

1 A Study of Single and Combined Cytotoxic Effects of Fumonisin
2 B1, Aflatoxin B1 and Ochratoxin a on Human Mononuclear
3 Blood Cells using Different Cytotoxic Methods

4 Mwanza Mulunda¹

5 ¹ North West University, Mafikeng Campus, South Africa

6 Received: 16 December 2013 Accepted: 4 January 2014 Published: 15 January 2014

7 **Abstract**

8 Several studies on cereals destined for animal or human consumption in South Africa and
9 Africa have shown co-contaminations of mycotoxins. There is evidence to suggest that the
10 simultaneous action of different mycotoxins at various concentrations might have synergistic,
11 inhibitive or additive effects on human and animal cells. The aims of this study were to
12 identify combined cytotoxic effects of three of the more commonly occurring mycotoxins
13 (aflatoxin B1 (AFB1) fumonisin B1 (FB1) and ochratoxin A (OTA)) found in South African
14 and other feeds using the methyl thiazoltetrazolium (MTT) cytotoxicity assay, the Comet
15 assay and Flow Cytometry to detect apoptotic and necrotic cells after exposure to the three
16 toxins. Human mononuclear blood cells (mononucleocytes) were exposed to the three
17 mycotoxins both singularly and in combinations at two concentrations (5 and 40ng/ml for
18 OTA and AFB1 and 5 and 40 μ g/ml for FB1) and at different exposure time of 12, 24 and
19 48Hours. Results obtained showed cell viability variations dependent on mycotoxin
20 concentrations and time of exposure. In addition, synergistic effects were also observed at the
21 higher doses of 40ng for OTA and AFB1) and 40 μ g/ml for FB1 of the three mycotoxins
22 compared to combinations of lower doses. However, FB1 showed low cytotoxicity effect
23 inducing inhibitive effect when combined with the other two mycotoxins. These results
24 confirms the hypothesis of possibility of the three mycotoxins when combined induced with
25 synergistic effect and imply that exposure to more than one mycotoxin might change the
26 symptomatology and severity of effects observed during single intoxications by mycotoxins.
27

28
29 **Index terms**— cytotoxicity, synergism, additive, mononucleocytes, mycotoxins, carcinogenic, aflatoxin b1,
30 fumonisin b1, ochratoxin a.

31 **1 Introduction**

32 mycotoxins are toxic fungal metabolites that when ingested (main route of exposure), inhaled or absorbed
33 through the skin, may pose varying negative health effects [1]. Mycotoxin effects and symptoms vary from
34 one case to another because of their high variable structural chemistries and different toxicological properties
35 [2]. Toxicological studies in vitro and in vivo conducted to establish the role of mycotoxins in causing diseases
36 showed that there is *prima facia* evidence that a number of these fungal metabolites are involved in the aetiology
37 of certain diseases and may be synergistic in action [1]. As such, a wide range of mycotoxin effects on animals
38 and humans include: cytotoxic, nephrotoxic and neurotoxic, carcinogenic, mutagenic, immunosuppressive and
39 oestrogenic effects [2]. Diseases caused by such exposures are generally referred to as mycotoxicoses, which can be
40 acute and/or chronic depending on the level and period of exposure, although the precise effects may vary among

5 B) METHODOLOGY

41 species and to some extent, individuals. Disease conditions caused by mycotoxin actions are: impaired or retarded
42 growth, immunosuppression, general organ damage, various cancers and death [4]. In addition, synergistic effect
43 between mycotoxins might affect the occurrence of diseases such as tuberculosis, malaria, kwashiorkor and HIV
44 ??4,5; 6] which are prevalent in Africa where exposure to dietary mycotoxins is common ??7; 8]. This is because
45 staple diets in many African households are based on cereals such as maize which is highly susceptible to AFs
46 and FB contamination [8].

47 Structurally, fumonisin B1 (FB1) resembles sphingosine; an essential component of phospholipids found in cell
48 membranes, responsible for cell signal transduction pathways, cell growth, differentiation and cell death [9] and
49 hence may interfere with these functions. A specific toxic action of FB1 appears to result from its competition
50 with sphingosine and sphinganine in sphingolipid metabolism, which results in blocking the synthesis of the
51 sphingolipids, causing elevated sphingoid bases and depleting sphingolipids ??10; 11]. A concern with FB1
52 exposure in humans is because of its carcinogenic properties demonstrated in rats [12]. Although there is evidence
53 to suggest a close association between increased levels of FB1 in maize and high prevalence of human oesophageal
54 cancer [13], the hypothesis that is involved in the aetiology of this disease has not been demonstrated in any
55 animal spp. including primates and rats [14]. In addition, FB1 has been implicated in human liver cancer in
56 Haimen, Jiangsu Province, China [15] and cardio-vascular disorders ??16; 17]. Fumonisin B1 has also been
57 implicated in the reduction of the uptake of folate in different cell lines and hence, been implicated in neural tube
58 defects in human babies ??18; 19; 20].

59 Aflatoxin B1 (AFB1) has been associated with liver cancer as well as kidney damage [21] and has been classified
60 in Group 1 of carcinogens [21]. Aflatoxin B1 (AFB1) has been proven to be a cancer inducer via metabolic
61 activation by cytochrome p540 specifically CYP3A4, CYP3A5 and/or CYP1A2 ??22]. Approximately 55% of
62 the hepato-carcinomas from areas where food is contaminated with AFB1 contain an AGG -AGT mutation at
63 code 249 of the p53 tumour suppressor gene ??24].

64 Aflatoxin B1 enters the cell and is metabolised either in the endoplasmic reticulum to hydroxylated metabolites
65 that are further metabolised to glucuronide and sulphate conjugates or oxidised to the reactive epoxide that
66 undergoes hydrolysis and can bind to proteins resulting in cytotoxicity ??24]. Aflatoxin B1 is also immuno-
67 suppressive and has been implicated in Reye's syndrome characterised by cerebral oedema and accompanied by
68 fatty acid degeneration of the liver, kidneys, myocardium and fibres of the striated muscles [4]. Aflatoxin B1
69 affects the liver and is linked with kwashiorkor [7]. Studies have also shown the formation of aflatoxin-albumin
70 adducts levels in children exposed to AFB1 contaminated milk ??25].

71 Ochratoxin A is known as a potential serious carcinogen ??26]. The primary toxic effects of OTA seems to be
72 protein synthesis inhibition by the inhibition of enzymes acting on phenylalanine metabolism, lipid peroxidation
73 and mitochondrial function ??27] and/or may cause DNA single-strand breakages with a later stage genotoxicity
74 and carcinogenicity ??28]. Ochratoxin A immunotoxicity has also been demonstrated ??28]. Possibilities of
75 increasing mutagenicity in case of simultaneous occurrence of OTA with AFB1 in the same commodity have
76 been reported [8]. Ochratoxin A has been implicated in the Balkan Endemic Nephropathy, a chronic progressive
77 kidney disease, which is characterised by progressive hypercreatininaemia, uraemia, hypertension, oedema [29; 30];
78 acute renal failure and acute tubular necrosis ??31; 32]. The rural populations in the Balkan states have a high
79 incidence of chronic kidney problems and tumours of the excretory organs [33]. Despite the seriousness of the
80 problem, studies have not completely elucidated the mechanism of action or extent of the carcinogenic potential
81 of OTA in humans ??34; 35].

82 Several studies conducted in South Africa, Nigeria, Bulgaria and other countries [2] have shown mycotoxins
83 co-occurrence in food and feed. This cooccurrence may lead, in addition to their individual cytotoxicity effects,
84 to completely modified clinical findings of the mycotoxicosis in consumers [1]. This can affect the body response
85 in case of the treatment of chronic diseases such as diabetics, tuberculosis or other viral diseases and also in
86 immune suppressed patients such as HIV/AIDS affected populations. It is important to mention that there are
87 some variances with the manifestation of various mycotoxicoses, especially with the clinical or morphological
88 pictures, which in many cases are influenced by the secondary bacterial infections as a result of the pronounced
89 immunosuppression in the affected individuals [36].

90 2 II.

91 3 Materials and Methods

92 4 a) Materials

93 All chemical and mycotoxin standards used in this study were of analytical grade unless otherwise stated and
94 were obtained from Sigma/Hungary and South Africa; BD Bioscience and Sigma South Africa. A BD FACS
95 Calibur automated multicolour Flow Cytometer was obtained from BD Biosciences, San Jose, USA. FB1 was
96 obtained from the Medical Research Council (MRC) South Africa (PROMEC Division).

97 5 b) Methodology

98 In order to determine the cytotoxicity effects of the three mycotoxins (FB1, AFB1 and OTA), human mononuclear
99 cells obtained from healthy male volunteers were exposed to different concentrations, i.e., dose 5 (dose 5 = 5 ng

100 AFB1 and OTA and 5 μ g/ml FB1) and dose 40 (dose 40 = 40 ng AFB1 and OTA and 40 μ g/ml FB1) singly
101 and in combination over 12, 24 and 48 hrs. Three methods were applied in this study to achieve the objectives:
102 c) Isolation and purification of mononuclear cells For all experiments conducted in this study, cells (mononuclear)
103 used were isolated and cultured for 24 hrs and then exposed to single and combined mycotoxins (FB1, AFB1
104 and OTA) according to the following protocol: Venous blood from a healthy human donor was put into 3x5 ml
105 heparin tubes using a 15 ml sterile syringe with immediate transference. The collected blood was then mixed
106 with an equal volume of tissue culture medium consisting of RPMI-1640 supplemented with 10% foetal calf serum
107 (FCS), 100 U/ml Penicillin and 100 μ g/ml Streptomycin. The mixture was then overlaid on Histopaque 1077 and
108 centrifuged at 800 g for 30 min and the interface layer consisting of mononuclear cells was carefully removed with
109 a sterile pipette. The mononuclear cells (lymphocytes) were washed 3 times with 5 ml RPMI-1640 at 370C and
110 each time centrifuged at 800 RPM for 10 min. The pelleted cells were re-suspended in 10 ml of complete culture
111 media (CCM), transferred to plastic tissue culture bottles and were cultured at 370C in 5% CO₂ humidified
112 incubator for 24 hrs. The paleness of the CCM during the incubation period confirms the growth of cells. In
113 order to be certain to ascertain the presence and viability of cells, a cell count was done according to the following
114 protocol and the experiment would be continuous only when the cell count was \geq 95%. Cell suspension (100 μ l)
115 was mixed with 100 μ l of 0.2% Trypan Blue solution in an Eppendorftube and incubated for 5-10 min at room
116 temperature. A small amount of the trypan blue-cell suspension mixture was transferred to both chambers of
117 Neubauer counting chamber (Haemocytometer) with a cover glass in place using a sterile Pasteur pipette. A cell
118 count was done and% viability was determined as: % Viability = (viable cell counted (dye excluded)/total no.
119 of cells) x 100 d) Methyl Tetrazolium (MTT) assay

120 The exposed cells were examined by application of the Methyl Tetrazolium (MTT) assay for cell viability;
121 Comet assay for DNA damage and Flow cytometry after treatment with the Annexin V and APO-BRDU reagents
122 for apoptosis, necrosis induction and DNA cleavage. For all the experiments conducted in this study, cells (PBMC)
123 used were isolated from blood samples obtained from volunteer healthy male donors (within 30 minutes after
124 collection) cultured for 24 hrs and then exposed to single and combined mycotoxins (FB1, AFB1 and OTA) and
125 placed in a sterile 5% CO₂ incubator for (12, 24 and 48hrs) according to Mwanza [36] and Meky [37]. Isolated
126 PBMCs were counted and placed in a 96-well culture plates containing 100 μ l of culture medium. The MTT assay
127 was also done according to Mwanza [36] and Meky [37].

