoplastic
51 lesions. Major bulks of 140 cases (87.5%) were of category II. Conclusion: Application of TBSRTC bridges the
52 gap in communication amongst the cytopathologist, endocrinologists, surgeons, radiologists, and other health
53 care providers not only in the confined region but also worldwide and leaves no confusion regarding management
54 of thyroid lesions. Few of the borderline lesions often create the confusion which are eliminated by TBSRT.
55 implementation of TBSRTC. Current study was mainly focussed to study the role of reporting system.

56 2 II.

57 3 Material and Method

58 Study includes 160 cases of thyroid swellings patients referred to the cytopathology section of pathology
59 department in a tertiary care hospital in southern gujarat between January 2012 and December 2012. Patient's
60 details regarding history, clinical examination, thyroid function tests, clinical diagnosis, FNAC and histological
61 data whenever possible were noted. The data were analysed in simple statistical tables.

62 All the cases of thyroid swelling subjected to FNAC were performed by cytopathologist. Prior to procedure,
63 palpation was carried out to note the mobility of the thyroid during swallowing and the presence of any enlarged
64 cervical lymph node. The patients were made to lie supine with their necks stretched up. A 23-24 gauge needle
65 was used, with non-aspiration technique in most cases and very few cases with aspiration technique by a 10
66 ml disposable syringe. Two or more passes at different sites were made in each case. No major complications
67 like penetration injury to the trachea, laryngeal nerve, or hematoma were recorded. Slides were prepared from
68 aspirated material. In the case of cystic nodules, the cysts' contents were aspirated, centrifuged, and slides made
69 from the sediment for cytological examination. The slides were stained with MayGrunwald Giemsa (MGG),
70 Papanicolou [PAP] stain and Haematoxylin and Eosin (H&E) and examined under light microscope. The
71 microscopic diagnosis was interpreted under guidelines laid down by TBSRTC including categories I to VI (table
72 1) after taking into account of all available clinical, radiology and other data. Whenever possible, further sub
73 typing was given. The cytological diagnosis were correlated with clinical features, thyroid function tests, subjected
74 to histopathological examination whenever possible.

75 4 III.

76 5 Results

77 Study includes 160cases with age rangebetween 5 to 70 years. Maximum cases were in 21 -50 years of age group.
78 Bulk of the cases were females comprising of 136 cases (85%) and 24 cases (15%) were males and female: male
79 ratio was 5.67:1. Long standing history of thyroid swelling was the main presenting symptom. Swelling was
80 mainly diffuse and nodular in few cases. Symptoms like pain in the neck region, dysphagia, hoarseness of voice
81 and cough were rare.

82 FNAC of 160 patients yielded the following diagnosis as depicted in Table 1.

83 6 IV.

84 7 Discussion

85 As in management of thyroid lesions, FNAC is the gold standard and primary investigation of choice along
86 with other investigations like (USG) ultrasonography examination, thyroid function tests, thyroid scan, and
87 antibody levels are done subsequently to find out patients who require surgery and those that can be managed
88 conservatively. [1,2] Being a tertiary care hospital we have many patients of thyroid disorders from the South
89 Gujarat region including Bharuch, Vapi, Songadh, Vyara and other goitre belts. Majority of these lesions
90 are usually benign and require no aggressive treatment. So interpretation in each case is very crucial for
91 further management Also we want to establish uniform communication between the pathologist, radiologist,
92 endocrinologist, surgeons and treating physicians. So that there would be no confusion regarding further
93 management.

94 TBSRTC is a vital guideline which can bridge the communication gap and useful to maintain uniformity not
95 on in the confined region but also worldwide. We followed the TBSRTC guidelines and every case was classified
96 according to six tier reporting guideline from category I to VI.

97 Study includes total 160 cases of thyroid lesions which comprised of 140 cases (87.5%) of total. Published
98 data suggest FNA has an overall accuracy rate around 75% in the detection of thyroid malignancy. Category II:
99 It included most of the study cases with 140 cases (87.5%) of total. Age ranges with maximum number of cases
100 were in 20-50 year age group. It consists of 'non-neoplastic' or 'negative for malignancy' cases like colloid goitre

101 with 97 cases (69.29%), Thyroiditis with 36 cases (25.71%) and Adenomatoid goitre 7 cases (5%). All of these
102 benign cases were just followed up and surgery was prevented.

103 Category III: It includes lesions which were not clearly benign or malignant. Conclusive opinion was not
104 possible. We did not have any case diagnosed in this category.

105 Category IV: It includes 5 cases(3.12%) of follicular neoplasm (FN) and suspicious of follicular neoplasm (SFN).
106 The age group which was studied ranged from 5 years to 70 years and maximum no. of cases were in the age
107 group 20-50 years means bulk of thyroid diseases were frequently encountered in young and middle aged group
108 also the majority of cases were the females in reproductive age groups. In present study a female preponderance
109 was noted. Similar female preponderance was noted by Unnikrishnan et al. [10] Neoplastic lesions were 11 cases
110 (6.88%). The benign cyst consistent with thyroglossal cyst were 4 cases (2.06%) and others were 4 cases (2.06%).
111 The bulk of the goitre cases were in the age group of 20-50 years and thyroiditis cases were in 11-40 years and
112 mainly in the reproductive age group of the females.

