Plasma Total Amino Acids, Plasma Glutamate & Alanine Levels in Diabetic Subjects

By Kashinath R. T., Nagendra. S., Rudrappa. G. & Srinivas. S.
Rajive Gandhi University of Health Science, India

Abstract- Generally, in fasting state, gluconeogenesis accounts for about 30% of overall hepatic glucose output, the increase in type 2 diabetic subjects may be much more than this level. There is a close relationship between glucose metabolism and amino acid metabolism which is established through transamination reactions. The key amino acid -keto acid pairs involved in transamination reactions are glutamate – α ketoglutarate, aspartate – oxaloacetate and pyruvate - alanine. A study was undertaken to assess the plasma levels of total amino acids, glutamate and alanine in type 2 diabetic subjects. A blood sample (5ml) with heparin as an anticoagulant was collected in the fasting state, from each of the selected normal as well as diabetic subjects. The separated plasma samples were employed for the estimation of total amino acid nitrogen levels, as well as for the estimation of plasma alanine and glutamate levels. The results indicate a significant rise in the plasma levels of total amino acids, alanine & glutamate in type-2 diabetic subjects as well as a significant increase in plasma alanine levels in diabetics of 30- 40 yrs age as compared to diabetics of 41-60yrs of age. These findings suggest an increased availability of glucogenic amino acid precursors for glucose formation may be due to lack of proteolytic suppression of insulin.

Keywords: amino acids, gluconeogenesis, glutamate, alanine.

GJMR-K Classification : NLMC Code: WK 830, QU 55

Strictly as per the compliance and regulations of:

© 2014. Kashinath R. T., Nagendra. S., Rudrappa. G. & Srinivas. S. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Plasma Total Amino Acids, Plasma Glutamate & Alanine Levels in Diabetic Subjects

Kashinath R.T. ¹, Nagendra. S. ¹, Rudrappa. G. ² & Srinivas.S. ³

Abstract- Generally, in fasting state, gluconeogenesis accounts for about 30% of overall hepatic glucose output, the increase in type 2 diabetic subjects may be much more than this level. There is a close relationship between glucose metabolism and amino acid metabolism which is established through transamination reactions. The key amino acid -keto acid pairs involved in transamination reactions are glutamate – α ketoglutarate, aspartate – oxaloacetate and pyruvate - alanine. A study was undertaken to assess the plasma levels of total amino acids, glutamate and alanine in type 2 diabetic subjects. A blood sample (5ml) with heparin as an anticoagulant was collected in the fasting state, from each of the selected normal as well as diabetic subjects. The separated plasma samples were employed for the estimation of total amino acid nitrogen levels, as well as for the estimation of plasma alanine and glutamate levels. The results indicate a significant rise in the plasma levels of total amino acids, alanine & glutamate in type-2 diabetic subjects as well as a significant increase in plasma alanine levels in diabetics of 30-40 yrs age as compared to diabetics of 41-60yrs of age. These findings suggest an increased availability of glucogenic amino acid precursors for glucose formation may be due to lack of proteolytic suppression of insulin.

Keywords: amino acids, gluconeogenesis, glutamate, alanine.

I. Introduction

Gluconeogenesis, the process of formation of glucose from non-Carbohydrate metabolites is generally increased in Diabetes mellitus mainly due to deficiency of insulin as insulin has a gluconeogenic suppression effect (13). Among the various Glucogenic metabolites, glucogenic amino acids alanine, aspartate and glutamate are significant. The transamination of these amino acids through respective transaminases yield the ketoacids: α-ketoglutarate, oxaloacetate and pyruvate, which are readily convertible to glucose through gluconeogenesis. Insulin apart from its hypoglycemic action also has a tissue proteolysis suppression effect thereby decreasing the availability of amino acids. Hence a deficiency of insulin as observed in diabetes mellitus may lead to increased gluconeogenesis due to the lack of suppression effect of gluconeogenesis on one hand and the lack of suppression effect of tissue proteolysis on the other hand. There are no much studies available regarding the plasma levels of glucogenic amino acids in particular glutamate and alanine levels in diabetic subjects. Garcia et al reported that increased glucose recovery was observed in insulin induced hyperglycemia in rats upon oral or intraperitonal glutamine or alanine administration to these rats (14) suggesting a close relationship between plasma amino acid and plasma glucose levels. The reports of Agustino consoli etal suggest that increased conversion of alanine to glucose in NIDDM subjects. Further it has been proposed that increased muscle glycolysis might provide additional alanine and lactate to sustain gluconeogenesis in type 2 diabetic subjects (1).

