

1 Renal Parameters as Predictors of Morbidity and Mortality in 2 Snake Bite Patients in a Tertiary Care Hospital in Southern India

3 Imtiaz Pasha¹

4 ¹ Kempegowda institute of medical sciences, Bangalore-560011

5 Received: 7 December 2013 Accepted: 31 December 2013 Published: 15 January 2014

6

7 **Abstract**

8 Background: Snake bite is predominantly an occupational hazard and a common cause of
9 morbidity and mortality. Acute renal failure has been associated with venomous viper and sea
10 snake bites.AIMS: This study was carried out to study the incidence and clinical profile of the
11 snake bite patients who develop acute renal failure;and to identify the predictors of morbidity
12 and mortality in these patients.Material and methodology: We carried out prospective study
13 on fifty (50) cases of definitive snake bite admitted to Department of Medicine/Emergency
14 medicine, Kempegowda institute of medical sciences, Bangalore from May 2012 to November
15 2013.Statistical analysis: SPSS for Windows version 17.0 (SPSS, Inc, Chicago, Ill) was used
16 for statistical analysis. The Pearson Chi-Square Test was used to analyze parametric
17 variables. A P value of 0.05 or less was considered statistically significant.

18

19 **Index terms**— snake bite, acute renal failure, oliguria, morbidity, mortality.

20 **1 Introduction**

21 snake bite is predominantly an occupational hazard in the rural tropics and a common cause of morbidity and
22 mortality 1,2 .The majority of victims initially are treated by professional snakebite healers, snake charmers,
23 and religious men, who use herbal remedies, chant divine "mantras," and apply "snake stone," all of which are
24 supposed to magically draw out the venom from the victim 3 . Death often occurs even before the patient can
25 be brought to the hospital.

26 Globally, at least 421,000 envenomations and 20,000 deaths occur each year due to snake bite. These figures
27 may be as high as 1,841,000 envenomations and 94,000 deaths. Based on the fact that en-venomation occurs in
28 about one in every four snakebites, be-tween 1.2 million and 5.5 million snakebites could occur an-nually 4
29 . In many parts of Southeast Asian region, snake bite is a familiar occupational hazard of farmers, plantation
30 workers and others, resulting in tens of thousands of deaths each year and innumerable cases of chronic physical
31 handi-cap ?? . India accounts for about 30,000 deaths per year due to snake bite 6 .

32 More than 2,700 species of snakes are recognized the world over, but only about 450 of these have front fangs
33 that make them capable of injecting venom during the bite7. The venomous snakes belong to four families:
34 Elapidae, Viperidae, Hydrophiidae, and Colubridae.

35 Elapids are land snakes, the venom of which contains a high concentration of neurotoxins. The elapids,
36 encountered in Africa and Asia 7 include cobras, kraits, mambas, and coral snakes. Renal involvement is
37 uncommon in victims of bites from members of this family.

38 Vipers include the Russell's viper, Echis carinatus (sawscaled viper), puff adder, pit vipers, and rattlesnakes.
39 The vipers are the most widely distributed species. Russell's viper is found in India, Burma, Pakistan, Thailand,
40 and other areas of Asia; Echis carinatus in Africa, India, Pakistan, Sri Lanka, and the middle east; and the puff
41 adder (Bitis arietans) in Africa. The carpet or saw-scaled viper, Echis carinatus, justifiably can be labeled the
42 most dangerous snake in the world. The factors contributing to its deadliness are its widespread distribution,
43 abundance in farming areas, diurnal habits, good camouflage, and its highly toxic venom.

5 RESULTS

44 Hydrophid or sea snake bites are reported mainly among fishing folk of Malaysia, Thailand, and western pacific
45 coastal areas ??,11,12,13,14. Sea snake venom is primarily myotoxic.

46 Colubrids include the boomsiang (*Dispholidus typus*), and the bird snake (*Thelotornis kirtlandi*), which are
47 back-fanged African species. Back-fanged colubrids are usually harmless to humans but are occasionally known
48 to cause serious and fatal poisoning 2 .

49 Renal lesions have been associated with bites from members of the last 3 families, including the Russell's viper
50 ??5-19, *Echis carinatus* ??0,16,18, puff adder 20,21 , pit viper 22,23,24,25 and sea snake ??1,12 .