113 Category I: This category includes cases in which sufficient material was not available like insufficient follicular
114 cells (Satisfactory for evaluation: six groups of well visualised follicular cells with at least ten cells per group),
115 cyst fluid only, obscuring blood, only macrophages, preparation artefact. In such cases repeat FNA was carried
116 out under ultrasound guidance.

117 Category II: Majority of lesions were benign mainly of colloid goitre 97 cases (69.29%) out of 140. In comparison
118 to various studies benign category includes 60-70% [8] reason for that is we have goitre belt here. Similar findings
119 were observed Unnikrishnan et al. [10] The chances of thyroiditis after reproductive age appeared minimal from
120 this study.

121 Category III: It is reserved for specimens that contain cells (follicular, lymphoid, or other) with architectural
122 and/or nuclear atypia that is not sufficient to be classified as suspicious for a follicular neoplasm, suspicious
123 for malignancy, or malignant. Management in such lesions is repeat FNAC after an appropriate interval. To
124 be noted that this category is of last resort & should not be used indiscriminately. [8] Category IV: The goal
125 of this category is to identify all potential follicular carcinomas and refer them for a diagnostic lobectomy.
126 Although these cytomorphologic features do not permit distinction from a follicular adenoma (FA), they are
127 reportable as Follicular Neoplasm (FN) or suspicious of Follicular Neoplasm (SFN), leading to a definitive
128 diagnostic procedure, usually lobectomy. [11,12,13] The term SFN is preferred by some laboratories over FN
129 for this category because a significant proportion of cases (up to 35%) prove not to be neoplasms but rather
130 hyperplastic proliferations of follicular cells, most commonly those of multinodular goiter. [14][15][16][17] About
131 15% to 30% of cases called FN/SFN prove to be malignant. [11,14,16] The majority of FN/SFN cases turn
132 out to be FAs or adenomatoid nodules of multinodular goiter, both of which are more common and outnumbers
133 the Follicular carcinoma. Category V: FNAC can diagnose many of the thyroid cancers with fair accuracy,
134 especially papillary thyroid carcinoma (PTC) which can be diagnosed with certainty by FNA. But the nuclear
135 and architectural changes of some PTCs are subtle and focal. This is particularly true of the follicular variant of
136 PTC, which can be difficult to distinguish from a benign follicular nodule. [18] Other PTCs may be incompletely
137 sampled and yield only a small number of abnormal cells. [19] If only 1 or 2 characteristic features of PTC are
138 present or if they are only focal and not widespread throughout the follicular cell population, or if the sample is
139 sparsely cellular, a malignant diagnosis cannot be made with certainty. Such cases occur with some regularity,
140 and they are best classified as suspicious for malignancy," qualified as "suspicious for papillary carcinoma." Such
141 cases suspicious for papillary carcinoma are resected by lobectomy or thyroidectomy. Most (60%-75%) prove to
142 be papillary carcinomas, and the rest are usually FAs. [11,14,16] The same general principle applies to other
143 thyroid malignancies like medullary carcinoma and lymphoma, but these are less frequent than PTC. Such cases
144 were considered after correlating the other findings like serum calcitonin and calcium levels and other relevant
145 data in medullary carcinoma.

146 8 Category VI:

147 The malignant category is used whenever the cytomorphologic features are indicative of malignancy. After
148 confirming the malignancy the sub classification was done after summarizing all the results. Approximately
149 3% to 7% of thyroid FNAs have conclusive features of malignancy, and most are papillary carcinomas. [11,14]
150 Malignant lesions are usually treated by thyroidectomy, with some exceptions (e.g., metastatic tumors, non-
151 Hodgkin lymphomas, and undifferentiated carcinomas). According to studies the positive predictive value of a
152 malignant FNA interpretation is 97% to 99%.

153 We here practiced mainly the non-aspiration technique in almost all cases for studying cytology and found
154 that it is better than aspiration technique. Aspiration technique is associated with low cellularity and more blood
155 as compared to non-aspiration method. We recommend the non-aspiration method for FNAC of thyroid lesions.
156 Similar suggestions by different studies like Maurya et.al [20] also recommend the non-aspiration technique better
157 for thyroid lesion evaluation by FNAC. The study found that it is difficult to differentiate follicular/Hurthle cell
158 adenoma from carcinoma on cytological assessment because cytology cannot evaluate the criteria of vascular or
159 capsular invasion or of intrathyroid spread. But the papillary carcinoma, Anaplastic carcinoma and medullary
160 carcinoma can be diagnosed by characteristic cytological features.