128 6 e) Comet Assay

129 The DNA damage assessment carried out using the comet assay technique was done according to Singh [38] and
130 Collins [39]. The following solutions and methods were used to achieve the objectives. 1% NMP was prepared by
131 dissolving 0.5 g in 50 ml PBS in a beaker and heating it in a microwave until at boiling point with occasional
132 mixing until it completely dissolved. New slides were coated with warm 1% NMP Agarose gel prepared by dipping
133 the slide vertically into the melted warm 1% NMP gel in a beaker. Excess Agarose was drained off the slide
134 and the back cleaned and dried in a warm oven overnight. About 140 μ l of 1% warm LMP Agarose gel (370C)
135 in PBS prepared as above was added to the cells obtained after centrifugation following mutagenic treatments
136 (Section 5.2.2 above). The suspension was mixed gently and quickly and 70 μ l transferred to two spots on the
137 previously coated slides above. The suspensions were covered with cover slips (20X20 mm) and allowed to set
138 for least 10 min in the cold room (40C). The cover slips were removed and mononuclear cellular membranes were
139 lysed with lysing buffer solution (pH 10) for 1 hour at 40C. The resulting nucleoids were unwound in alkaline
140 electrophoresis buffer (pH13) in an electrophoresis tank (Amersham Pharmacia Biotech) for 40 min at 40C and
141 followed by electrophoresis at 25 V (300 mA) for 30 min at 40C. The slides were placed in neutralizing buffer (pH
142 7.5) with 3 washes of 5 min each and finally washed in distilled water for 5 min. The gels were allowed to dry
143 overnight, stained with 30 μ l of working solution of DAPI, covered with a slipped and examined by an Olympus
144 BH-RFCA Epifluorescent Microscope (Wirsam Scientific).

145 Manual scoring was done following the methods of Singh [38] and Collins [39] in which comets were classified
146 into '0', '1', '2', '3' and '4' according to the DNA damage and head/tail migration using a fluorescent microscope.
147 A minimum of 100 cells per samples were scored according to the movement or shape of the comet formed [40].
148 A positive response was considered as one in which, there was a doserelated change in the defined measurement
149 between the control and test groups at single sampling time [40]. A total score of damage for each gel was
150 calculated by multiplying the number of comets assigned to each class of damage by its own value to give a
151 summative total overall score and expressed in arbitrary units. In order to present the rationalised total toxicity
152 score, the arbitrary score was recalculated using the formula below:

$$153 (((100-\text{mean \% viability})*5) + 5\text{mean \% viability}/100)*\text{raw arbitrary score}))$$

154 A study of levels of apoptosis and DNA cleavage induction by AFB1, FB1 and OTA singularly and in
155 combination was done using the FITC Annexin V apoptosis detection kit II, Lot. 35856 and the APO-BRDU?
156 Kit obtained from BD Biosciences, San Diego, USA and supplied by Merck was used for staining of already
157 treated cells and analysed on Flow Cytometry.

12 RESULTS

158 7 f) Study of Cell death on flow cytometry

159 The Flow cytometer used in this study was a BD FACS Calibur automated multicolour flow cytometer (BD
160 Biosciences, San Jose, USA) at excitation at 488 nm, using a 639 nm band pass filter to collect the red propidium
161 iodide fluorescence. Cells used in this study were extracted and exposed to mycotoxins according to the description
162 mentioned for the MTT and Comet assays. Prepared and already exposed cells were then subjected to following
163 steps before the analysis on flow Cytometry.

164 Cell fixation using Para-formaldehyde consisted of 7 steps; cells were suspended in 1% (w/v) paraformaldehyde
165 in PBS (pH 7.4) at a concentration of 1-2 x 10⁶ cells/ml and placed on ice for 30-60 min. Cells were then
166 centrifuged for 5 min at 300 x g and supernatant discarded. Cells were washed by centrifugation in 5 ml of
167 PBS twice. The cell pellet was re-suspended in the residual PBS in the tube by gently vortexing. The cell
168 concentration was then adjusted to 1-2 x 10⁶ cells/ml in 70% (v/v) ice cold ethanol and the cells were left to
169 stand for a minimum of 30 min on ice or in a freezer. These were then stored in 70% (v/v) ethanol at -20°C until
170 use. Cells can be stored at -20°C several days before use. Eppendorf tubes containing cells exposed to mycotoxins
171 and cells with positive and negative controls were centrifuged for 5 min at 300 x g and the 70% (v/v) ethanol
172 was removed by aspiration without disturbing the cell pellets. The cell pellet was then re-suspended with 1.0 ml
173 of Wash Buffer and centrifuged as before and the supernatant was removed by aspiration. This was repeated
174 twice. Each tube was re-suspended in 50 l of the DNA labelling solution prepared earlier as described in the kit
175 instructions and incubated for 60 min at 37°C in a temperature-controlled bath. Every 15 min the tubes were
176 shaken to re-suspend the cells. At the end of the incubation time, 1.0 ml of the rinse buffer was added to each
177 tube and centrifuged at 300 x g for 5 min and the supernatant removed by aspiration. This was repeated a second
178 time. The cell pellets were re-suspended in 0.1 ml of the Antibody Staining Solution prepared before as described
179 in the kit instructions and incubated with the FITC-labelled anti-BrdU Antibody Solution (50 l) in the dark for
180 30 min at room temperature. Finally, 0.5 ml of the PI/RNase Staining Buffer was added to the tube containing
181 the 0.1 ml Antibody Staining Solution and the cells incubated in the dark for 30 min at room temperature.
182 The assay was run on the flow cytometer equipped with a 488 nm Argon laser as the light source. Propidium
183 I fluoresces at about 623 nm and FITC at 520 nm when excited at 488 nm. No fluorescence compensation was
184 required. Two dual parameter and two single parameter displays were created with the flow cytometer data
185 acquisition software. The gating display was the standard dual parameter DNA doublet discrimination display
186 with the DNA Area signal on the Y-axis and the DNA Width on the X-axis. From the display, a gate was drawn
187 around the non-clumped cells and the second gated dual parameter display was generated. The DNA (Linear
188 Red Fluorescence) was displayed on the X-axis and the FITC-BrdU (Log Green Fluorescence) on the Y-axis.
189 Two single parameters gated histograms, DNA and FITC-BrdU were also added to determine apoptotic cells and
190 their cell cycle stages. In all, three studies positive and negative control cells were included to each experiment
191 with negative control being cells treated in the same conditions the rest of the experiment but not exposed to any
192 of the toxins and the positive control cells treated in similar conditions as but treated with hydrogen peroxide
193 known to induce cell death. The percentage of cells in each stage of the cell cycle was automatically calculated
194 and generated on Flow cytometry BD FACS Comp? in conjunction with BD Calibrite? beads, software.

195 8 g) Regression analysis

196 To conclude this study, regression analysis were done in order to study the relationship between different methods
197 used in this study and predict cytotoxicity levels of mycotoxins by using results obtained from each study as
198 dependent while data obtained from other methods were used as independent variables.

199 9 h) Statistical analysis

200 The results obtained were analysed using the Sigma Stat11.0 software package. A one-way and multiple
201 comparison analysis variances and the comparison of results between groups were done using the Holm-Sidak
202 method.

203 10 i) Ethical clearance

204 The ethical clearance number 09/08 was obtained from the ethical committee of the Faculty of Health Sciences,
205 University of Johannesburg to undertake this study.

206 11 III.

207 12 Results

208 MTT assay results as shown in Tables 1 and 2 and illustrated in Figure 1 show the effect of exposure time versus
209 mycotoxin concentration as it influences the curves representing mononuclear cell viability after exposure to single
210 or combined mycotoxins (AFB1, OTA and FB1) are shown. The exposure of untreated cells with mycotoxins
211 induced cell viability decreased from 99-97 % for untreated cells. In this study, the untreated cells were considered
212 as control and constituted 100%. The exposure of cells with FB1 gave 90-84% and 87-81% of cell viability; 91-80%
213 and 85-73% for AFB1; 85-78% and 83-69% for OTA respectively after dose 5 (dose 5 = 5 ng AFB1 and OTA
214 and 5 µ/ml FB1) and 40 (dose 40 = 40 ng AFB1 and OTA and 40 µg/ml FB1) of mycotoxins concentration

215 were exposed to and this between 12 and 48hrs of exposure. The combination of the three mycotoxins show a
216 great decrease in viability as compared respectively to the combined two and single exposure with cell viability
217 decrease up reaching 85-82% and 42-31% for OTA-FB1; 82-73% and 42-32% for OTA-AFB1 and 85-78% and
218 43-33% between 12 and 48hrs of exposure at respectively 5 and 40 μ g/ml of mycotoxins concentration (Table 1).
219 The exposure to all three mycotoxins show a decrease in cell viability reaching up to 77-73% and 39-26 % of
220 viable cells respectively at doses 5 and 40 of each toxin added of mycotoxins concentration between the same
221 times of exposure. It was observed that singly, OTA induces the biggest decrease of cell viability, followed by
222 AFB1 and then FB1 (Table 1 and Fig. 1). The results on cell inhibition (1). In addition, these results have
223 shown that there is a dose dependent synergistic effect depending on concentrations with the of the reaction being
224 when the three mycotoxins combined at the dose 40 compared to low dose 5 when combined in twos (Table 1).
225 It is important to mention the increased cell viability noted at dose 5 of all 3 mycotoxins at 24 hrs before a drop
226 at 48 hrs (Figure 1). This increase could be explained by the fact that MTT assay is based on NDH cell activity
227 reading, suspicion that at low dose an antagonistic effect could have been induced between the 3 mycotoxins
228 that led to the NDH reduction potential redox leading to the production of NDH2-FAD causing antagonistic
229 effects to mycotoxins activity at 24 hrs and then was reversed after a much longer exposure. Statistically, there
230 were significant differences ($P<0.050$) found among data of three mycotoxins when exposed singularly over time
231 ??12, 24and 48hrs) and between data obtained at different concentrations of exposure. Significant differences
232 ($P<0.001$) were obtained among data from combined mycotoxins and among data from all three mycotoxins
233 combined, combination of two mycotoxins and single mycotoxins over time and concentrations.

