

1 Use of Intravenous Clonidine for Prolonging Spinal Anaesthesia

2 Dr Prerana Shah

3 Received: 14 December 2013 Accepted: 31 December 2013 Published: 15 January 2014

4

5 **Abstract**

6 Use of intravenous clonidine for prolonging spinal anaesthesia with bupivacaine. Background:
7 Several additives like clonidine are added to prolong spinal blockade. We considered using
8 clonidine through intravenous route as it achieves peak plasma concentration more rapidly
9 than oral or intrathecal routes. The aim was to study onset of analgesia and duration of
10 sensory and motor blockade after spinal anaesthesia. Methods: Our study was a double blind
11 prospective randomized controlled type of 100 patients. In clonidine group, intravenous 3
12 mcg/ kg of Clonidine diluted in 10ml of normal saline was administered after making the
13 patient supine following the spinal blockade. In saline group, intravenous 10 ml of normal
14 saline was administered. Patients were monitored until the sensory block regressed below L1
15 dermatome and knee flexion had recovered. Heart rate and mean arterial pressure were
16 measured. Results: The mean duration of sensory blockade in clonidine group and saline
17 groups were 206.20 and 136.20 minutes respectively. The motor blockade in clonidine group
18 lasted for 157.60 and 129.60 minutes in saline group. The highest spinal level achieved was
19 between T4 to T8 level and between T2 to T8 in clonidine and saline groups respectively. The
20 incidence of bradycardia and hypotension was comparable. Conclusion: Intravenous clonidine
21 significantly prolonged the duration of spinal blockade.

22

23 **Index terms**— anaesthesia, spinal, bupivacaine, clonidine.

24 **1 Introduction**

25 several additives like clonidine are added to prolong spinal blockade. Many trials have shown that by using various
26 additives intrathecally the duration of spinal anaesthesia can be increased. Previous studies have demonstrated
27 that by adding small dose of vasoconstrictors intrathecally with anaesthetic agent, sensory block may be prolonged
28 1,2 .

29 Clonidine is a selective 2 adrenergic receptor agonist, which is known to produce sedation, analgesia and
30 haemodynamic stability. It is also known that clonidine prolongs spinal anesthesia when added to intrathecal
31 local anesthetic agents or when administered as an oral medication [3][4][5] . However, it is not clear whether the
32 effect of clonidine is mediated locally at the level of the spinal cord or whether the effect is mediated systemically.
33 In order to test the hypothesis that the effect might be mediated systemically rather than locally, the study was
34 designed. Previous studies have used oral clonidine. However, it is likely that IV clonidine will achieve higher
35 plasma concentrations and more rapidly than oral clonidine and intrathecal injection may or may not have the
36 same effects.

37 II.

38 **2 Materials and Methods**

39 The approval of the double blind randomized study was provided by the Institutional Ethics Committee. Written
40 informed consent was taken for all the cases. The aim was to study onset of analgesia, duration of sensory and
41 motor block after spinal blockade. In addition, the hemodynamic effects after giving intravenous clonidine were
42 also noted. Previous study by Rhee et al 6 showed duration of sensory block of 196 ± 42 minutes in clonidine
43 group versus placebo having duration of sensory block of 125 ± 25 minutes. The duration of motor block in

7 DISCUSSION

44 clonidine group versus placebo was 153 ± 26 minutes versus 131 ± 29 minutes respectively. For alpha error of
45 0.05 and power of study to be 80%, expected sample size was 88. Considering dropout etc, the study was done
46 in 100 patients. We had a set of computer generated 50 exclusive random numbers for each group. They were(

47 D D D D)

48 Year 2014 I then chronologically numbered and were allotted the group depending on the group they belonged
49 as per randomization. Thus, the allocation was random and 50 cases were selected for each group. The study
50 drug solutions were not made by the anaesthesiologist evaluating the patient and were not aware of the group to
51 which the patient belonged. This study was planned for a period of about six months.