161 V.

¹⁶² **9 Conclusion**

¹⁶³ TBSRTC is a vital guide for accurate management of thyroid lesions. Classifying the lesions in six categories and
¹⁶⁴ following the guidelines given by The Bethesda USA meetings solves all problems regarding the management of
¹⁶⁵ thyroid lesions and leaves no confusion. It plays a big role in establishing the uniform communications between
¹⁶⁶ the managing medical personnel. Marked cellularity of the smear is the problem inherent in thyroid FNAC.
¹⁶⁷ Increased cellularity of the smear and loss of cohesion may be present in hyperplastic/adenomatous goiter and
¹⁶⁸ follicular neoplasm which causes difficulty in differentiating them. This can be solved by using The Bethesda
¹⁶⁹ System of Reporting thyroid lesions. We experienced that The Bethesda Reporting System is best for management
¹⁷⁰ of thyroid lesions as it gives uniform reporting system. I-Non diagnostic or unsatisfactory, II-Benign, III-Atypia of
¹⁷¹ undetermined significance or Follicular lesions of undetermined significance, IV-Follicular neoplasm or suspicious
of follicular neoplasm, V-Suspicious of malignancy, VI-Malignant lesion. ¹

Figure 1: T

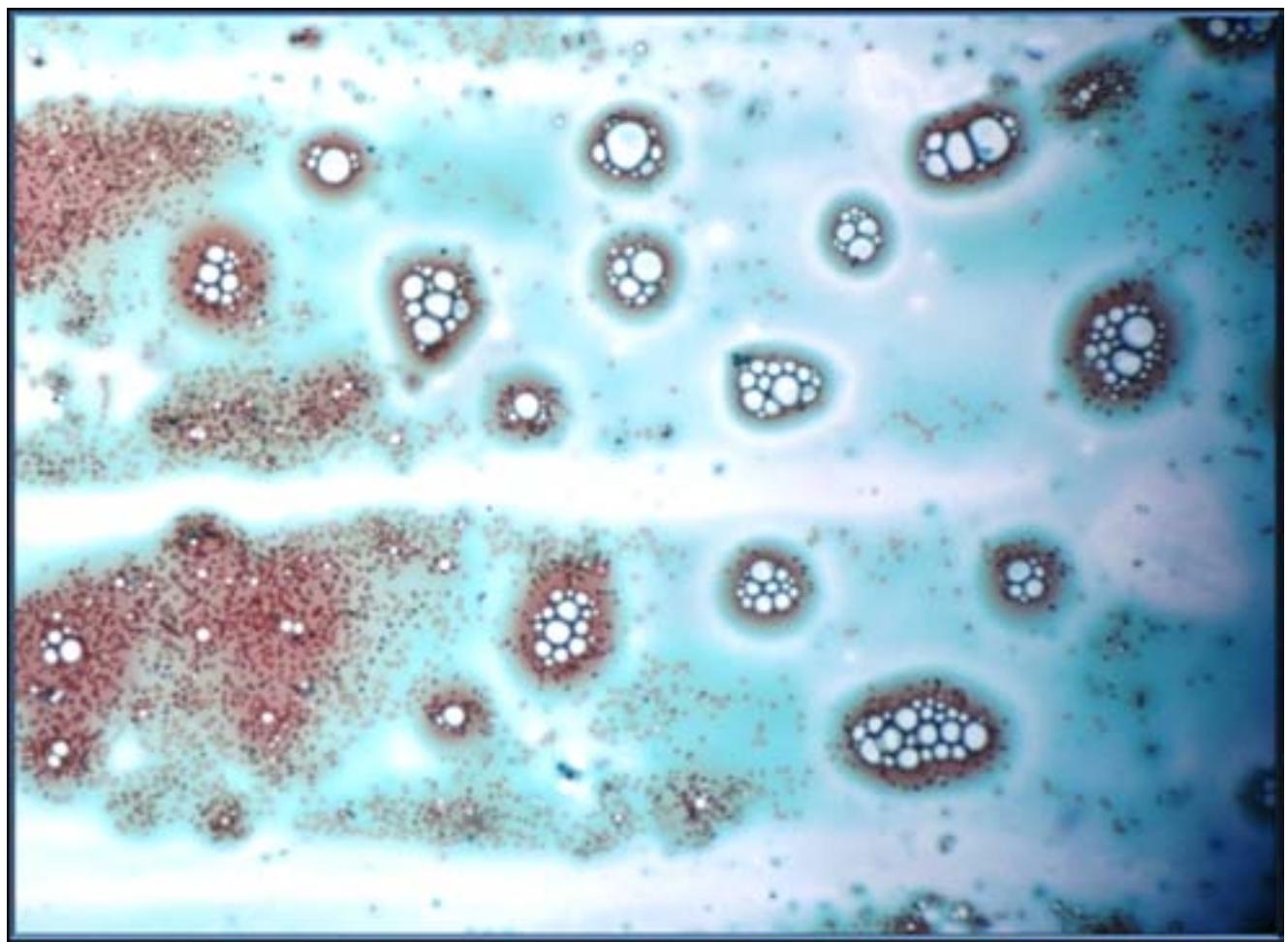


Figure 2:

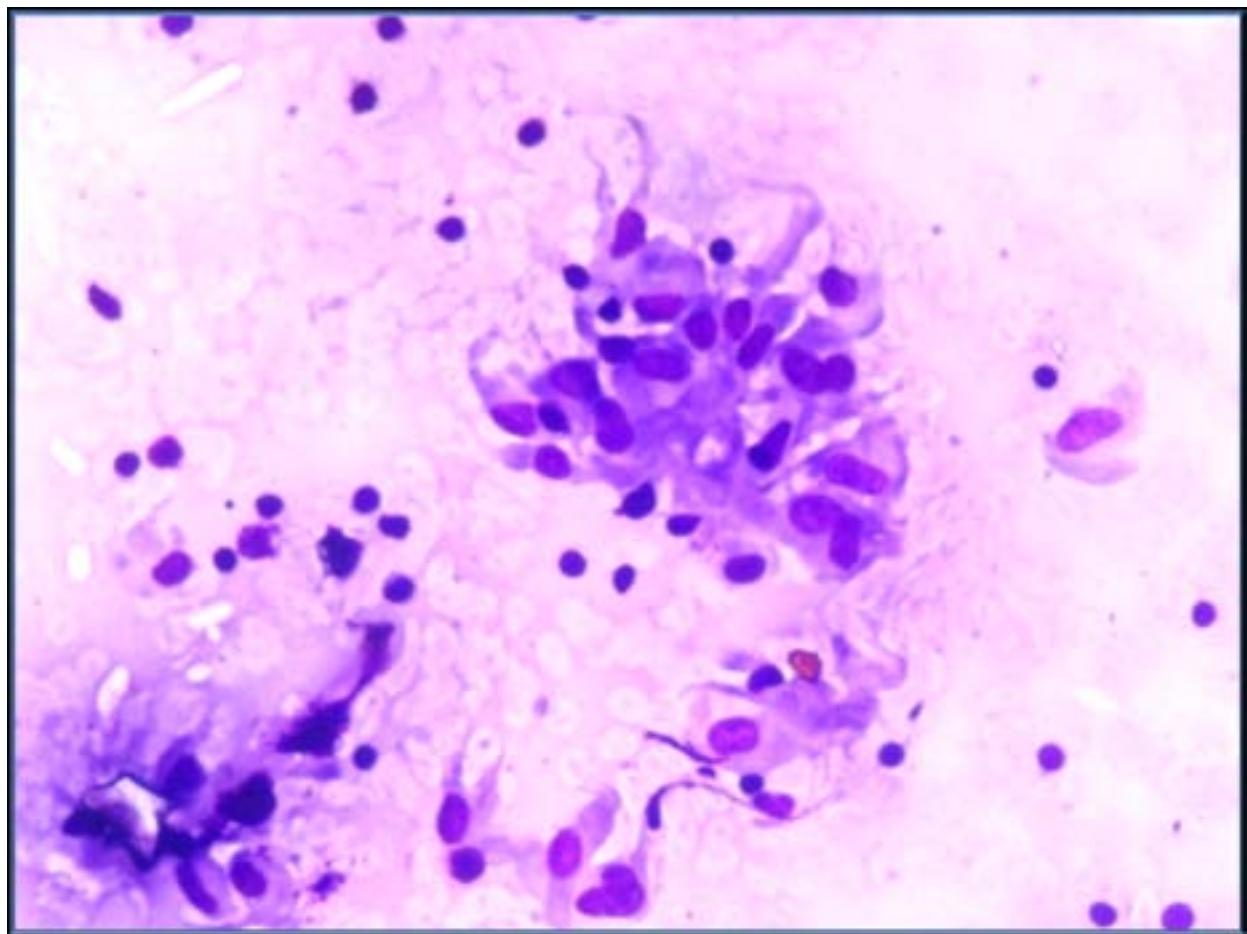


Figure 3: C