234 Results obtained with Comet assay revealed a time and dose dependent response after mononuclear cells are
235 exposed to different mycotoxins (AFB1, OTA, and FB1) singularly or in combination and are summarised in
236 Table3 and illustrated in Fig. ???. In this study, the score of 400 and above means the toxicity induced the death
237 of all cells. Scores obtained with cells exposed to single mycotoxins indicated little effect on DNA as evidenced by
238 the low scores. Cells exposed to FB1 alone showed lower scores of 37-80 and 175-231 respectively at 5 μ g/ml and
239 40 μ g/ml between 12 and 48 hrs exposure; this is in comparison with AFB1 with scores of 50-90 and 169-253 and
240 OTA with scores of 64-107 and 169-253 respectively at 5 μ g/ml and 40 μ g/ml between 12 and 48 hrs of exposure.
241 Similarly to the results obtained with the MTT cytotoxicity test, results obtained with mycotoxins combinations in
242 twos were higher compared to single ones. the OTA-FB1 combination scores were 70-114 and 211-263, FB1-AFB1
243 were 75-120 and 206-265; OTA-AFB1 with 82-130 and 219-279 while the combination of all three mycotoxins
244 gave scores of 110-132 and 217-284 respectively at doses 5 and 40 between 12 and 48 hrs of exposure. Statistical
245 analysis revealed that comet assay results showed significant differences ($P<0.001$) found between data obtained
246 with the three mycotoxins when exposed singularly over time at 12, 24 and 48hrs and between data obtained at the
247 two different concentrations of exposure, as would be expected. Significant differences ($P<0.050$) were obtained
248 among data from two combined mycotoxins and among data from all three mycotoxins combined, combination
249 of two mycotoxins and single mycotoxins over time and concentrations. In addition, significant differences were
250 obtained between data obtained from single mycotoxins and all three mycotoxins exposure ($P<0.001$). Among
251 mixture data, significant differences ($P<0.050$) were between all data obtained after 12 and 48hrs and between
252 12 and 24hrs of cell exposure.

253 However, no differences were obtained between 24 and 48hrs with both concentrations ??5 and 40). The absence
254 of significant differences between 24 and 48hrs of exposure confirms as well the observations made with MTT
255 assay and this finding shows as well that after 24hrs of exposure, there is a decrease of cytotoxicity induction after
256 24hrs reaching saturation between 24 and 48 hrs of cell exposure. Results obtained from the investigation into
257 mycotoxins induction of apoptosis Table 4 and DNA cleavage Table 5 on mononuclear cells using a flow cytometer
258 revealed a time-dose dependent increase of cell apoptosis after exposure to different mycotoxins (AFB1, OTA, and
259 FB1) singularly or in combination. It was observed that FB1 single exposure induced apoptosis on mononuclear
260 cells at 6-15% and 19-46% respectively at dose 5 and 40 between 12 to 48 hrs; AFB1 induced apoptosis at 8-23%
261 and 23-58%, while OTA cells apoptotic induction varied between 11-16% and 26-69% of exposed cells respectively
262 at 5 and 40 μ g/ml for FB1 and for the rest mycotoxins at 5 or 40 ng/ml between 12 and 48 hrs of exposure.

263 These results correlate with those obtained with MTT trial and comet assay, results obtained with mycotoxins
264 combinations in twos were higher compared to single ones. The combination of OTA-FB1 showed results varying
265 between 13-45% and 39-79% of apoptotic cells; while FB1-AFB1 combination produced 12-46% and 41-71%
266 of apoptosis and OTA-AFB1 combination results were 15-53% and 41-87%. The three mycotoxins combined
267 induced apoptosis at 17-56% and 44-95% respectively at dose 5 and 40 between 12 and 48 hrs of exposure. Similar
268 to the results obtained with the comet assay analysis, the apoptosis data analysis showed significant differences
269 ($P<0.050$) between MTT assay data obtained from the exposure of cells with the three mycotoxins and each
270 mycotoxin singularly over time ??12, 24 and 48hrs) and between data obtained at different concentrations of
271 exposure. Significant differences ($P<0.050$) were obtained among data from combined mycotoxins and data
272 from all three mycotoxins combined, between combination of two mycotoxins and single mycotoxins over time
273 and concentrations. Significant differences were obtained between data obtained from single mycotoxins and all
274 three mycotoxins exposure ($P<0.001$). Among mixture data, significant differences ($P<0.050$) were among data
275 obtained after 12 and 48hrs and between 12 and 24hrs of cell exposure. However, no differences were obtained
276 between 24 and 48hrs with both concentrations ??5 and 40). The absence of significant differences between 24
277 and 48hrs of exposure confirms as well the observations made with MTT assay and this finding shows well that

15 DISCUSSION

278 after 24hrs of exposure there is a decrease of cytotoxicity induction after 24hrs reaching saturation between 24
279 and 48 hrs of cell exposure. Figures 7-10 show the apoptosis induction on mononuclear cell layout illustrations by
280 flow cytometry for FB1, AFB1 and OTA combined in twos and all three together after 24hrs of incubation. One
281 of the later steps in apoptosis is DNA fragmentation, a process which results from the activation of endonucleases
282 during the apoptotic programme.

283 The comet assay scoring method being subjective, as this scoring of DNA damage was done arbitrarily based on
284 visual judgement. The flow cytometer was then used to evaluate and confirm the DNA damage (DNA cleavage)
285 of mononuclear cells previously done on comet assay and the mean percentage of apoptotic cells undergoing DNA
286 cleavage due to mycotoxins exposure was obtained by flow cytometry. The results obtained from this study are
287 summarized in Table 3 and illustrated in Figure 11 and Figure 12.

288 Single and combined mycotoxins (AFB1, OTA, and FB1) exposure to mononuclear cells showed an induction of
289 DNA cleavage which was time and dose dependant. Single mycotoxin exposed with cells showed lower cytotoxicity
290 effects compared to combined mycotoxins. Figure ?? : comparison study of cell apoptosis induction between cells
291 exposed to mycotoxins combined in twos and cells exposed to all three mycotoxins combined by flow cytometry.

292 13 Global Journal of

293 Medical Research

294 Fumonisin B1, when exposed singularly, induced mononuclear cell's DNA cleavage in 4-13 % and 18-38%
295 respectively at dose 5 and 40 between 12 to 48 hrs; AFB1 induced apoptosis at 5-21% and 21-55%, while OTA
296 DNA cleavage inductions were 8-19% and 19-58% of exposed cells respectively at dose 5 and 40 between 12 and
297 48 hrs of exposure. These results correlate with those obtained with MTT cytotoxicity assay and comet assay,
298 results obtained with mycotoxins combinations in twos were higher compared to single ones.

299 The combination of OTA-FB1 showed DNA cleavage induction in 12-43% and 37-71% of apoptotic cells; while
300 FB1-AFB1 combination produced 10-41% and 39-69% of cleaved DNA and OTA-AFB1 combination results
301 were of 13-49% and 37-86%. The three mycotoxins combined revealed DNA cleavage at 15-59% and 42-92%
302 respectively at dose 5 and 40 at 12, 24 and 48 hrs of exposure. In this study, significant differences ($P < 0.050$)
303 were obtained among single mycotoxins, combined in twos, single and combined in twos, all groups at dose 5 and
304 40, all groups at 12, 24 and 48hrs of exposure.

305 In addition, significant differences ($P < 0.001$) were seen in all studied groups at dose 5 and 40. Figure 2
306 illustrates a layout of the DNA cleavage (%) of apoptotic mononuclear cells by Flow Cytometer for FB1, AFB1
307 and OTA combined in twos and all three together after 24hours of incubation.

308 Results obtained with linear regression studies showed correlations between all three techniques. Two linear
309 regression analyses were plotted and the first one (Figure ??) used the apoptosis data as the dependent variable
310 while MTT data was considered as the independent one. A linear regression equation was obtained as well as a
311 regression coefficient ($R = 0.810$).

312 14 Global Journal of

313 Although not perfect, it follows the linear regression equation: This shows that $APOPTOSIS = 101.645 - (0.897$
314 $* MTT \% CELL VIABILITY)$ Finally a multiple linear regression analysis was done (Figure 5) to assess if the
315 toxicity can be predicted using DNA cleavage data as a dependant variable and data from the other three test
316 (Comet assay; Apoptosis and MTT % cell viability) as independent variable. The second regression study was
317 the one in which DNA cleavage data was considered as dependent variable while comet assay data was considered
318 as the independent one. As in the first study, the regression ($R = 0.853$) coefficient was lower than the ideal
319 which needed to be next to 1. This low regression coefficient can be explained by data variability within different
320 methods.

321 $DNA\ cleavage = -6.434 + (0.280 * COMET\ ASSAY)$

322 This study shows a positive regression coefficient ($R = 0.994$) and a regression equation was obtained. The
323 regression coefficient R obtained here was of about ± 1 revealing that in this study, one can predict toxicity
324 induced by AFB1, OTA and FB1 using one of the four methods used in this study but in addition, confirmed the
325 correlation between the three methods. Statistically, all independent variables appear to contribute to predicting
326 DNA cleavage ($P < 0.050$). IV.

