

1 A Study on Cold Agglutinins in Malaria from a Tertiary Care
2 Hospital of South India

3 Venkatesh VN¹, Ravish Kumar M² and Dr. Mahesh. G.S³

4 ¹ Basaveshwara Medical College and Hospital

5 *Received: 7 December 2013 Accepted: 3 January 2014 Published: 15 January 2014*

6

7 **Abstract**

8 Background: Malarial infection associated with common hematological abnormalities like
9 anemia, Thrombocytopenia, Hemolytic anemia. Hemolytic anemia is due to occurrence of cold
10 agglutinins. This study throws light on the prevalence of cold agglutinins in patients with
11 malarial infection and their detection. Method: About 150 patients diagnosed as having
12 Malaria by Peripheral smear, QBC for malaria or by Rappid diagnostic test for Malaria were
13 studied for occurrence of cold agglutinins by Cold agglutinin test. Results: Out of 150
14 Patients, who are diagnosed as positive for malaria, 83.3

15

16 **Index terms—**

17 **1 Introduction**

18 Malaria is a public health problem in Sub Saharan Africa, some parts of South East Asia and South America with
19 considerable morbidity and mortality. This disease was almost eradicated in India during 1960's but to reemerge
20 as a public health problem in last few decades 1 . This is mainly due to development of resistance by mosquitoes
21 against the insecticides and to therapeutic agents by the plasmodium organism. The social and environmental
22 changes also plays major role in this situation. Usually the disease malaria results from the parasites belonging
23 to Plasmodium species. Human malaria is a result of four different species of plasmodium including Vivax,
24 Falciparum, Ovale and Malariae.

25 Nowadays, Plasmodium Knowlesii a fifth parasite which was known cause malaria in monkeys has been
26 implicated in some parts of Karnataka.

27 Simple techniques including examination of the peripheral smear is used to establish the diagnosis in Malaria.
28 Fluorescent technique can also be employed to detect the malarial parasite. Nowadays, Malaria is often considered
29 as grey area between the parasitology and hematology. Recent text books have considered malaria as a typical
30 example of Hemolytic Anemia as result of acquired extra corpulsular causes. The common hematological
31 abnormalities accompanied with the malarial infection are anemia, thrombocytopenia, spleenomegaly, mild to
32 moderate atypical lymphocytosis and rarely DIC. 2 The available literature had shown that, the main reason
33 for hemolytic anemia especially in malaria is due to occurrence of cold agglutinins. The cold agglutinins are
34 capable of agglutinating RBCs and hence result in hemolysis. But the literature available shows that the cold
35 agglutinins occur transiently in malaria. This is mainly due to activation of polyclonal B lymphocytes which is
36 predominantly of IgM variety. Rarely might they be either IgA or IgG variety which has the specificity for blood
37 group antigen. The literature suggests that the hemolysis appears in 2 -3 weeks after the malarial infection. The
38 hemolysis is usually mild and self limiting and occasionally severe and fatal. 3,4 Increasing emphases is now given
39 for these antibodies in protection against human malaria which is directed at erythrocytic stages of Plasmodium
40 falciparum. But the protection offered by such antibodies is relatively unstable and the precise role of specificities
41 remains unclear regarding the antigenic variability of parasite proteins. Even though parasite specific antibodies
42 formed contribute to protection, it is not evident to what extent antibodies so formed contribute to protection 5
43 . Many studies have shown that these antibodies result in hemolytic anemia due to complement mediated RBC
44 destruction in the reticuloendothelial system.

8 DISCUSSION

45 Studies regarding role of cold agglutinins are scant in India and World. This made us to take up this study in
46 order study the profile of patients with Cold agglutinins in Malaria.

47 2 II.

48 3 Materials and Methods

49 This cross sectional study was undertaken in the Department of Microbiology, Basaveshwara Medical College and
50 Hospital, Chitradurga. About 150 patients who were diagnosed as having Malaria by peripheral Results: Out of
51 150 Patients, who are diagnosed as positive for malaria, 83.3% of the patients had negative for cold agglutinin
52 and only (4%) were found to have high titers of cold agglutinins. The mean age group of the patients who were
53 positive for the test was 45.25 ± 19.7 years. The Hemoglobin percentage and platelet count in cold agglutinin
54 positive patients were $8.85 (\pm 3.72)$ gms% and $1,03,500 (\pm 1.16)$ respectively. About 50% of the Malarial
55 patients with positive cold agglutinin test were infected with Plasmodium vivax and 50% had mixed vivax and
56 Falciparum infection. The difference in type of parasite and results of the cold agglutinin test was statistically
57 significant.