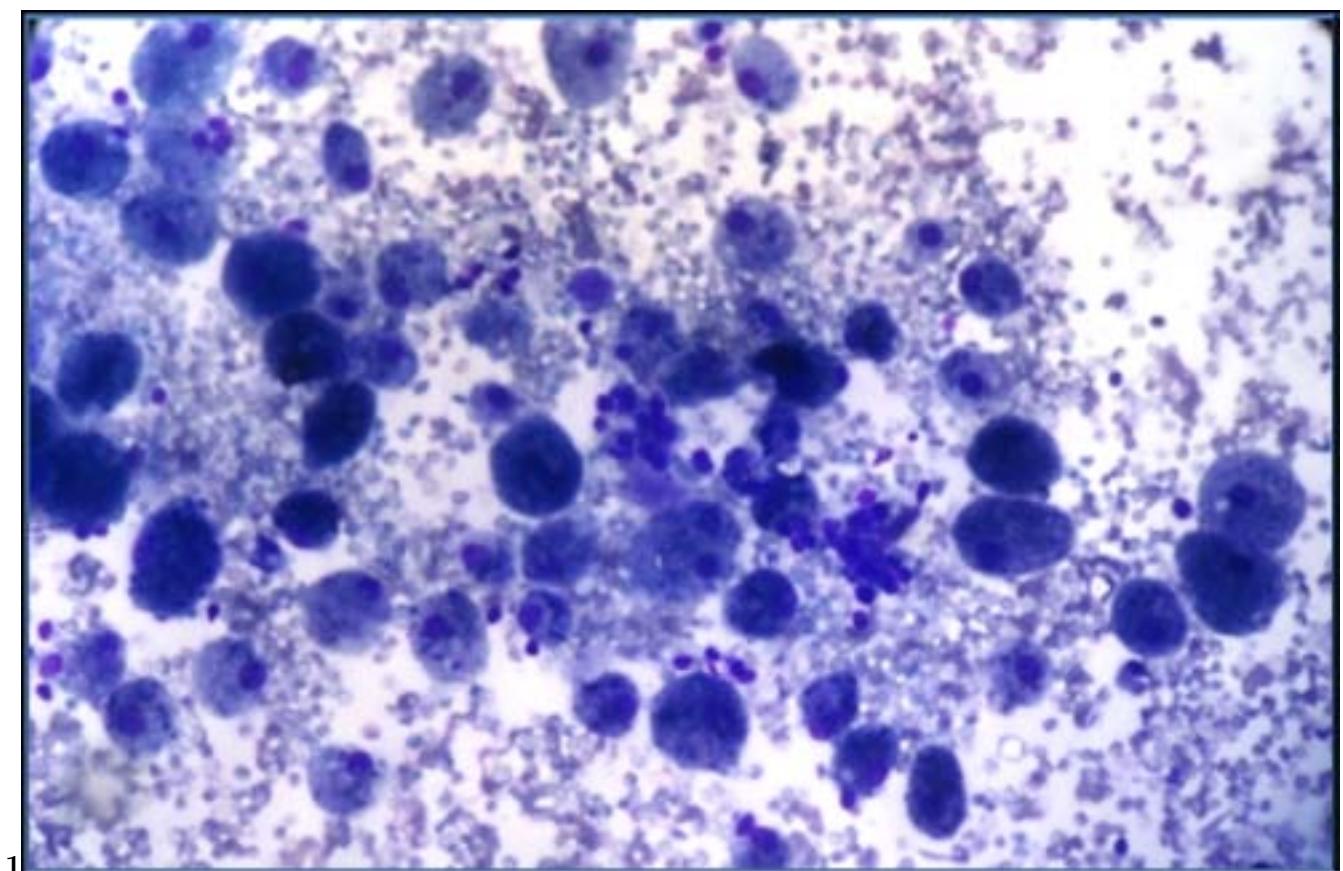


Figure 4: Figure 1 :