327 15 Discussion

328 The choice of peripheral blood mononuclear cell (PBMC) in this study is justified by their composition including
329 mainly lymphocytes consisting of T cells (CD4 and CD8 positive ~75%), B cells and NK cells (~25% combined)
330 and monocytes and macrophage because of their critical role in the immune system to fight infection and adapt
331 to infections in the first place [41].

332 It was noted in this study that at dose 5 of exposure in all combinations, no synergistic effect was observed.
333 However, at low doses, only chronic exposure (24hrs) of cells to mycotoxins was needed in order to be able to
334 observe significant toxicity. These confirm results obtained by Timbrell [46]who also found similar results in his
335 studies on cell toxicity.

336 The absence of additive effects when two or three mycotoxins were combined as observed in this study and
337 confirmed in all three methods can be explained by a possible inhibition or competition among these mycotoxins.
338 There are evidences that FB1 when combined with OTA or AF1 induced low cytotoxicity in comparison to the
339 OTA and AFB1 combination. This inhibitive effect of FB1 might be explained by the mode of action and low
340 toxicity. These results are similar to those obtained by Mwanza et al [36] on MTT cells. The inhibition of FB1
341 on the two other mycotoxins used in this study might explain also the absence of additive rather than synergistic
342 effect when the three mycotoxins were combined [36].

343 The methyl thiazol tetrazolium (MTT) assay is based on the action of living cells to convert a soluble yellow
344 tetrazolium salt [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide] into insoluble purple formazan
345 crystals. The reaction is catalysed by mitochondrial succinyl dehydrogenase and requires NADH, which has to
346 be supplied by the living cells, thus providing an indication about mitochondrial or respiratory activity ??37; 42;
347 43; 44; 45] hence providing information on cell viability and cell proliferation, after their exposure to xenobiotic
348 agents. Significant decrease of cell viability was observed when all three mycotoxins were combined as compared
349 to single or two combinations.

350 In addition, higher cytotoxicity induction characterised by rapid decrease in cell viability was observed between
351 0 and 24hrs in comparison to the effects observed between 24 and 48hrs of exposure (Fig. 1). This could mean
352 that the cytotoxicity induced was high between 12 and 24hrs and reached saturation between 24 and 48 hrs in
353 both single and combined mycotoxins between 12 and 24 hrs exposure. The inhibition results (Table 2) obtained
354 from the MTT assay in comparison to calculated results expected by adding individual results of each mycotoxin
355 (FB1, OTA and AFB1) (Table 3) have shown that there is synergistic effect between the three mycotoxins at
356 the dose 40 ng/ml and 5ng/ml 40 μ g/ml. while at dose 5 μ g/ml the effects were additive rather than synergistic.
357 The absence of synergism effects at the dose 5 in all combinations can be explained by low doses of mycotoxins
358 exposed as well as by the time of cell exposure to mycotoxins. The probability is that at low doses longer exposure
359 periods of cells to mycotoxins are needed to induce measurable toxicity [46]. Mycotoxins were mixed and exposed
360 to mononuclear cells. Result obtained in this study showed dose dependent synergistic effect was observed when
361 mycotoxins were combined as compared to single mycotoxins.

362 Statistically, comparison showed that there were significant differences ($P<0.050$) found among data of
363 three mycotoxins when exposed singularly over time ??12, 24 and 48hrs) and between data obtained at
364 different concentrations of exposure. Significant differences ($P<0.001$) were obtained among data from combined
365 mycotoxins and between all data from all three mycotoxins combined over time and concentrations.

366 Obtained results on flow cytometry (Table 4) have shown that in contrast to necrosis, which is a form of
367 traumatic cell death that results from acute cellular injury, apoptosis is a process of programmed cell death that
368 remove individual cells that are no longer needed or that function abnormally without inducing inflammatory
369 reaction noxious to surrounding cells [48] and hence it plays a major role during development and homeostasis.
370 The difference between results obtained in Table 3 on comet assay as compared to DNA cleavage (Table 5)
371 obtained on flow cytometry mostly concerned the methodology. The DNA damage observed with the comet
372 assay is the DNA which converts lesions to DNA breaks, increasing the amount of DNA in the comet tail due to
373 mycotoxins effects (46). Results obtained with the flow cytometry (Table 5) are the effects of the DNA strands
374 cleavage due to a reaction of the covalent sugarphosphate linkages between nucleotides that compose the sugar
375 phosphate backbone of DNA. It is catalysed enzymatically, chemically or by radiation in which the cleavage may
376 be exonucleolytic removing the end nucleotide, or endonucleolytic splitting the strand into two (46).

377 Apoptosis occurs when a cell is damaged beyond repair, infected with a virus, or undergoing stressful conditions
378 such as starvation. Damage to DNA from ionizing radiation or toxic chemicals can also induce apoptosis via the
379 actions of the tumoursuppressing gene p53 [48]. In general, any substance that causes DNA damage or anything
380 that produces necrosis by direct cell destruction can induce apoptosis

381 16 Volume XIV Issue II Version I

382 Year 2014

383 17 (B)

384 if the cell initially survives [48] which invariably suggest that mycotoxins with genotoxic properties at non acute
385 toxic concentration would shift the balance between necrosis and apoptosis to the latter as observed in this study.
386 Therefore, understanding the mechanism of mycotoxin actions at bio molecular levels, particularly with regards
387 to alterations of DNA in the nucleus and mitochondria may explain the dose-dependent apoptotic pattern of cell
388 death induced by the studied mycotoxins. These results are in line with those obtained by Domijan [49]. In their
389 study on comet assay exposed rats kidney cells with ochratoxin A and fumonisin B1 also observed synergistic
390 increase in the tail intensity when OTA and FB1 were combined. The aim of this study was to assess the single
391 and combined cytotoxic effects of mycotoxins on mononuclear cells and to predict their possible impact on the
392 human's immunity. Observations made in the three experiments revealed that similar results were obtained with
393 higher cytotoxic potent activity of OTA and AFB1 compared to FB1. The OTA-AFB1 showed a slightly higher
394 toxicity as compared to FB1-OTA or FB1-AFB. The mixture of the three toxins showed a significant higher
395 toxicity as compared to the single and combined mycotoxins effects in the three studies. Another important

396 observation made in the three experiments was that in general low doses of mycotoxins (5ng/ml and 5 μ g/ml
397 exposures) between 24 and 48 hrs of exposure showed slow recoveries or plateaus also called "adaptive response"
398 ??46; 50].

399 It is likely that these represent a most dangerous status, as this could lead up to mutations and cellular
400 stimulations or cancer ??46; 50; 51]. The slightly low and inhibitory action observed with FB1 in all four
401 studies correlate with the findings of Minervini [52] who in their studies on the toxicity of the nivalenol (NIV),
402 deoxynivalenol (DON) and FB1 in the K562 human erythroleukemia cell line using the Trypan Blue, MTT and
403 BrdU (uptake for cytotoxicity analysis, found that cellular metabolism and proliferation, respectively on flow
404 cytometry were for both NIV and DON significantly more toxic than FB1. In addition they correlate are in
405 correlation with the results obtained by Theumer [53] in an in vivo study on immuno-biological effects of FB1
406 and AFB1 in experimental sub-chronic mycotoxicoses in rats in which FB1 induced low effects compared to
407 AFB1.

408 The cytotoxicity of OTA can be explained by its ability to directly inhibit enzymes involved in phenylalanine
409 metabolism as mentioned in the Introduction). In return, this has an effect on DNA, RNA, and protein synthesis,
410 presumably due to an effect by the phenylalanine moiety of the molecule ??27]. The cytotoxic potential shown
411 by AFB1 is explained by its inhibiting capacity of both DNA and RNA synthesis [54] and the activated AFB1
412 metabolite formation of a covalent bond with the N7 of guanine [55] and AFB1-n7guanine adduct in the target
413 cells resulting in transversions of G-T bond, DNA repair, lesions, mutations and subsequently tumour formation
414 [56], or the possibility of hydrolysing to AFB1-8, 9-dihydrodiol that ionizes to form a Schiff's base with primary
415 amine groups in the proteins [57]. During in vitro studies of rat liver mitochondria it was observed that OTA
416 inhibited the respiration of whole mitochondria, by acting as a competitive inhibitor of carrier proteins located
417 in the inner mitochondrial membrane [58].

418 The understanding of the cellular effects of the three toxins used in the three experiments might also be
419 residing at the genomic level. Aflatoxin B1 is metabolized, mainly in the liver, into AFB1-8,9-exoepoxide and
420 8,9-endo-epoxide, but it is the exo-epoxide that binds to DNA to form the predominant 8,9-dihydro-8-(N7-guanyl)
421 9-hydroxy AFB1 (AFB1-N7-Gua) adduct [59]. AFB1-N7-Gua can result in two secondary lesions, an apurinic
422 site and a more stable ring opened AFB1-formamidopyrimidine (AFB1-FAPY) adduct; the latter is far more
423 persistent in vivo than AFB1-N7-Gua ??59;60]. Under this pathological condition, oxidative stress is elicited
424 which activates the caspase-3 cysteine proteases that mediate the apoptotic cascade [61]. It has also shown by
425 Golli-Bennour [62] that AFB1 and OTA separately and in combination, are involved in apoptotic processes in
426 cultured monkey kidney Vero cells by causing increased DNA fragmentation with consequent activation of p53
427 tumour suppressor protein and suppression of production of anti-apoptotic factor bcl-2. Ochratoxin A has also
428 been established to facilitate apoptosis by causing the reduction of protein synthesis [15] and increasing caspase-3
429 activity, DNA fragmentation and chromatin condensation [63]. Caspase-dependent mitochondrial alterations and
430 triggering of the activity of p53 are other mechanisms by which OTA induces apoptosis [61].

431 18 Global Journal of

432 The relative concentration of apoptotic mediators will essentially, determine the outcome of TNF receptor
433 stimulation.