51 Acute renal failure (ARF), the most significant of all the renal manifestations, has been reported with varying
52 frequency in different studies. . In India, the most widely distributed vipers are *Echis carinatus* and Russell's
53 viper 3 . Most Indian patients are victims of Russell's viper or *Echis Carinatus* bites15-21

54 In India, the incidence of ARF is 13% to 32% following *Echis carinatus* or Russell's viper bite 16, ??8, ??9 .

55 A variety of histopathological findings have been described in snake bite patients. The most common of
56 them have Acute tubular necrosis 3,7-9,30, Acute cortical necrosis 31 ,Acute diffuse interstitial nephritis 32,33,
57 Proliferative glomerulonephritis. ??4 .

58 The aim of this study were to describe the incidence and clinical profile of the snake bite patients who develop
59 acute renal failure; and to identify the predictors of morbidity and mortality in these patients.

60 2 II.

61 3 Materials and Methods

62 Fifty (50) cases of definitive snake bite consecutively admitted to Department of Medicine/Emergency medicine,
63 Kempegowda institute of medical sciences, Bangalore from May 2012 to November 2013 were taken up in this
64 prospective observational study. a) Inclusion Criteria 1. Definitive history of snake bite 2. Clinical picture
65 consistent with snake bite, as presence of fang marks or cellulitis or coagulopathy or neuroparalysis 3. Presence
66 of Acute Renal Failure, defined as an abrupt (within 48 hours) absolute increase in the t t t . baseline value
67 measured after admission to our hospital or elsewhere after snake bite, before referral to our hospital, or a
68 percentage increase in t t t t above base-line, or oliguria of less than 0.5 mL/kg per hour for more than
69 six hours .Serum creatinine more than 1.5 mg/dL or oliguria (urine output less than 400 mL/day)35. b)
70 Exclusion Criteria 1. Patients with pre-existent renal disease (Serum creatinine > 1.5 mg/dL prior to snake
71 bite or ultrasonography of abdomen suggestive of bilateral small kidneys/loss of corticomedullary differentiation
72 / obstrutive nephropathy/other renal pathology) 2. Diagnosed cases of hypertension/diabetes mellitus 3.
73 Exposure to nephrotoxic drugs/toxins. Data was collected by using pre-tested proforma meeting the objectives
74 of the study. Purpose of the study was carefully explained to the patients and consent was taken.

75 All patients were interviewed, detailed history was taken with respect to risk factors and detailed physical
76 examination were carried out. Appropriate investigations were carried out.

77 Laboratory investigations included hemoglobin, total and differential leucocyte counts, platelet counts,
78 red cell counts, bleeding and clotting time, coagulation profile including prothrombin time, activated partial
79 thromboplastin time and international normalised ratio (INR), urine microscopy, urinary protein, kidney and
80 liver function tests and serum electrolytes. Radiological investigations included X-ray chest and ultrasonography
81 of abdomen.

82 Statistical analysis: SPSS for Windows version 17.0 (SPSS, Inc, Chicago, Ill) was used for statistical analysis.
83 The Pearson Chi-Square Test was used to analyze parametric variables. A P value of 0.05 or less was considered
84 statistically significant.

85 4 III.

86 5 Results

87 During the study period of 18 months a total of 50 patients were admitted for snake bite, out of which 36(72%)
88 were males and the male: female was 2.5:1.A majority were from rural areas 37(74%) and the rest from urban
89 areas 13(26%). The mean age of the male patients was 41.81 years and that of the female patients was 48.29
90 years.

91 A majority of the patients were farmers (54 %), labourers (18%) and housewife (16 %).The biting species
92 identified were viper (70%),cobra (6%) and unknown species (14%).

93 The peak incidence in the snake bite cases occurred during the months of July to September. Most of the
94 patients were bitten during the day time (78%).The most frequently bitten site was the lower extremity (70%).

95 Definitive fang marks were seen in (66%) of the cases. Tourniquet was applied in (10%) of patients.Cellulitis
96 was seen in patients, out of which patients developed compartment syndrome, requiring fasciotomy.

97 Only 12% of patients presented to hospital within 2 hours of bite and the mean lapse of time from bite
98 to hospitalisation in males was 17. ??9 Laboratory data showed anemia (hemoglobin<10gm%) in 13(26%),
99 leucocytosis in 32(64%), thrombocytopenia in 24(48%), coagulopathy in 18(36%), hematuria in 20(40%),
100 proteinuria in 26(52%), and hyperkalemia in 9(18%) .

101 Mean urine output at baseline, 24hrs, 48hrs and 72hrs were 651.37 ml, 1436.59 ml, 1751.46 ml and 1956.22
102 ml. Mean Blood urea at baseline, 24hrs, 48hrs and 72hrs were 44.66 mgs%, 53.71mgs%,51.49 mgs% and 47.86

103 mgs% and mean serum creatinine at baseline, 24hrs, 48hrs and 72hrs were 1.641mgs%, 1.827mgs%, 1.756mgs%
104 and 1.780 mgs% respectively.