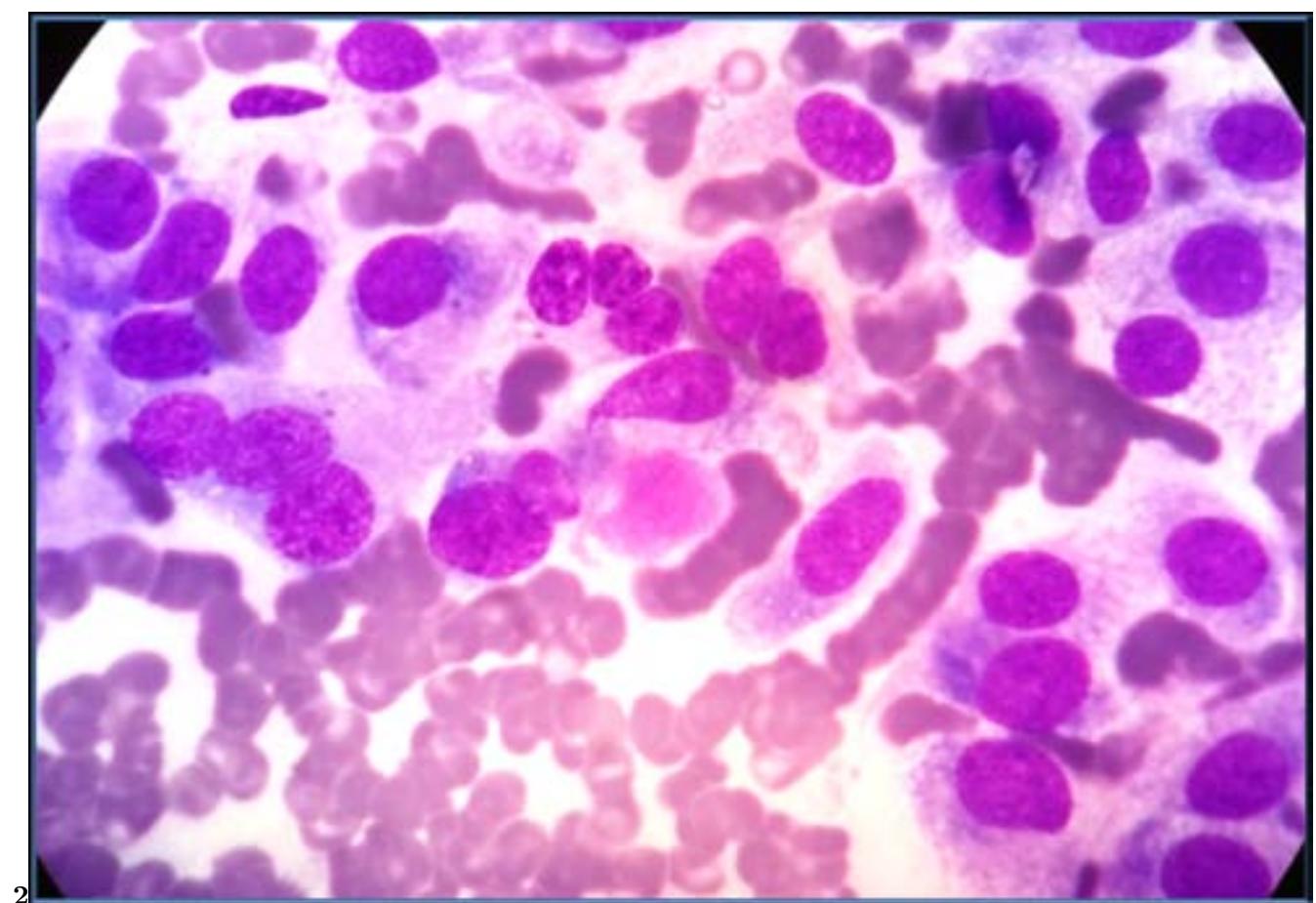


Figure 5: Figure 2 :

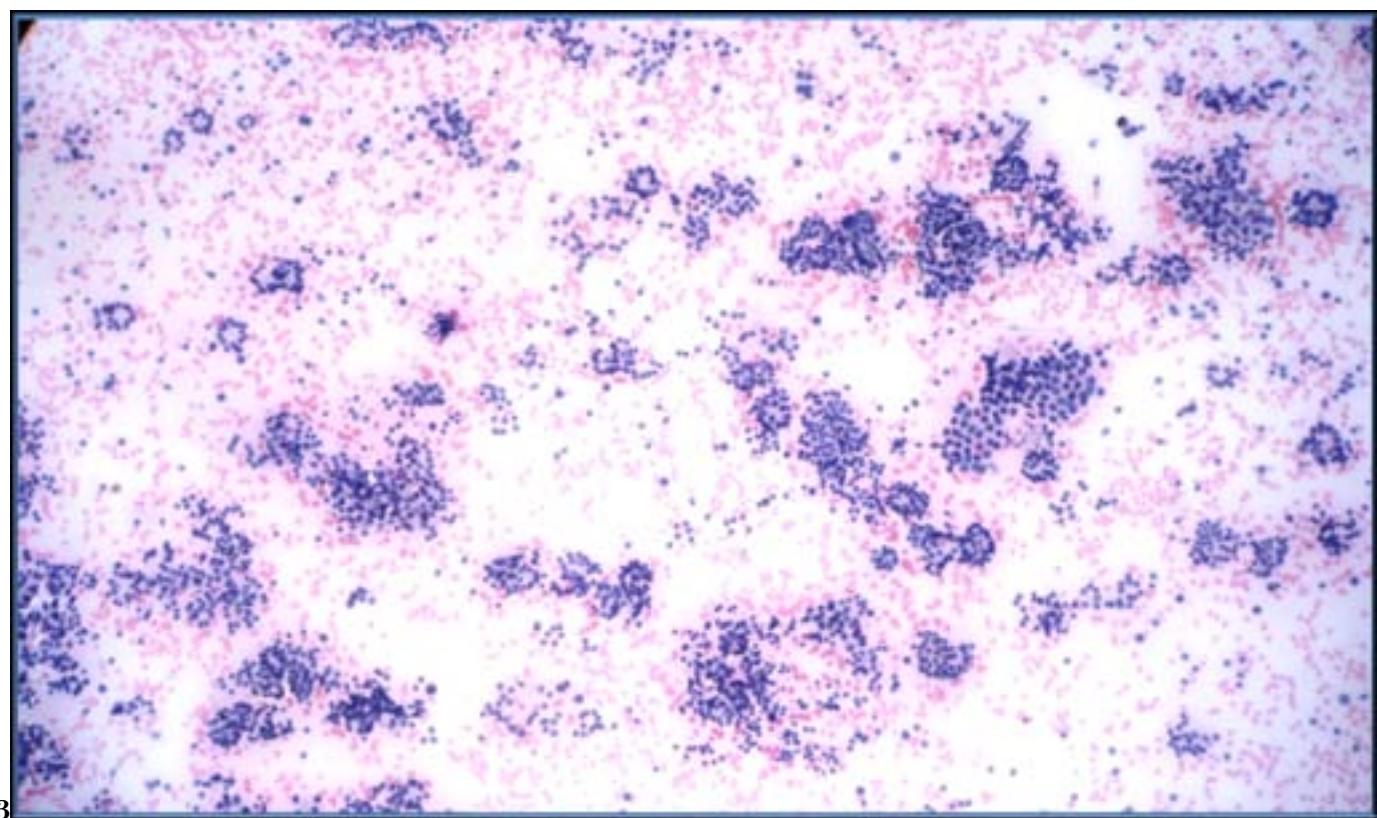


Figure 6: Figure 3 :