434 The TNFR1 may activate apoptosis JNK activation which in return, inhibits the antiapoptotic protein Bcl-2.

435 Once Bcl-2 is inhibited, cytochrome C is released from mitochondria into the cytosol where it activates Apaf-
436 1, which may associate with caspases and thereby initiate apoptosis. Alternatively, the TNFR2 may, together
437 with TNFR1, activate NF-?? which may inhibit apoptosis. Unlike the other mycotoxins, fumonisins elicitation of
438 apoptosis seems to be mainly non genotoxic, as FB1 does not interact with DNA but inhibits the enzyme ceramide
439 synthase, thereby disrupting de novo sphingolipid biosynthesis, overall sphingolipid metabolism and, consequently,
440 the accumulation of sphingoid bases which sphingolipid-mediated regulation of important cell functions including
441 apoptosis and mitosis [64,65]. Fumonisin B1-induced apoptosis is also known to be mediated by the cytokine
442 tumour necrosis factor (?TNF) pathway [64]. Tumour necrosis factor (TNF) is involved in the regulation of
443 apoptosis and cell replication just as like sphingoid bases, sphinganine and sphingosine sphingolipids. It must be
444 pointed out here that the AFB1 and OTA can also induce apoptosis via non genotoxic route by inhibiting
445 macromolecular synthesis, which disrupts many lipids/protein/DNA-mediated cell function regulations with
446 consequent deregulation of processes including apoptosis [65]. The finding that tested toxins induced cell death
447 mainly via apoptosis is in excellent consistency with many reports ??1; 43; 67]. The mechanism of FB1 effect in
448 the presence of other mycotoxins, such as OTA and AFB1 on the immune system, remains unknown to date. It
449 has been shown in the four experiments that, when combined with one of the two mycotoxins used here it induces
450 a low inhibitory effect. The FB1 low toxicity which was observed throughout in the three experiments (MTT,
451 comet assay, flow cytometer) is similar to results obtained in studies done by Bondy and Pestka [67] on the effects
452 of FB1 on immune system in chicken. In addition, Mwanza [36] on cytotoxic effects of OTA and FB1 on pigs
453 and human mononuclear cells, confirmed the relative low and inhibitory effect of FB1 when combined together.
454 However, these toxins were also found to cause both stimulation and suppression of responses to foreign antigen.
455 The immuno-modulatory properties of FB1, mostly depend on its effect on lipid metabolism, antioxidant/pro-
456 -oxidant balance and interactions with other factors such as CD3 receptors expression, decrease in the thymus
457 seen both in vivo and in vitro studies [68]. In addition, this FB1 immunologic effect is confirmed by another study

458 on bovine lymphocytes cells, which caused significant micronucleus formation [69]. Fumonisin B1 also inhibits
459 other intracellular enzymes including protein phosphatase and arginosuccinate synthase [70]. Therefore, the
460 cytotoxicity of FB1 exerts its toxicity through its ability to inhibit sphingolipid metabolism, protein metabolism
461 and the urea cycle. The FB1 apoptosis induction and DNA damage seen in this study have been confirmed
462 by Domijan [49]. In their study of oxidative status and DNA damage in rats they observed DNA lesions in the
463 kidney cells of experimental animals. The FB1 carcinogenic role, however, has been linked to the accumulation of
464 sphingoid bases that cause unscheduled DNA synthesis [71] alteration of signalling by cAMP [72] and disruption
465 of normal cell cycling [73].

466 **19 Global**

467 Aflatoxin B1 effects observed on mononuclear cells can be explained by its immuno-suppressive ability to act
468 primarily on cell mediated and phagocytic function [74]. Aflatoxin B1 has been shown to act on mononuclear
469 cells activity as well as macrophages [74]. Thymus is also a target organ for aflatoxin in which thymic involution
470 results with the loss of cortical thymocytes. It is primarily the cell-mediated immune responses that are affected
471 by aflatoxin; prominent among these are diminished responses in delayed cutaneous hypersensitivity, graft-versus-
472 host reaction, leukocyte migration and lymphoblastogenesis [75]. Aflatoxin also reduces phagocyte activity in
473 a doserelated manner. Some humoral components are diminished by aflatoxin, including complement (C4),
474 interferon, IgG and IgA, but not IgM, which is not affected. However, high levels of aflatoxin will affect antibody
475 titres and gut-associated lymph tissue or the bursa of Fabricius in poultry [75]. The immunosuppressive effect of
476 AFB1 was also observed by Marin [76] who found that AFB1 reduces the proinflammatory cytokine and increased
477 anti-inflammatory cytokine mRNA expression in weanling piglets.

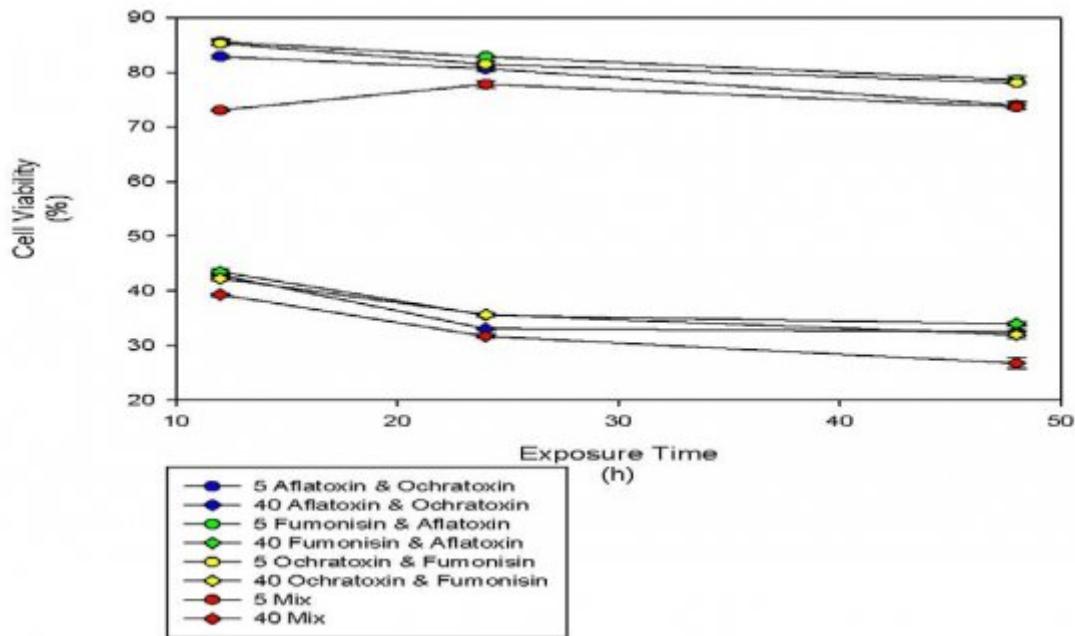
478 Although Creppy [1] in their study on cells revealed the potential synergistic effects of mycotoxins combination
479 it was anticipated that comparable effects on human lymphocytes would induce immunosuppression and poor
480 responses to immunisation and treatment when exposed to single or combined toxins. The high decrease in cell
481 viability observed when FB1 and OTA are combined indicates a synergistic activity of both toxins action, which
482 induces a stronger metabolic suppression activity on lymphocytes at low concentrations, which increases also
483 with concentration and this effect has been reported before in others studies [1]. Thus, it poses a problem for
484 feeds derived from crop grown in temperate areas where the possibility of both mycotoxins occurring in feeds
485 and foods is possible.

486 **20 Volume XIV Issue II Version I**

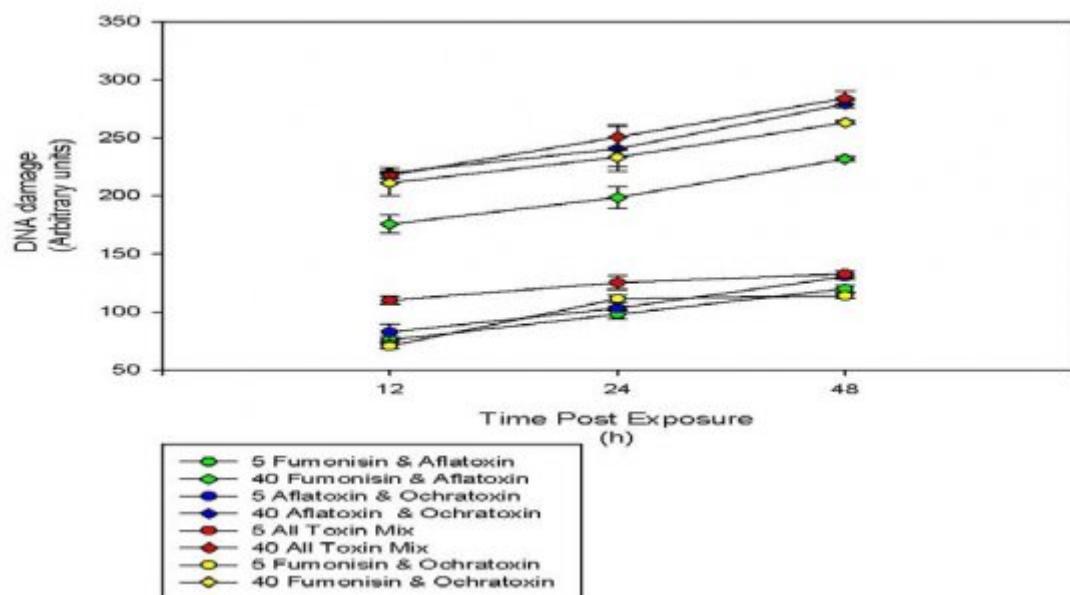
487 Year 2014 (B)

488 V.

489 **21 Conclusion**


490 This study has shown that a synergistic effect of FB1, OTA and AFB1 may be induced when exposed to
491 mononuclear cell dependent of concentration and time of exposure. However, it was observed that the FB1
492 induces an inhibitive effect when combined with OTA and AFB1. These results agree with the hypothesis that
493 the combination of the three mycotoxins currently considered as the most important contaminant in both animal
494 feed and human food, can induce increased immuno-suppression and increase cases of immunisation and treatment
495 failure currently observed in treated patients suffering from chronic diseases such as tuberculosis, malaria, cancers
496 and HIV-AID. The novelty of this work is that, this is a first report done with the three mycotoxins combined
497 and analysed using three different methods confirming their cytotoxicity. ¹

1


Figure 1: Figure 1 :