52 In group C, 3 mcg/ kg of Clonidine diluted in 10ml of normal saline was administered intravenously for a
53 period of 10 minutes immediately after laying down the patient in supine position following the spinal blockade
54 with 15 mg (3 ml) of 0.5% hyperbaric bupivacaine. In group S, only 10 ml of normal saline was administered
55 intravenously over a period of 10 minutes after patient was placed supine. Patient belonging to ASA grade I and
56 II, with age between 20 to 65 years with height between 150 -180 cm undergoing inguinal surgery under spinal
57 anaesthesia were included. As height influences the dosage of drug in spinal anaesthesia, for a constant dosage,
58 height range of patients in 150-180 cm was chosen. Patients known to have allergy to clonidine and bupivacaine
59 and pregnant and lactating women were excluded from the study. Preoperative pulse and blood pressure were
60 recorded. All patients were preloaded with 500 ml of lactated Ringer's solution. Onset of analgesia was assessed
61 by pinprick until highest level of sensory blockade was achieved and thereafter every 10 minutes during surgery.
62 Duration of sensory block was defined as duration between injection of spinal anaesthetic agent to regression
63 of spinal level up to L1 dermatome, while duration of motor block was defined as duration between injection
64 of intrathecal drug and recovery of knee flexion and ability to move the posterior aspect of knee 10 cm above
65 the surface of bed. Heart rate and mean arterial pressure ($1/3$ Systolic Blood Pressure + $2/3$ Diastolic Blood
66 Pressure) were measured and recorded every two minutes for first 10 minutes, during surgery. The lowest heart
67 rate and blood pressure was also noted. Bradycardia (heart rate less than 45 beats per minute) (bpm) and
68 hypotension (mean blood pressure less than 70% of base line) were treated appropriately. Patients were observed
69 until the sensory block regressed below L1 dermatome and knee flexion had recovered. This was the end point
70 of study.

71 3 III.

72 4 Statistical Analysis

73 Demographic data was analyzed by Pearson's chi-square test. Duration of spinal anaesthesia, mean heart rate
74 and blood pressure and the occurrence of cardiovascular side effects if any between the two groups was analyzed
75 using unpaired 't' test. 'p' value less than 0.05 was considered significant.

76 5 IV.

77 6 Results

78 As estimated, the study was completed in six months. All 100 patients who were enrolled completed the study.

79 As seen in Table ??, the patients were comparable in both groups with respect to demographic data. As
80 depicted in table 2, mean pre-operative and lowest intra-operative pulse rate between the groups was comparable.
81 As seen in table 3, the difference in pre-operative and intra-operative lowest mean arterial pressure (MAP) in
82 between two groups was not statistically significant. Table 4 depicts that two patients in group C developed
83 hypotension, which was comparable to incidence of hypotension in group S where only one (2%) patient developed
84 hypotension. In group C, only two (4%) patients had developed bradycardia and only one (2%) patient in group
85 S had presence of bradycardia. The incidence of bradycardia in two groups was comparable.

86 As shown in table 5, the highest spinal level achieved was between T4 to T8 level in group C and the median
87 highest spinal level achieved was T6 that was present in 25 (50% in a group) patients. In group S 30 (60% in a
88 group), patients achieved highest level of T6. The difference between two groups was statistically not significant.

89 The difference of mean duration of sensory and motor blockade between two groups was highly significant as
90 evident in table 6.

91 V.

92 7 Discussion

93 Small dose of vasoconstrictors intrathecally the duration of sensory block can be prolonged 7 . Clonidine is a
94 selective 2 adrenergic receptor agonist, which is known to produce sedation, analgesia and hemodynamic stability.
95 It is also known that clonidine prolongs spinal anesthesia when added to intrathecal local anesthetic agents or
96 when taken orally.

97 By considering this in mind, intravenous clonidine would reach peak plasma concentration more rapidly than
98 oral clonidine and it may have the same effect even if administered after intrathecal injection of local anaesthetic
99 agents.