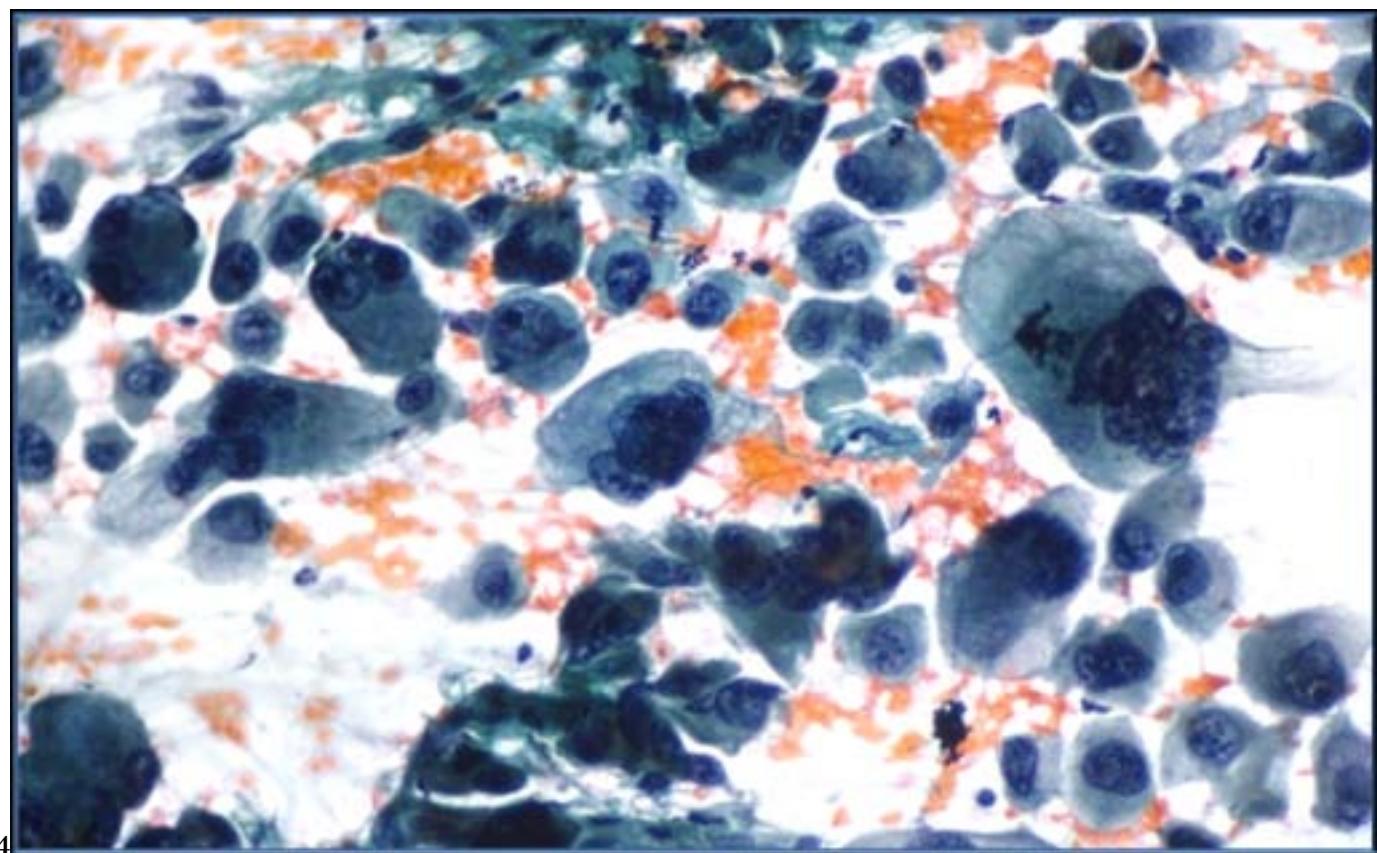


Figure 7: Figure 4 :C

9 CONCLUSION

1

2014

Year

16

Volume XIV Issue I

Version I

() C

Medical Research

Global Journal of

Age in years	Male	Female	I	II	III	IV	V	VI	Total
1-10	1	1	0	2	0	0	0	0	2
11-20	2	5	0	6	0	0	0	1	7
21-30	4	43	2	44	0	1	0	0	47
31-40	11	41	4	45	0	0	1	2	52
41-50	4	27	1	25	0	3	0	2	31
51-60	1	8	0	8	0	1	0	0	9
61-70	1	11	2	10	0	0	0	0	12
Total	24	136	9	140	0	5	1	5	160
	(15%)	(85%)	(5.63%)	(87.5%)	(0%)	(3.12%)	(0.63%)	(3.12%)	

Figure 8: Table 1 :