497

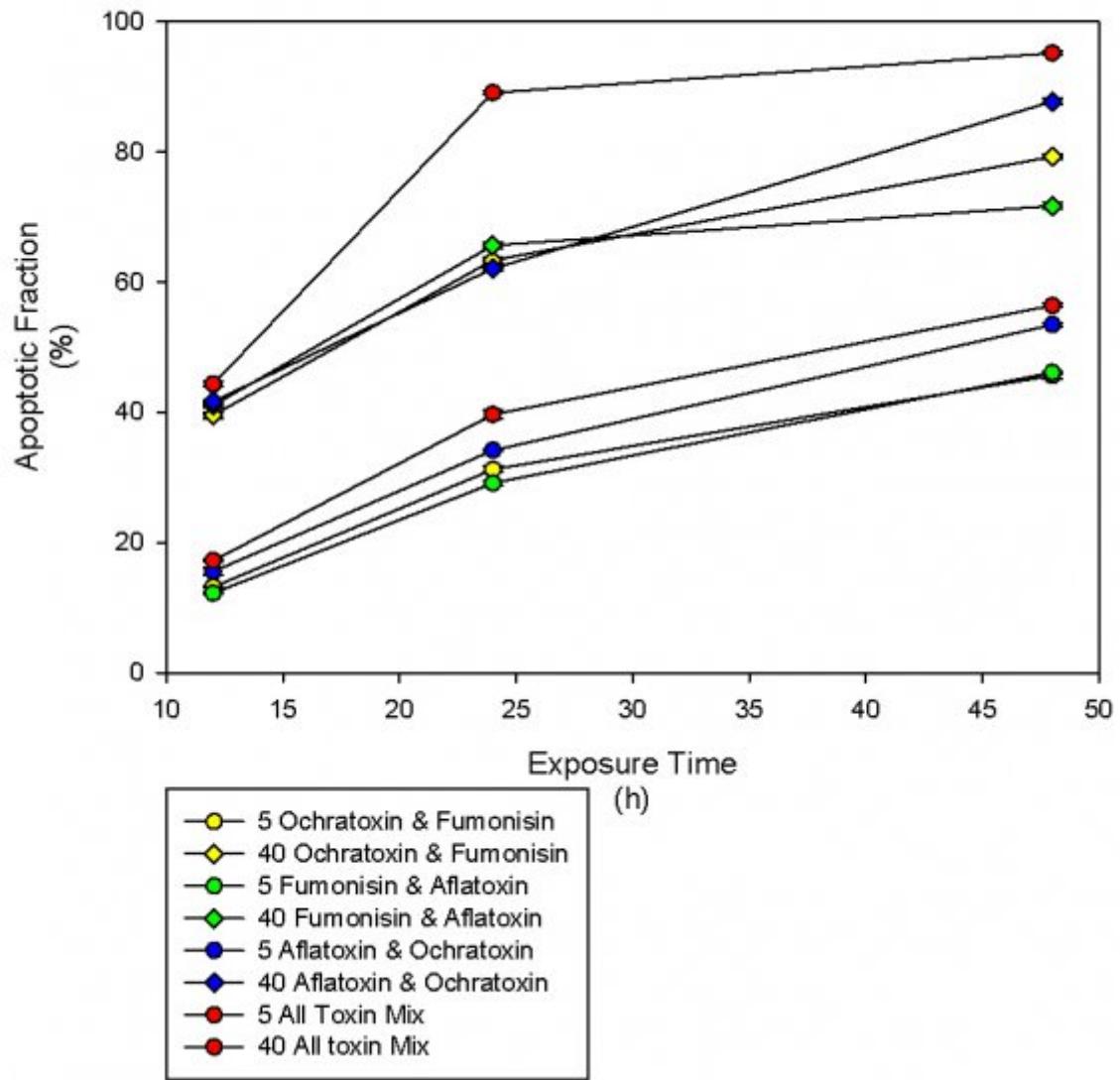

2

Figure 2: Figure 2 :

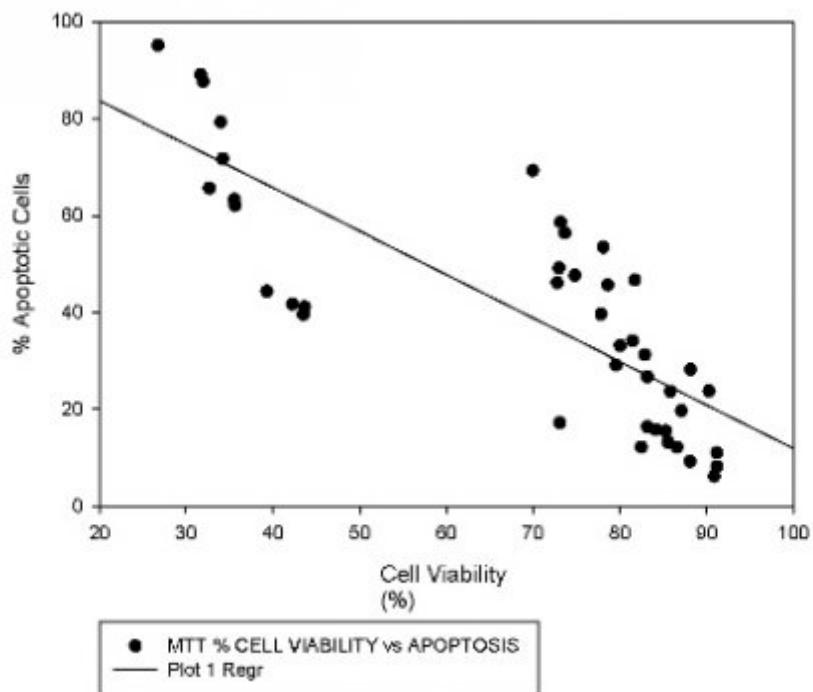

7

Figure 3: 7 Volume

5

Figure 4: Figure 5 :

5

Figure 5: Figure 5 :B

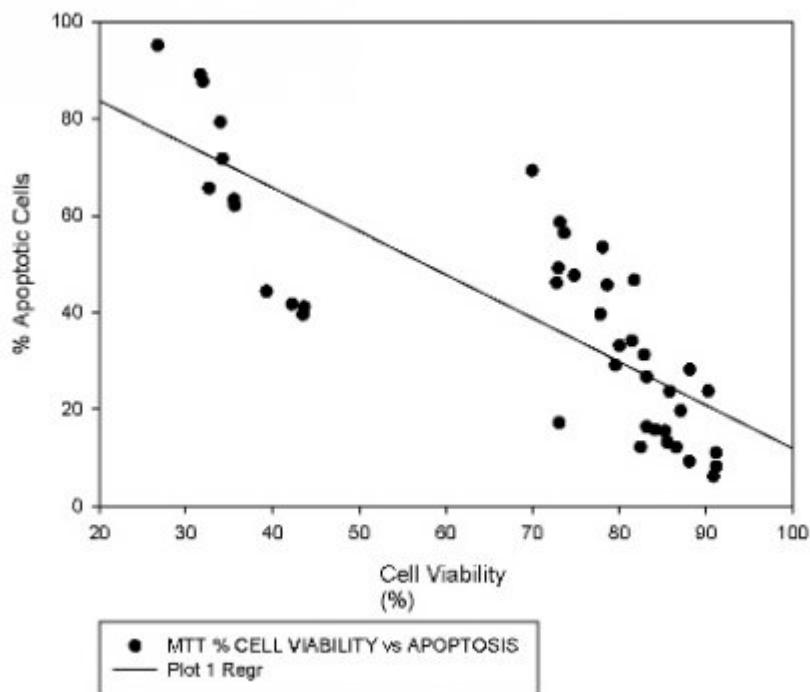


Figure 6:

Figure 7: Table 2)

Mycotoxins + Conc*		Exposure time (hours)	Mean (% cell viability)	Std Dev	SEM
FB1	5	12hrs	90.8	0.3	0.1
FB1	5	24hrs	88.1	0.7	0.4
FB1	5	48hrs	84.1	0.3	0.1
FB1	40	12hrs	87.0	0.3	0.2
FB1	40	24hrs	80.0	0.6	0.3
FB1	40	48hrs	81.7	1.0	0.6
AFB	5	12hrs	91.1	0.8	0.4
AFB	5	24hrs	86.5	0.8	0.5
AFB	5	48hrs	90.2	0.6	0.3
AFB	40	12hrs	85.8	0.5	0.3
AFB	40	24hrs	74.8	0.7	0.4
AFB	40	48hrs	73.1	0.4	0.2
OTA	5	12hrs	91.1	0.9	0.5
OTA	5	48hrs	83.3	1.0	0.5
OTA	5	24hrs	88.1	1.4	0.8
OTA	40	12hrs	83.1	0.6	0.3
OTA	40	24hrs	72.9	0.5	0.2
OTA	40	48hrs	69.9	0.4	0.2
OTA-FB1	5	12hrs	85.2	0.6	0.3
OTA-FB1	5	24hrs	81.4	0.9	0.5
OTA-FB1	5	48hrs	78.0	0.5	0.3
OTA-AFB1	5	12hrs	82.8	0.6	0.3
OTA-AFB1	5	24hrs	80.6	0.9	0.5
OTA-AFB1	5	48hrs	73.9	1.0	0.6
FB1-AFB1	5	12hrs	85.5	0.9	0.5
FB1-AFB1	5	24hrs	82.8	0.3	0.2
FB1-AFB1	5	48hrs	78.6	1.1	0.6
OTA-FB1	40	12hrs	42.2	0.5	0.2
OTA-FB1	40	24hrs	35.6	0.5	0.3
OTA-FB1	40	48hrs	31.9	1.3	0.7
OTA-AFB1	40	12hrs	42.8	0.6	0.4

[Note: 8Volume XIV Issue II Version I]

Figure 8: Table 1 :

21 CONCLUSION

2

Time (hr)	Aflatoxin B 1 5?g/ml	Fumonisin B 1 40?g/ml	5?g/ml	40?g/ml	5?g/ml	40?g/ml
12	9	14	10	13	9	17
24	13	25	12	20	17	28
48	10	27	16	19	12	30

Figure 9: Table 2 :

3

Mycotoxins + Conc*.