100 K. Rhee et al, performed a similar study in 78 patients The demographical data was comparable as in our
101 study. 6 Victor Whizar-Lugo et al did a study for comparing dexmedetomidine and clonidine for prolonging
102 spinal anaesthesia 8 . The demographical data of this study was comparable to our present study. In the
103 study by I. Van 9 Intravenous administration of 2 adrenoceptor agonists frequently leads to an initial increase
104 in arterial blood pressure and systemic vascular resistance and a secondary decrease in heart rate resulting in
105 transient reduction in cardiac output 9 . These effects are probably due to activation of alpha 1 receptors and
106 postjunctional vascular alpha-2 adrenoceptors. This first short period of increase in blood pressure is within
107 minute followed by a longer period characterized by a decrease in heart rate and arterial blood pressure due
108 to centrally mediated decrease in sympathetic action ??0,11 . The reduction in sympathetic tone results in a
109 reduction of heart rate, systemic metabolism, myocardial contractility and systemic vascular resistance. The
110 result of these effects is a net decrease in myocardial oxygen consumption, which most probably explains the
111 positive effects seen with alpha 2 adrenoceptor agonists in the treatment of angina pectoris.

112 Clonidine attenuates cardiovascular reactions and provides circulatory stability by its action at central alpha2-
113 adrenergic receptors. However, intravenous clonidine especially when infused rapidly and at high plasma
114 concentrations, may result in vasoconstriction and increased arterial blood pressure by peripheral alpha 2
115 adrenergic stimulation. In this study, 3 mcg/kg of clonidine mixed in 10 ml of normal saline was administered
116 intravenously for 10 minutes to avoid stimulation of peripheral alpha 2 adrenergic receptors. K. Rhee et al showed
117 comparable pre-operative pulse rate and intra-operative lowest pulse rate 6 . Study by Victor Whizar-Lugo et al
118 showed similar results. 8 Liu et al used oral clonidine for prolongation of lidocaine spinal anesthesia in human
119 volunteers and found no significant change in pulse rate. 12 Stephan Strelbel et al performed a study using
120 various doses of intrathecal clonidine for prolongation of spinal anaesthesia in orthopedic surgeries and found no
121 significant change in haemodynamic parameter after using clonidine up to 150 mcg/kg dose. 13 However, study
122 done by L. Niemi using 3 mcg/kg intrathecal clonidine on effects of duration of bupivacaine spinal anaesthesia
123 showed mean arterial pressure and heart rate significantly lower in the clonidine group compared to the control
124 group. 4 In our study, pre-operative mean blood pressure was comparable. The incidence of hypotension in the
125 study done by Victor Whizar-Lugo et al for comparing intravenous dexmedetomidine and intravenous clonidine
126 for prolonging spinal anaesthesia was similar to our present study. 8 In study by Liu et al on use of oral
127 clonidine to prolong lidocaine spinal anesthesia in human volunteers, no significant decrease in blood pressure
128 in clonidine and control group was found. 4 In one another study Stephen Mannion et al used Intravenous
129 Clonidine for prolonging postoperative analgesia after psoas compartment block for hip fracture surgery and
130 also showed no significant decrease in blood pressure. 14 In a study done by L. Niemi on effects of intrathecal
131 clonidine on duration of bupivacaine spinal anaesthesia in patients undergoing knee arthroscopy found there was
132 significant increase in incidence of hypotension and bradycardia with use of clonidine 3 mcg/ kg. 4 Descending
133 noradrenergic antinociceptive pathways originating in the brainstem are believed to be associated with analgesic
134 effects by suppression of spinal nociceptive impulses. Alpha 2a adrenoceptors have been identified in substantia
135 gelatinosa of the dorsal horn of the spinal cord. Stimulation of these alpha 2a adrenoceptors inhibits the firing
136 of nociceptive neurons stimulated by A⁷ and C fibers and is considered to be one of the main mechanisms of
137 descending endogenous pain modulation 15 .