105 There was no significant difference between group differences in creatinine between those with INR<1.5 and INR>1.5

106 Out of these 50 patients, 20(40%) patients developed acute kidney injury and 13(26%) required hemodialysis
107 and 1 patient progressed to chronic kidney disease. The mortality rate was 4%.

108 **6 IV.**

109 **7 Discussion**

110 Snakebite is a common medical emergency and an occupational hazard. Renal manifestations include proteinuria,
111 hematuria, pigmenturia, and acute renal failure.

112 In India, the incidence of ARF is 13% to 32% following *Echis carinatus* or Russell's viper bite ??6, 28, 29. A
113 variety of histopathological findings have been described in snake bite patients. The most common of them have
114 Acute tubular necrosis 3,7-9,30, Acute cortical necrosis 31, Acute diffuse interstitial nephritis 32, 33, Proliferative
115 glomerulonephritis. ??4 .

116 Most of the patients were found to be men in working age group, especially from rural population. Majority
117 of the snake bites occurred between 6 am to 6 pm, i.e., during working hours in the field. As expected, the snake
118 bites more commonly involving lower limbs. So, this also shows that use of protective footwear can reduce the
119 snake bites.

120 In our study, out of 50 number of snake bite patients, 20(40%) patients developed acute renal failure. This
121 prevalence is higher compared to the other studies from India 16, ??8, ??9 . The higher prevalence probably
122 due to higher number of viper bites and delay in administration of ASV, as there is a delay in taking the patient
123 to hospital after snake bite. 45(90%) of the patients had local cellulitis, indicating the vasculotoxic nature of
124 envenomation.

125 There was a significant increase in duration of hospitalization in those with Creatinine >1.5 (18 days) compared
126 to those with creatinine<1.5 (32 days).

127 The other common symptoms were swelling/inflammation of bite area (90%), muscle pain/tenderness (60%),
128 oliguria (50%), fever (26%) and vomiting(26%), hematuria(40%) and bleeding from site was present in 40%
129 patients. Similar figures have been reported previously also ??8 .

130 Common findings on examination were tachycardia (38%), breathlessness (34%), and hypotension (36%)
131 and Proteinuria (52%) patients. Common laboratory findings were Anaemia (26%);, Leucocytosis (64%);
132 Thrombocytopenia(48%), Coagulopathy (36%). Coagulopathy is an important factor contributing to increased
133 mortality. The prevalence of coagulopathy in this study (36%) is comparable to that noted by Athappan et al
134 39 i.e., 27.7%, whereas it is less as compared to other series (60-80%) ??0 . By itself, coagulopathy is a marker
135 of the vasculotoxicity and hemotoxicity of the poison, which means that these patients will have nephrotoxicity
136 due to damage to renal microvasculature. Also coagulopathy leads to bleeding and hypotension which, further
137 leads to renal insufficiency as a result of prerenal insult.

138 The mortality of snake bite induced acute renal failure is found to be 4% in this study. This is less compared
139 to estimates from other studies from India (22-50%) 39 . Kalantri et al reported an overall mortality of 11%
140 in venomous snake bite patients 41 . The mortality can be prevented by intervention at various levels, which
141 include early transfer of the patient to a primary health care facility, where ASV should be administered at the
142 earliest. The high risk patients should be identified early and referred to higher centre.

143 The limitations of this study were a smaller sample size and lack of investigations like renal biopsy.

144 This study concludes that acute renal failure occurs in 40% victims of snake bite and is associated with
145 significant increase in the number of hospitalisation days. Common manifestations include cellulitis, oliguria,
146 proteinuria, coagulopathy and thrombocytopenia. The overall mortality of snake bite induced acute renal
147 failure is 4%. Presence of coagulopathy and increase in the number of hospitalisation days are predictors of
148 morbidity and mortality in snake bite patients who develop acute renal failure. ¹

1 1

Year 2014

Volume XIV Issue II Version I

() B

Medical Research

Global Journal of

Figure 1: Table 1 :

7 DISCUSSION

2

Hematological parameters	Number of patients	%
Hemoglobin (Hb in gms)		
<10.0%	13	26
>10.0%	37	74
Total count(/mm3)		
<11000	18	36
>11000	32	64
Platelet count(/mm3)		
<100000	24	48
>100000	26	52
Prothrombin time (in secs)		
< 15 sec	11	22
>15 sec	39	78
Activated partial thromboplastin time(APTT in secs)		
< 30 sec	9	18
>30 sec	41	82
INR		
< 1.5	26	52
>1.5	24	48
Fibrin degradation products(FDP)		
Positive	22	44
Negative	28	56