Year	FB1	FB1	FB1	5
2014				5
				5
12	FB1	FB1		40
				40

Volume FB1 AFB1 AFB1 AFB1 AFB1 AFB1 AFB1 OTA OTA OTA OTA OTA OTA OTA OTA OTA -FB1 5 40 5 5 5 4

XIV

Is-

sue

II

Ver-
sion

I B

()

Medic FB1-AFB1 5 FB1-AFB1 5 FB1-AFB1 5 OTA-AFB1 5 OTA-AFB1 5 OTA-AFB1 5 OTA -FB1 40

Re-

search

OTA -FB1 40
OTA -FB1 40
OTA-AFB1 40
OTA-AFB1 40
OTA-AFB1 40
FB1-AFB1 40
FB1-AFB1 40
FB1-AFB1 40
MIXTURE 5
MIXTURE 5
MIXTURE 5
MIXTURE 40
MIXTURE 40
MIXTURE 40

*Individual and mixtures concentrations of aflatoxins and ochratoxins concentrations are in (ng/ml) and fumonisin B1 concentration is in (μg/ml).

Figure 10: Table 3 :

4

Mycotoxins + Conc*		Exposure time (hours)	Mean (% apoptotic cells)	Std Dev	SEM
FB1	5	12hrs	6.1	0.6	0.3
FB1	5	24hrs	9.2	0.4	0.2
FB1	5	48hrs	15.8	0.5	0.3
FB1	40	12hrs	19.7	0.5	0.3
FB1	40	24hrs	33.1	0.6	0.4
FB1	40	48hrs	46.6	0.1	0.0
AFB	5	12hrs	8.2	0.7	0.4
AFB	5	24hrs	12.1	0.2	0.1
AFB	5	48hrs	23.7	0.4	0.2
AFB	40	12hrs	23.6	0.7	0.4
AFB	40	24hrs	47.6	0.6	0.3
AFB	40	48hrs	58.6	0.5	0.3
OTA	5	12hrs	11.0	0.7	0.4

Figure 11: Table 4 :

5

Year 2014
Volume XIV Issue II Version I
B)
(

Figure 12: Table 5 :

498 .1 Acknowledgement

499 The authors would like to thank the Food Environmental and Health Research Group University of Johannesburg,
500 the University of Johannesburg Research Council, the National Research Foundation (South Africa) and the
501 Hungarian Academy of Science for the support in conducting this study.

502 .2 Conflicts of Interest

503 "The authors declare no conflict of interest".

504 [Pharmacol ()] , *Pharmacol* 1996. 138 p. .

505 [Mantovani et al. ()] '?-Glucans in promoting health: Prevention against mutation and cancer'. M S Mantovani
506 , M F Bellini , J F Angeli , R J Oliveira , A F Silva , L R Ribeiro . *Mutation Res* 2008. 658 p. .

507 [Ramljak et al. ()] *A potential mechanism for fumonisin B1 mediated hepatocarcinogenesis: cyclin D1 stabilization*
508 *associated with activation of AKT and inhibition of GSK-3beta activity*, D Ramljak , R J Calvert , P W
509 Wiensenfeld , B A Diwan , B Catipovic , W F Marasas , T C Victor , L M Anderson , W C Gelderblom .
510 2000. 21 p. .

511 [Singh et al. ()] 'A simple technique for quantitation of low levels of DNA damage in individual cells'. N P Singh
512 , M T Mccoy , R R Tice , E L Schneider . *Experiment. Cell Res* 1988. 175 p. .

513 [Lillehoj ()] 'Aflatoxin: an ecologically elicited activation signal'. E B Lillehoj . *Mycotoxins and Animal Foods*, J
514 E Anderson, RA (ed.) (Boca Raton, FL) 1991. CRC Press. p. .

515 [Vinatier et al. ()] 'Apoptosis: a programmed cell death involved in ovarian and uterine physiology'. D Vinatier
516 , P Dufour , D Subtil . *European J. Obstetric Gynaecol Repro. Biol* 1996. 67 p. .

517 [Fincham et al. ()] *Atherogenic effects in a non-human primate of Fusarium moniliforme cultures added to a*
518 *carbohydrate diet*, J E Fincham , W F O Marasas , J J F Taljaard , N P J Kriek , C J Badenhorst , W C A
519 Gelderblom , J V Seier , C M Smuts , M Faber , M J Weight , W Slazus , C W Woodroof , M J Van Wyk ,
520 M Kruger , P G Thiel . *Atherosclerosis* 1992. 94 p. .

521 [Lorenzo et al. ()] *Biological properties of a human compact anti-ErbB2 antibody*. *Carcinogen*, De Lorenzo , C
522 Cozzolino , R Carpentieri , A Pucci , P Laccetti , P ;D'alessio , ;G . 2005. 26 p. .

523 [Voss et al. ()] *Carcinogenicity and mechanism of action of fumonisin B1: a mycotoxin produced by Fusarium*
524 *moniliforme (=F. verticillioides)*. *Cancer Detection Prev*, K A Voss , P C Howard , R T Riley , T J Bucci ,
525 R J Lorentzen . 2002. 26 p. .

526 [Marin et al. ()] 'Changes in performance, blood parameters, humoral and cellular immune responses in weanling
527 piglets exposed to low doses of aflatoxin'. D E Marin , I Taranu , R P Bunaciu , F Pascale , D S Tudor , N
528 Avram , M Sarca , I Cureu , R D Criste , V Suta , I P Oswald . *J. Anim. Sci* 2002. 80 p. .

529 [Collins et al.] A R Collins , A A Oscoz , G Brunborg , I Gaivao , L Giovannelli , K Kruszewski . *The comet*
530 *assay: topical issues*. *Mutagenesis* 1997, 23 p. .

531 [Stoev et al. ()] 'Complex aetiology and pathology of mycotoxic nephropathy in South African pigs'. S D Stoev
532 , S Denev , M F Dutton , P B Njobeh , J S Mosonik , P A Steenkamp , I Petkov . *Mycotox. Res* 2010. 10 p. .

533 [Devegowda et al. ()] 'Complex etiology, prophylaxis and hygiene control in mycotoxic nephropathies in farm
534 animals and humans'. G Devegowda , M V L Radu , A Nazar , H V L M Swamy . *Proceedings of 31. Stoev,*
535 *S.D. (31. Stoev, S.D) 2008b*. 9 p. . (Mycotoxin picture worldwide: Novel solutions for their counteraction)

536 [Stoev et al. ()] 'Cytotoxic Effect of Some Mycotoxins and their Combinations on Human Peripheral Blood
537 Mononuclear Cells as Measured by the MTT Assay'. S Stoev , S Denev , M Dutton , B Nkosi . *Toxinol. J*
538 2009. 2 p. .

539 [Golli-Bennour et al. ()] 'Cytotoxicity and genotoxicity induced by aflatoxin B1, ochratoxin A and their
540 combination in cultured Vero cells'. E Golli-Bennour , B Koudhi , A Bouslimi , I Abidd-Essefi , W Hassen ,
541 H Bacha . *J. Biochem. Mol. Toxicol* 2010. 24 p. .

542 [Grabsch et al. ()] 'Cytotoxicity assessment of gliotoxin and penicillic acid in Tetrahymenapryiformis'. G Grabsch
543 , G Wichmann , H Loffhagen , O Herbarth , A Muller . *Environ. Toxicol* 2006. 2 p. .

544 [Meky et al. ()] 'Deoxynivalenol-induced immunomodulation of human lymphocyte proliferation and cytokine
545 production'. F A Meky , L J Hardie , S W Evans , C P Wild . *Food Chem. Toxicol* 2001. 39 p. .

546 [Bouaziz et al. ()] 'Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human
547 hepatoma cells'. C Bouaziz , O Sharaf El Deinb , E El Golli , S Abid-Essefa , C Brennerb , C Lemaireb , H
548 Bacha . *Toxicol* 2008. 254 p. .

549 [Schroeder et al. ()] 'Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1.
550 A molecular mechanism for carcinogenesis associated with Fusarium moniliforme'. J J Schroeder , H M Crane
551 , J Xia , D C Liotta , A H Merrill . *J. Biol. Chem* 1994. 269 p. .

552 [Surai and Dvorska (ed.) ()] *Effects of mycotoxins on antioxidant status and immunity*, P F Surai , J E Dvorska
553 . InThe Mycotoxin Blue Book. D. Diaz (ed.) 2005. UK: Nottingham Univ. Press. p. .

21 CONCLUSION

554 [Wei et al. ()] 'Effects of ochratoxin A on rat liver mitochondrial respiration and oxidative phosphorylation'. Y
555 H Wei , C Y Lu , Lin , R D Wei . *Toxicol* 1985. 36 p. .

556 [Yoo et al.] 'Elevated sphingoid bases and complex sphingolipid depletion as contributing factors in fumonisins-
557 induced cytotoxicity'. H S Yoo , W P Norred , Riley R T Showker . *Toxicol& Appl*

558 [Missmer et al. ()] 'Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico
559 border'. S A Missmer , L Suarez , M Felkner , E Wang , A H MerrillJr , K Rothman , K A Hendricks .
560 *Environ. Health Perspect* 2006. 114 p. .

561 [Martynova ()] 'Fumonisins B1 modulates sphingomyelin cycle product levels and the expression of CD3 receptors
562 in immunocompetent organs'. Martynova . *Biochem* 1995. 60 p. .

563 [Diaz and Boermans ()] 'Fumonisins toxicosis in domestic animals: a review'. G J Diaz , H J Boermans . *Vet.*
564 *Human Toxicol* 1994. 36 p. .

565 [Ueno et al. ()] 'Fumonisins as a possible contributory risk factor for primary liver cancer: A 3-year study of
566 corn harvested in Haimen, China, by HPLC and ELISA'. Y Ueno , K Lijima , S D D-Wang , Y Sugiura , T
567 Sekijima , T Tanaka , C Chen , S Z Yu . *Food Chem. Toxicol* 1997. 35 p. .

568 [Marasas et al. ()] 'Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development
569 in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations
570 consuming fumonisins-contaminated maize'. W F O Marasas , R T Riley , K Hendricks , V L Stevens , T W
571 Sadler , J Gelineau-Van Waes , S Missmer , J Cabrera , O Torres , W C A Gelderblom , A Allegood , C
572 Martinez , J Maddox , J D Miller , J Starr , M C Sullards , V A Roman , K A Voss , E Wang , A H MerrillJr
573 . *J. Nutr* 2004. 134 p. .

574 [Marasas et al. ()] 'Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei'. W F
575 O Marasas , K Jaskiewics , F S Venter , D J Vanschalkwyk . *S. A. Med. J* 1988. 74 p. .