2

Diagnostic category	Cytological diagnosis	Risk of malignancy	Clinical management
I	Non-diagnostic or Unsatisfactory	1-4 %	Repeat FNA with ultrasound guidance
II	Benign	0-3 %	Clinical follow-up
III	AUS/FLUS*	5-15 %	Repeat FNA
IV	FNS/SFN ¶	15-30 %	Surgical lobectomy
V	Suspicious of malignancy	60-75 %	Near total thyroidectomy
V	Malignant	97-99 %	or Surgical lobectomy Near total thyroidectomy

Figure 9: Table 2 :

173 [Ries et al. ()] 'Bethesda, National Cancer Institute'. Lag Ries , D Melbert , M Krapcho . http://seer.cancer.gov/csr/1975_2005/ SEER Cancer Statistics Review, 1975-2005. 2007.

174

175 [Maurya (2010)] 'Comparison of aspiration vs nonaspiration techniques in fine-needle cytology of thyroid lesions'.
176 Maurya . *J Cytol* April 2010. 27 (2) p. .

177 [Giuffrida and Gharib ()] 'Controversies in the management of cold, hot and occult thyroid nodules'. D Giuffrida
178 , H Gharib . *Am J Med* 1995. 99 p. .

179 [Baloch et al. ()] 'Diagnosis of "follicular neoplasm": a gray zone in thyroid fineneedle aspiration cytology'. Z W
180 Baloch , S Fleisher , V A Livolsi . *DiagnCytopathol* 2002. 26 p. .

181 [Robinson and Cozens ()] 'Does a joint ultrasound guided cytology clinic optimize the cytological evaluation of
182 head and neck masses?'. I A Robinson , N J Cozens . *ClinRadiol* 1999. 54 p. .

183 [Unnikrishnan (2011)] *Endocrine Society of India management guidelines for patients with thyroid nodules: A
184 position statement*, Unnikrishnan . 2011 Jan-Mar. Indian J EndolMetab. 15 p. .

185 [Caruso and Mazzaferri ()] 'Fine needle aspiration biopsy in the management of thyroid nodules'. D Caruso , E
186 L Mazzaferri . *Endocrinologist* 1991. 1 p. .

187 [Gharib et al. ()] 'Fine-needle aspiration cytology of the thyroid: a 12-year experience with 11,000 biopsies'. H
188 Gharib , J R Goellner , Johnson Da . *Clin Lab Med* 1993. 13 p. .

189 [Deveci et al. ()] 'Fine-needle aspiration of follicular lesions of the thyroid: diagnosis and follow-up'. M S Deveci
190 , G Deveci , V A Livolsi . *Cytojournal* 2006. 3 p. 9.

191 [Yang et al. ()] 'Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical
192 correlations'. J Yang , V Schnadig , R Logrono . *Cancer* 2007. 111 p. .

193 [Renshaw ()] 'Focal features of papillary carcinoma of the thyroid in fine-needle aspiration material are strongly
194 associated with papillary carcinoma at resection'. A A Renshaw . *Am J Clin Pathol* 2002. 118 p. .

195 [Chen et al. ()] 'Increasing incidence of differentiated thyroid cancer in the United States'. A Y Chen , A Jemal
196 , E M Ward . *Cancer* 1988-2005. 2009. 115 p. .

197 [Chung et al. ()] 'Macrofollicular variant of papillary carcinoma: a potential thyroid FNA pitfall'. D Chung , R
198 A Ghossein , O Lin . *DiagnCytopathol* 2007. 35 p. .

199 [Mazzaferri ()] 'NCCN thyroid carcinoma practice guidelines'. E L Mazzaferri . *Oncology* 1999. 13 p. .

200 [Layfield et al. ()] 'Post thyroid FNA testing and treatment options: a synopsis of the National Cancer Institute
201 Thyroid Fine Needle Aspiration State of the Science Conference'. L Layfield , B Cochand-Priollet , V Livolsi
202 . *Diagn Cytopathol* 2008. 36 p. .

203 [Ross ()] 'Predicting thyroid malignancy (editorial)'. D S Ross . *J ClinEndocrinolMetabol* 2006. 91 p. .

204 [Kini et al. ()] 'Role of FNA in the medical management of minimally enlarged thyroid'. U Kini , A Buch , G
205 Bantwal . *DiagnCytopathol* 2006. 34 p. .

206 [Ali and Cibas ()] *The Bethesda System for Reporting Thyroid Cytopathology. Definitions, criteria and explanatory notes*, S Z Ali , E S Cibas . 2010. New York: Springer.

207

208 [Silverman et al. ()] 'The role of FNAC in the rapid diagnosis and management of thyroid neoplasm'. J F
209 Silverman , R E West , E W Larkin , H M Park , J L Finley , M S Swanson . *Cancer* 1986. 57 p. .

210 [Kelman et al. ()] 'Thyroid cytology and the risk of malignancy in thyroid nodules: importance of nuclear atypia
211 in indeterminate specimens'. A S Kelman , A Rathan , J Leibowitz . *Thyroid* 2001. 11 p. .