Hence a study was undertaken to assess the plasma levels of total amino acids, glutamate and alanine in type 2 diabetic subjects.

II. Materials & Methods

The type 2 diabetic subjects in the age group of 30-60 years visiting the medical OPD of SUBBAIAH INSTITUTE OF MEDICAL SCIENCES & RESEARCH CENTER, PURLE, SHIMOGA, were randomly selected. Age matched normal subjects were randomly selected from the employees of the college and hospital. A blood sample (5ml) with heparin as an anticoagulant was collected in the fasting state, from each of the selected normal as well as diabetic subjects after obtaining an informed consent from them. The blood samples were centrifuged at 3600rpm for 8 minutes to separate plasma. The separated plasma samples were employed for the estimation of total amino acid nitrogen (AAN) levels (9), as well as for the estimation of plasma alanine (AL) and glutamate (GM) levels using quantitative paper chromatographic procedure (18). Ethical clearance from the institutional research council, for the present work was taken.

III. Results

The study included 80 normal subjects of both sexes in the age group of 30-50yrs and 103 type 2 diabetic subjects of both sexes in the age group of 30-
60yrs. The normal subjects included equal numbers of male and female subjects. The type 2 diabetic subjects included 85 male diabetics and 38 female diabetics. Among the diabetic subjects 31 were with family history of diabetes. A split in the diabetics as per the age, there were 36 in the age group of 30-40yrs, 67 in the age group of 41-60yrs. These groupings or division of the normal subjects and diabetic subjects are given in chart 1.

Table-1 shows the levels of total amino acid nitrogen (AAN) alanine (AL) and glutamate (GM) levels in plasma in normal and type 2 diabetic subjects. It is seen from the taste that the plasma levels of AAN, AL and GM are significantly elevated in type 2 diabetic subjects as compared to normal subjects may be due to lack of insulin.

Table 2 and table 3 narrate the plasma levels of AAN, AL and GM in diabetic male subjects and diabetic female subjects as compared to their normal counterparts respectively. It is evident from the tables that in both male as well as in female diabetics the plasma levels of AAN, AL and GM are significantly raised as compared to their normal counterparts showing that the diabetics induced alteration in these parameters may be common to both sexes.

Further a little elevation in the plasma levels of AAN, AL and GM observed in the present study in female diabetic subjects as compared to male diabetic subjects which may be due to hormone prolactin which has a diabetogenic effect (10) and to hormone estrogen, which acts through releasing biogenic amines (19).

When the plasma levels of AAN, AL and GM in diabetic subjects of different age groups (diabetes of 30-40 yrs and diabetic of 41-60yrs age group are compared a significant rise is seen in the present studies in plasma AL levels in diabetics of 30-40yrs age as compared to diabetics of 41-60yrs of age. Whereas no significant changes observed between these two groups in plasma AAN and plasma GM levels.

IV. Discussion

Generally, in fasting state, gluconeogenesis accounts for about 30% of overall hepatic glucose output (1-6), the increase in type 2 diabetic subjects may be much more than this level (2-6, 8, 12). The majority of gluconeogenic precursors may originate from muscle glycolysis and in the form of alanine (7). In the present study it has been observed that there is a significant rise in plasma AL and GM levels in type 2 diabetic subjects which is in line with the observation made by augustino consoli etal (1). There is a close relationship between glucose metabolism and amino acid metabolism which is established through transamination reactions. The key amino acid -keto acid pairs involved in transamination reactions are glutamate
CHART—1

Chart showing the division of normal and diabetic subjects according to different parameters.