58 4 Conclusion:

59 The prevalence of cold agglutinins in patients infected with Plasmodium vivax or P falciparum was 2.67%. There
60 was a significant change in hematological parameters like hemoglobin but not platelets.

61 smear examination (both thick and thin), MPQBC or by malarial antigen assay before starting the antimalarial
62 treatment were included in the study. An informed consent was obtained from each patient before the study
63 was started and clearance from Intuitional ethical committee was obtained. This study was carried out between
64 January, 2012 to March, 2013.

65 A detailed history was taken followed by detailed clinical examination for all the patients included in the
66 study. These patients were also investigated for Hemoglobin estimation by cyanmethemoglobin method and
67 Total platelet count by modified Dacie Leurs method.

68 Cold agglutinin test was used to detect cold agglutinins in the malarial patients. The cold agglutinins if present
69 in patient's serum in high titers may be pathologic and result in cold agglutinin disease. Serum or plasma of all
70 the malarial patients was separated at 37.0°C from a Blood sample collected. A pool of 2 or more examples of
71 washed group O1 adult red cells and Phosphate buffered saline (PBS) at pH 7.3 were used as reagents. A serial
72 two fold dilutions of the patient's serum or plasma in PBS were prepared followed by Two drops of each dilution
73 1 drop of a 3% to 5% suspension of red cells was mixed. The solution was mixed and incubated at 4.0°C for 1
74 to 2 hours.

75 The tubes were centrifuged for 15 to 20 seconds at 900 to 1000 X g. Then it was placed in ice water bath. The
76 tubes were examined microscopically for agglutination, starting with the tube at highest dilution. The results
77 were graded and recorded.

78 All the details were collected in a pre-structured, self administered proforma. The data thus obtained was
79 compiled and analysed in the form of frequency and proportions. Chi square test and Student T test were used
80 as significance test by using Statistical Package for Social Sciences (SPSS vs 18). A p value of less than 0.05 was
81 considered as statistically significant.

82 5 III.

83 6 Results

84 7 C

85 50% had less than normal level of hemoglobin. There was statistically significant difference in the hemoglobin
86 levels between the negative and positive cold agglutinin test patients. IV.

87 8 Discussion

88 This study was mainly undertaken to study the prevalence of cold agglutinins in malaria patients. The results
89 from this study had shown that about 2.67% of the malarial patients were positive for cold agglutinins with titres
90 above 1:64 dilutions. In a study in 1980 the authors have failed to demonstrate any cold agglutinins in 1980. 6
91 A study of monoclonal gammopathies of cold agglutinin disease in mayo clinic had shown that the prevalence
92 was 1.1%. A study by Torres et al had shown prevalence similar to that observed in this study. 7 The mean age
93 group of the patients who were positive for the test was $45.2 (\pm 19.7)$ years. About 50% of the patients who were
94 positive for the test belonged to 41 -50 years and 61 years and above age group. However there was a statistically
95 significant difference between age group and result of the Cold agglutinin test. The finding from our study shows
96 that the prevalence of cold agglutinins was common in the patients above 40 years. In contrary to these findings,
97 Sharon 4 states that the secondary cold agglutinin disease is common in children and young adults. About 75%
98 of the patients who had cold agglutinins were males in this study.

99 The mean haemoglobin levels in the positive patients for cold agglutinins was 8.85 (± 3.72) gm% in this study.
100 About 50% of the patients had hemoglobin more than normal and 50% had hemoglobin below normal. This study
101 is able to demonstrate haemolysis similar to the study by Gertz et al ??8 . There was no drop in platelet count
102 in patients who were positive for cold agglutinins in this study. Reduced levels of Haemo-globin and Platelet
count in malaria patients were recorded by other author 8 ^{1 2}

Figure 1: M

1

Frequency Percent

[Note: A]

Figure 2: Table 1 :

103

¹© 2014 Global Journals Inc. (US)

²t (148)= 1.406 p=0.162, NS © 2014 Global Journals Inc. (US)

8 DISCUSSION

2

Age group	Cold agglutinin test		Total n (%)
	Negative n (%)	Positive n (%)	
Less than 20 yrs	25 (17.1)	1 (25.0)	26 (17.3)
21 -30 yrs	57 (39.0)	0	57 (38.0)
31 -40 yrs	25 (17.1)	0	25 (16.7)
41 -50 yrs	17 (11.6)	2 (50.0)	19 (12.7)
51 -60 yrs	10 (6.8)	0	10 (6.7)
61 yrs and above	12 (8.2)	1 (25.0)	13 (8.7)
Total	146 (100)	4 (100)	150 (100)
Mean \pm Std dev	34.09 \pm 15.55	45.25 \pm 19.7	34.39 \pm 15.7

Figure 3: Table 2 :

3

Sex	Cold agglutinin test		Total n (%)
	Negative n (%)	Positive n (%)	
Male	104 (71.2)	3 (75.0)	107 (71.3)
Female	42 (28.8)	1 (25.0)	43 (28.7)
Total	146 (100)	4 (100)	150 (100)
	? 2 value = 0.027	df=1	p=0.869

About 75.