138 Recent evidence suggests that the antinociception produced by alpha 2a adrenoceptor agonists may be due
139 in part to acetylcholine release in the spinal cord. Since the spinal cord is the major site of analgesic action
140 of alpha 2a adrenoceptor agonists, the epidural and intrathecal routes have been considered preferable to the
141 intravenous route. This is, however, questioned by data showing a similar effect of orally administered clonidine
142 when compared to intrathecally applied clonidine in the context of spinal anaesthesia 16 . Also due to its lipid
143 solubility clonidine will readily penetrate extra vascular sites as well as central nervous system and can cause
144 same effect as does by intrathecal clonidine

145 In our study, median highest spinal level in clonidine group was T6 that was present in 25 patients of total
146 50. In saline group, total 30 patients achieved highest level of T6 in out of 50 patients. The difference between
147 two groups was not statistically significant.

148 In similar study done by K. Rhee et al, the median highest level of spinal blockade was T5 in both clonidine and
149 control group. The highest spinal level achieved in this study was comparable to our present study. 6 The motor
150 blockade in clonidine and saline group lasted for 157.60 and 129.60 minutes respectively, while the duration of
151 sensory blockade was 206.20 and 136.20 minutes The difference of mean duration of sensory and motor blockade
152 between two groups was statistically significant.

153 In study by K. Rhee et al, the duration of sensory and motor blockade was prolonged approximately by one
154 hour and 25 minutes respectively. This prolongation in duration of spinal blockade was comparable to our study.
155 The difference in prolongation

156 8 I

157 of duration of spinal blockade between two groups was statistically significant. 6 Victor Whizar-Lugo et al
158 have done a study for comparing intravenous dexmedetomidine and intravenous clonidine for prolonging spinal
159 anaesthesia against placebo group. They found significant increase in duration of sensory and motor spinal
160 blockade with using intravenous clonidine 4 mcg/kg. The prolongation in duration of sensory blockade was
161 approximately one hour and motor blockade was approximately 20 minutes with clonidine. 8 In another study

9 CONCLUSION

162 done by L. Niemi on effects of intrathecal clonidine on duration of bupivacaine spinal anaesthesia and also found
163 there was significant increase in duration of spinal anaesthesia with use of clonidine 3 mcg/ kg. 4 VI.

164 9 Conclusion

165 Administration of intravenous clonidine in patients undergoing spinal anaesthesia using 0.5 % Bupivacaine, sig-
166 nificantly prolonged the duration of spinal anaesthesia without significant increase in incidence of haemodynamic
side effects like hypotension and bradycardia. ¹

Figure 1:

2

Year

Figure 2: Table 2 :

167

3

	Group C	Group S	P value
Preoperative	99.14 \pm 5.792	99.20 \pm 5.379	0.957
Intraoperative Lowest	75.74 \pm 8.773	74.74 \pm 5.900	0.505
Comparable			

Figure 3: Table 3 :

4

Hypotension	2	1	3
Bradycardia	2	1	3

Figure 4: Table 4 :

5

Level (No of patients)	Group C	Group S	Total
T2	0	1	1
T4	13	9	22
T6	25	30	55
T8	12	10	22

Figure 5: Table 5 :

6

	Group C	Group P	
		S	value
Sensory blockade (minutes)	206.20 \pm 19.155	136.20 \pm 15.104	0.000
Motor blockade (minutes)	157.60 \pm 14.365	129.60 \pm 14.422	0.000

Figure 6: Table 6 :

168 [Bonnet et al. ()] 'Effect of oral and subarachnoid clonidine on spinal anaesthesia with bupivacaine'. F Bonnet ,
169 V B Buisson , Y Franceois , P Catoire , M Saada . *Reg. Anesth* 1990. 15 p. .

170 [Niemi ()] 'Effects of intrathecal clonidine on duration bupivacaine of spinal anaesthesia, haemodynamics and
171 post operative analgesia in patients undergoing knee arthroscopy'. L Niemi . *Acta Anaesthesiol Scand* 1994.
172 38 p. .