576 [Raney et al. ()] 'Glutathione conjugation of aflatoxin B-1 exo-and endo-epoxides by rats and human glutathione-
577 S-transferases'. K D Raney , D J Meyer , B Ketterer , T M Harris , F P Guengerish . *Chem. Res. Toxicol*
578 1992. 5 p. .

579 [Hartmann et al. ()] A Hartmann , E Agurell , C Beevers , S Brendler-Schwaab , B Burlinson , P Clay .
580 *Recommendations for conducting the in vivo alkaline Comet assay*, 2003. 18 p. .

581 [William et al. ()] 'HIV and hepatocellular and oesophageal carcinomas related to consumption of mycotoxin
582 prone foods in sub-Saharan Africa'. P William , E Jolly , A Nii-Ayi , W O Ellis , E Afriyie-Gyawu , N M
583 Johnson , A G Robinson , T D Phillips . *Am. J. Clin. Nutr* 2010. 92 p. .

584 [Williams et al. ()] 'Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential
585 health consequences and interventions'. J H Williams , T D Phillips , P E Jolly , J K Stiles , C M Jolly , D
586 Aggarwal . *Am. J. Clin. Nutr* 2004. 80 p. .

587 [Jenkins et al. ()] 'Identification of in vitro Kinetic studies'. G R Jenkins , W H Tpleson , D K Newkirk , D W
588 Robert , K L Rowland , T Seheki , K Koyabashi , P C Howard , W B Melchior . *J. Biochem. Mol. Toxicol*
589 2000. 14 p. .

590 [Theumer ()] *Immunobiological effects of AFB1 and AFB1-FB1 mixture in experimental subchronic mycotoxicoses
591 in rats*, M G Theumer . 2003. 186 p. .

592 [Bondy and Pestka ()] 'Immunomodulation by fungal toxins'. G S Bondy , J J Pestka . *Environ. Health 3B* 2000.
593 p. .

594 [Lewis et al. ()] 'Increased cytotoxicity of food-borne mycotoxins toward human cell lines "in vitro" via enhanced
595 cytochrome p450 expression using the MTT bioassay'. C W Lewis , J E Smith , J G Anderson , R Freshney
596 . *Mycopathol* 1999. 148 p. .

597 [Seefelder ()] 'Induction of apoptosis in cultured human proximal tubule cells by fumonisins and fumonisins
598 metabolites'. W Seefelder . *Toxicol. Appl. Pharmacol* 2003. 192 p. .

599 [Wang et al. ()] 'Inhibition of sphingolipids biosynthesis by fumonisins'. E Wang , W P Norred , C W Bacon , P
600 F Riley , A H MerrillJr . *J. Biol. Chem* 1998. 273 p. .

601 [Shephard and Van Der Westhuizen ()] 'Liquid chromatographic determination of the sphinganine/sphingosine
602 ratio in serum'. G S Shephard , L Van Der Westhuizen . *J. Chromat B* 1998. 710 p. .

603 [Dombrink-Kurtzman et al. ()] 'Lymphocyte cytotoxicity and erythrocytic abnormalities induced in broiler
604 chicks by fumonisins B1 and B2 and moniliformin from *Fusarium proliferatum*'. M A Dombrink-Kurtzman ,
605 T Javed , G A Bennett , J L Richard , L M Cote , W B Buck . *Mycopathol* 1993. 124 p. .

606 [Lutz and Manuel ()] 'Maintenance of adenosine A1 receptor functions during long term anoxia in the turtle
607 brain'. P L Lutz , L Manuel . *Am. J. Physiol* 1999. 276 p. .

608 [Pier ()] 'Major biological consequences of aflatoxicosis in animal production'. A C Pier . *J. Anim. Sci* 1992. 70
609 p. .

610 [Gelineau-Van Waes et al. ()] 'Maternal fumonisin exposure and risk for neural tube defects: Mechanisms in an
611 in vivo mouse model'. *J Gelineau-Van Waes* , L Starr , J Maddox , F Aleman , K A Voss , J Wilberding , R
612 T Riley . *Birth Defects Research A: Clin. Mol. Teratol* 2005. 73 p. .

613 [Riley ()] 'Mechanistic interactions of mycotoxins: theoretical consideration'. R T Riley . *Mycotoxins in*
614 *Agriculture and Food Safety*, K K Sinha, D Bhatnagar (ed.) (Basel, New York) 1998. Marcel Dekker, Inc. p. .

615 [Merrill et al. ()] A H MerrillJr , E M Schmelz , D L Dillehay , S Spiegel , J A Shayman , J J Schroeder , R T
616 Riley , K A Voss , E Wang , Sphingolipids . *The enigmatic lipid class: Biochemistry*, 1997. 142 p. .

617 [Butler and Neal (ed.)] *Mode of action and human health aspects of aflatoxin Purchase*, W H Butler , G E Neal
618 . I.F.H. (ed.)

619 [Turner et al. ()] 'Modification of immune function through exposure to dietary aflatoxin in Gambian children'.
620 P C Turner , S E Moore , A J Hall , A M Prentice , C P Wild . *Environ. Health Perspect* 2003. 111 p. .

621 [Stoev ()] 'Mycotoxic nephropathies in farm animals' diagnostics, risk assessment and preventive measures'. S D
622 Stoev . *Mycotox. Farm Anim. J* 2008a. p. .

623 [Wagacha and Muthomi ()] 'Mycotoxin problem in Africa current status implications to food safety and health
624 and possible management strategies'. J M Wagacha , J W Muthomi . *Inter. J. Food Microbiol* 2008. 124 p. .

625 [60wild and Gong ()] *Mycotoxins and human disease: a largely ignored global health issue*. *Carcinogen*, C P
626 60wild , Y Y Gong . 2010. 31 p. .

627 [Njobeh et al. ()] 'Mycotoxins and human health: Significance, prevention and control'. P B Njobeh , M F
628 Dutton , A H Makun . *Smart Biomolecules in Medicine. Research Signpost/Transworld Research Network*, A
629 K Mishra, A Tiwari, S B Mishra, H Kobayashi (ed.) (India) 2010. VBRI Press. p. .

630 [Mycotoxins: Risks in Plant, Animal, and Human Systems (2003)] *Mycotoxins: Risks in Plant, Animal, and*
631 *Human Systems*, No. 139. January 2003. 199pp. Iowa, USA. CAST (Task Force Report) (Ames Council
632 for Agricultural Science and Technology)

633 [Gong et al. ()] 'Post-weaning exposure to aflatoxin results in impaired child growth: a longitudinal study in
634 Benin'. Y Y Gong , A Hounsa , S Egal , P C Turner , A E Sutcliffe , A J Hall , K Cardwell , C P Wild .
635 *Environ. Health Perspect* 2004. 112 p. .

636 [Huang et al. ()] 'Repression of protein kinase C and stimulation of cyclic AMP response elements by Fumonisins,
637 a fungal encoded toxin which is carcinogen'. C Huang , M Dieckeman , G Henderson , C Jones . *Cancer Res*
638 1995. 55 p. .

639 [Delves et al. ()] *Roitt's essential immunology*, P Delves , M Seamus , D Burton , Y Roitt . 2006. Wiley-Blackwell.
640 p. 496. (11th Edition Place)

641 [Domijan et al. ()] 'Standard and Fpg-modified comet assay in kidney cells of 14 S.D. ochratoxin A-and fumonisin
642 B1-treated rats'. A Domijan , D Zeljezic , N Kopjar , M Peraica . *Toxicol* 2006. 222 p. .

643 [Creppy et al. ()] 'Synergistic effects of fumonisin B1 and ochratoxin A: are in vitro cytotoxicity data predictive
644 of in vivo acute toxicity'. E E Creppy , P Chiarappa , I Baudrimont , P Borracci , S Moukha , M R Carratu
645 . *Toxicol* 2004. 201 p. .

646 [Dutton ()] 'The African Fusarium/maize disease'. M F Dutton . *Mycotox. Res* 2009. 25 p. .

647 [Mwanza et al. ()] 'The cytotoxic effects of fumonisin B1, aflatoxin B1 and ochratoxin A on human and pig
648 lymphocytes using Methyl thiazol tetrazolium (MTT) assay'. M Mwanza , L Kametler , A Bonais , V Rajli ,
649 M Kovacs , M F Dutton . *Mycotox. Res* 2009. 25 p. .

650 [Charoenpornsook et al. ()] 'The effects of four mycotoxins on the mitogen stimulated proliferation of bovine
651 peripheral blood mononuclear cells in vitro'. K Charoenpornsook , J L Fitzpatrick , J E Smith . *Mycopathologia*
652 1998. 143 p. .

653 [Kiechle and Zhang ()] 'The omics era and its impact'. F L Kiechle , Zhang . *Arch. Pathol. Lab Med* 2004. 128
654 p. .

655 [Foster et al. ()] 'The polymerase chain reaction and its application to filamentous fungi'. L M Foster , K R
656 Kozack , M G Loftus , J Steven . *Mycolecular Res* 1993. 97 p. .

657 [Wild and Turner ()] 'The toxicology of aflatoxins as a basis for public health decisions'. C P Wild , P C Turner
658 . *Mutagenesis* 2002. 17 p. .

659 [Timbrell ()] 'Toxic responses to foreign compounds'. J Timbrell . *Principles of Biochemical Toxicology*, 2001.
660 Taylor and Francis. p. . (3rd ed)

661 [Minervini et al. ()] 'Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin
662 B1 in a human erythroleukemia cell line'. F Minervini , F Fornelli , K M Flynn . *Toxicology in Vitro* 2004. 18
663 p. .

664 [Hussein and Brasel ()] 'Toxicity, metabolism, and impact of mycotoxins on humans and animals'. S H Hussein
665 , M J Brasel . *Toxicol* 2001. 67 p. .

21 CONCLUSION

666 [Ringot et al. ()] 'Toxicokinetics and toxicodynamics of ochratoxin A, an update'. D Ringot , A Chango , Y-J
667 Schneider , Y Larondelle . *Chemico-Biol. Interact* 2006. 159 p. .

668 [Fink-Gremmels and Leistner ()] 'Toxicological evaluation of moulds'. J Fink-Gremmels , L Leistner . *Food
669 Biotech* 1990. 4 p. .