Figure 4: Table 3 :

4

Haemoglobin % More than normal Less than normal Cold agglutinin test Negative n (%) Positive n (%) 35 (24.0) 2 (5)

Total Mean \pm Std dev 146 (100) 11.40 \pm 2.67

t (148) = 1.862 The mean hemoglobin level of the study subjects was 11.33 (\pm 2.72) gm%. Patients negative

[Note: A]

Figure 5: Table 4 :

5

Platelet Count	Cold agglutinin test Negative n (%)	Positive n (%)	Total n (%)
Less than 1,65,000	132 (90.4)	3 (75.0)	135 (90.0)
Normal	13 (8.9)	1 (25.0)	14 (9.3)
More than 4,15,000	1 (0.7)	0	1 (0.7)
Total	146 (100)	4 (100)	150 (100)
Mean ± Std dev	97,832.2 ± 63,824	1,03,000 ± 1.16	97,970.0 ± 65,099.4

$$t (148) = 0.156 \text{ p} = 0.876, \text{ NS}$$

The mean platelet count in test negative patients was 97,832.2 (\pm 63,824) and in test positive patients was 1, 03,500 (\pm 1.16). This difference was not

statistically significant. The platelet count was low 91.4% of test negative and 75% of the test positive patients.

Figure 6: Table 5 :

6

Type of Malarial Para-site	Cold agglutinin test	Total	
		n (%)	
	Negative n (%)	Positive n (%)	
Pl. Vivax	98 (67.1)	0	98 (65.3)
Pl. Falciparum	32 (21.9)	2 (50.0)	34 (22.7)
Mixed	16 (11.0)	2 (50.0)	18 (12.0)
Total	146 (100)	4 (100)	150 (100)
? 2 = 8.985	df=2	p=0.011, Sig	

Figure 7: Table 6 :

no

Figure 8: Table no 6

2014
Year
28
Volume XIV Issue I Version I
() C
Medical Research
Global Journal of

Figure 9:

104 [Sharon et al. (2002)] , G G Sharon , F L Richard , M Rajalakshmi , L Harry . <http://emedicine.medscape.com/article/135327treatment>. Accessed on 2002 October 23. August 28. 2009. 3.

105

106 [Murthy et al. ()] 'Clinical profile of falciparum Malaria in a tertiary care hospital'. G L Murthy , R K Sahay ,
107 V R Srinivasan , A C Upadhyaya , V Shantaram , K Gayatri . *J Indian Med Assoc* 2000. 98 (4) p. 169.

108 [Facer ()] 'Direct antiglobulin reactions in Gambian children with *P. falciparum* malaria'. C A Facer . *Clin. Exp.*
109 *Immunol* 1980. 39 p. .

110 [Constantin et al. ()] 'Increased polyclonal immunoglobulin reactivity toward human and bacterial proteins is
111 associated with clinical protection in human *Plasmodium* infection'. F Constantin , F G Luis , Adolfo Sn , C
112 Alysson , Cor Jesus , F F Erika , M B Nelson , M . *Malaria Journal* 2005. 4 p. 5.

113 [Torres et al. ()] 'Low grade parasitaemia and cold agglutinins in patients with hyper-reactive malarious
114 splenomegaly and acute haemolysis'. J R Torres , L Villegas , H Perez , L Suarez , Vma Torres , M Campos
115 . *Ann Trop Med Parasitol* 2003. 97 (2) p. .

116 [Layla et al. ()] 'Malaria: haematological aspects'. A M Layla , Bashawri , A M Ahmed , A B Ahmed , A A
117 Mirghani . *Annals of Saudi Medicine* Nos 5-6, 2002. 22 p. .

118 [Maina et al. ()] 'Otieno L et alImpact of plasmodium falciparum infection on haematological parameters in
119 children living in Western Kenya'. R N Maina , D Walsh , C Gaddy , G Hongo , J Waitumbi . *Malaria*
120 *Journal* 2010. 9 (3) p. . (suppl)

121 [Claudio et al. ()] *Specificity of auto antibodies in malaria and the role of polyclonal activation, Transaction of*
122 *The Royal Society of Tropical Medicine and Hygiene*, D R Claudio , D Pierre , M Loic , C H Jean , G Marc
123 . 1983. 77 p. .