173 [Prichard and Graham ()] 'I1 Imidazoline agonists. General clinical pharmacology of imidazoline receptors'. B
174 Prichard , B Graham . *Drugs & Aging* 2000. 17 p. .

175 [Bonica and Backup ()] 'Intrathecal use of vasoconstrictors to prolong spinal anesthesia'. J J Bonica , P H Backup
176 . *Northwest Med* 1950. 49 p. .

177 [Mannion and Hayes ()] 'Intravenous but Not Perineural Clonidine Prolongs Postoperative Analgesia after Psoas
178 Compartment Block with 0.5% Levobupivacaine for Hip Fracture Surgery'. Stephen Mannion , Ivan Hayes .
179 *Anesth Analg* 2005. 100 p. .

180 [Rhee et al. ()] 'Intravenous clonidine prolongs bupivacaine spinal anaesthesia'. K Rhee , S Kang , Kin , Y Jeon
181 . *Acta Anaesthesiol Scand* 2003. 47 p. .

182 [Whizar-Lugo et al. ()] 'Intravenous Dexmedetomidine vs. Intravenous Clonidine to prolong Bupivacaine Spinal
183 Anesthesia. A Double Blind Study'. Víctor Whizar-Lugo , Irma A Gómez-Ramírez , Roberto Cisneros-Corral
184 , Nora Martínez-Gallegos . *Anestesia en México* 2007. 19 p. .

185 [Mikawa et al. ()] 'oral clonidine premedication reduces post operative pain in children'. K Mikawa , K Nishina
186 , N Maekawa , H Obara . *Anaesth. Analg* 1996. 82 p. .

187 [Liu and Md ()] 'Oral Clonidine Prolongs Lidocaine Spinal Anesthesia in Human Volunteers'. Spencer Liu , Md
188 . *Anesthesiology* 1995. 82 p. .

189 [Howe et al. ()] 'Selective antagonism of the antinociceptive effect of intrathecally applied alpha adrenergic
190 agonists by intrathecal prazosin and intrathecal yohimbine'. J R Howe , J-Y Wan , T L Yaksh . *J Pharmacol
191 Exper Therap* 1983. 224 p. .

192 [Strebel et al. ()] 'Small Dose Intrathecal Clonidine and Isobaric Bupivacaine for Orthopedic Surgery: A Dose-
193 Response Study'. Stephan Strebel , A Ju" Rg , Markus C Gurzeler , Armin Schneider , Christoph H Aeschbach
194 , Kindler . *Anesth Analg* 2004. 99 (4) p. .

195 [Kita et al. ()] 'Supraspinal, not spinal, α_2 adrenoceptors are involved in the anesthetic-sparing and
196 hemodynamic-stabilizing effects of systemic clonidine in rats'. T Kita , K Kagawa , T Mammoto . *Anesth
197 Analg* 2000. 90 p. .

198 [Van Tuijl et al. ()] 'The effect of addition of intrathecal clonidine to hyperbaric bupivacaine on postoperative
199 pain and morphine requirements after Caesarean section: a randomized controlled trial'. I Van Tuijl , W A
200 Van Klei , D B Van Der Werff , C J Kalkman . *10. Khan ZP*, (Ferguson CN, Jones RM) 2006. 1999. 97 p. .
201 (Anaesthesia)

202 [Moore et al. ()] 'The effect of epinephrine on small dose hyperbaric bupivacaine spinal anaesthesia. Clinical
203 implications for ambulatory surgery'. J M Moore , S S Liu , J E Pollock , J M Neal , J H Knab . *Anaesth.
204 Analg* 1998. 86 p. .

205 [Concepcion et al. ()] 'Vasoconstrictors in spinal anaesthesia with bupivacaine: a comparison of epinephrine and
206 phenylephrine'. M Concepcion , R Maddi , D Francis , A G Rocco , Murray Covino , BG . *Anaesth. Analg*
207 1984. 63 p. .