Total number of subjects in the present study ----183
Total type 2 diabetic subjects ---- 103
Total normal subjects -----80
 Normal male subjects ---- 40
 Normal female subjects ----40

Male diabetic subjects ------65
Female diabetic subjects ------38
Diabetic with family history ------31
Diabetic without family history ----67
Diabetic subjects in the age group of 30--40yrs ---36
 41—60yrs -----67

Table 1: Table showing the levels of Total Amino acid nitrogen, Glutamic acid and Alanine in whole Blood of Normal and Diabetic Subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal Subjects (n=80)</th>
<th>Diabetic Subjects (N=103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Amino acid nitrogen (mg/dl)</td>
<td>6.26 ± 0.71</td>
<td>17.55*** ± 4.43</td>
</tr>
<tr>
<td>Glutamic acid (mg/dl)</td>
<td>3.75 ± 0.68</td>
<td>9.86*** ± 2.43</td>
</tr>
<tr>
<td>Alanine (mg/dl)</td>
<td>2.95 ± 0.53</td>
<td>5.55*** ± 1.40</td>
</tr>
</tbody>
</table>

Note: 1. The number in parenthesis shows the number of samples.
2. Values are expressed as their Mean + SD
3. p- value *p<0.05, **p<0.01, ***p<0.001

Table 2: Table showing the levels of Total Amino acid nitrogen, Glutamic acid and Alanine in Blood of Normal Male and Diabetic Male Subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal Male Subjects (n=40)</th>
<th>Diabetic Male Subjects (N=65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Amino acid nitrogen (mg/dl)</td>
<td>8.26 ± 0.72</td>
<td>15.17*** ± 4.38</td>
</tr>
<tr>
<td>Glutamic acid (mg/dl)</td>
<td>3.60 ± 0.72</td>
<td>8.92*** ± 2.38</td>
</tr>
<tr>
<td>Alanine (mg/dl)</td>
<td>2.94 ± 0.51</td>
<td>5.30*** ± 1.33</td>
</tr>
</tbody>
</table>

Note: 1. The number in parenthesis shows the number of samples.
2. Values are expressed as their Mean + SD
3. p- value *p<0.05, **p<0.01, ***p<0.001
Table 3: Table showing the levels of Total Amino acid nitrogen, Glutamic acid and Alanine in Blood of Normal Females and Diabetic Females Subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal Female Subjects (n=40)</th>
<th>Diabetic Female Subjects (N=38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Amino acid nitrogen</td>
<td>8.60 ± 0.71</td>
<td>17.70*** ± 3.92</td>
</tr>
<tr>
<td>(mg/dl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>3.80 ± 0.72</td>
<td>11.53*** ± 2.61</td>
</tr>
<tr>
<td>(mg/dl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>3.12 ± 0.54</td>
<td>6.24** ± 1.47</td>
</tr>
<tr>
<td>(mg/dl)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. The number in parenthesis shows the number of samples.
2. Values are expressed as their Mean + SD
3. p-value *p<0.05, **p<0.01, ***p<0.001

Table 4: Table showing the levels of Total Amino acid nitrogen, Glutamic acid and Alanine in Blood of Diabetic Male and Diabetic Female Subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Diabetic Male Subjects (n=40)</th>
<th>Diabetic Female Subjects (N=65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Amino acid nitrogen</td>
<td>15.17 ± 4.38</td>
<td>17.70 ± 3.92</td>
</tr>
<tr>
<td>(mg/dl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>8.92 ± 2.38</td>
<td>11.53 ± 2.61</td>
</tr>
<tr>
<td>(mg/dl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>5.30 ± 1.33</td>
<td>6.24 ± 1.47</td>
</tr>
<tr>
<td>(mg/dl)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. The number in parenthesis shows the number of samples.
2. Values are expressed as their Mean + SD
3. p-value *p<0.05, **p<0.01, ***p<0.001

Table 5: Table showing the levels of Total Amino acid nitrogen, Glutamic acid and Alanine in Whole Blood Diabetic Subjects with different age-group

<table>
<thead>
<tr>
<th>Parameter Age Group</th>
<th>Total Amino acid nitrogen (mg/dl)</th>
<th>Glutamic acid (mg/dl)</th>
<th>Alanine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-40 years (N=49)</td>
<td>15.75 ± 4.11</td>
<td>9.6 ± 2.09</td>
<td>8.44** ± 2.09</td>
</tr>
<tr>
<td>41-60 years (N=35)</td>
<td>15.04 ± 2.60</td>
<td>8.68 ± 0.30</td>
<td>4.03 ± 0.49</td>
</tr>
</tbody>
</table>

Note: 1. The number in parenthesis shows the number of samples.
2. Values are expressed as their Mean + SD
3. p-value *p<0.05, **p<0.01, ***p<0.001

References Références Referencias

3. Campbell P., Mandarino L., & Gerich J. (1988). Quantification of the relative impairment in actions of