Figure 2: Table 2 :

3

Sr creatinine	No patients	%
<1.5	30	60
>1.5	20	40
Table 4 : WBCT in minutes of patients studied		
WBCT in minutes	Number of patients	%
<20 min	14	28
>20 min	36	72
Total	50	100

Figure 3: Table 3 :

5

End results	No of patients	%
Discharged	47	94
Death	2	4
Chronic kidney disease	1	2

Figure 4: Table 5 :

6

Year 2014 Volume XIV Issue II Version I B) (Medical Research Global Journal of					
Sr	Number of hospitalization	%	Mean	SD	P value
.Creatinine	days				
<1.5*	32	64	9.88	7.534	0.003
>1.5*	18	36	15.94	4.659	0.001
p<0.005					

Figure 5: Table 6 :

7

Blood urea	Mean \pm SD	P value
Baseline	44.66 \pm 32.677	0.180
24hrs	53.71 \pm 39.688	0.90
2 nd day	51.49 \pm 42.390	0.186
3 rd day	47.86 \pm 45.155	0.105

Figure 6: Table 7 :

8

Serum creatinine	Mean \pm SD	P value from Baseline	48hrs	1.756 \pm 1.545	0.188
Baseline	1.641 \pm 1.319	0.091	72hrs	1.780 \pm 1.639	0.201
24hrs	1.827 \pm 1.362	0.076			

Figure 7: Table 8 :

7 DISCUSSION

9

	Urine output	Mean \pm SD	P value from Baseline
Baseline	651.37 \pm 509.825	0.074	
24hrs	1436.59 \pm 784.178	0.318	
48hrs	1751.46 \pm 923.601	0.564	
72hrs	1956.22 \pm 1331.394	0.913	

Table no 10 : INR VS Serum Creatinine

INR<1.5	Serum creatinine					
	Baseline	24hrs	48hrs	72hrs	Mean \pm SD value	
Mean \pm SD	P value	Mean \pm SD	Mean \pm SD	P value	Mean \pm SD	value
1.55 \pm 1.48	1.000	1.54 \pm 1.17	1.000	1.39 \pm 0.87	1.000	1.43 \pm 1.17.000
INR \geq 1.5	Mean \pm SD	P value	Mean \pm SD	Mean \pm SD	P value	Mean \pm SD value
1.91 \pm 1.5	0.071	2.26 \pm 1.69	0.071	2.34 \pm 2.1	0.352	2.25 \pm 2.09.728

Figure 8: Table 9 :

149 [Ks and Sakhija V ()] , Chugh Ks , Sakhija V . *Renal failure from snake bites. IntfArt,f Organs* 1980. 3 p. .
150 [Med ()] , J Med . 2010. 51 p. .

151 [Indraprasit S and Boonpucknavig V ()] 'Acute interstitial nephritis after a Russell's viper snake bite'. Indraprasit S , Boonpucknavig V . *Clin Nephrol* 1986. 31. 25.

152 [Sitprija et al. ()] 'Acute interstitial nephritis in snake bite'. V Sitprija , Pochanu0001 C Suvanpha R , Chusil S , -Sanga K Tuna . *Am J Trap Med Hyg* 1982. 31 p. .

153 [Mehta Rl et al. ()] 'Acute Kidney Injury Net-work: report of an initiative to improve outcomes in acute kidney injury'. Kellum Mehta Rl , Shah Ta , Molitoris Sv , Wamock Ba Roncoc , Dg , Levin A . *Crit Care* 2007. 11 (2) p. R31.

154 [Sheth S et al. ()] 'Acute renal cortical necrosis'. Sheth S , Talwalkar Rege U , Acharya Nc , Vn . *Proc XAnn Conf Indian Soc Nephrol* 1980. p. 14.

155 [Seedat Yk et al. ()] 'Acute renal failure due to proliferative nephritis from snake bite poisoning'. Seedat Yk , J Reddy , Edington Da . *Nephron* 1974. 13 p. .

156 [Ali et al. ()] 'Acute renal failure following echis cari-natus (saw-scaled viper) envenomation'. G Ali , M Kak , M Kumar , S K Bali , S I Tak , G Hassan , M B Wadhwa . *Indian Journal of Nephrology* 2004. 14 p. .

157 [Ks et al. ()] 'Acute renal failure following poisonous snake bite'. Chugh Ks , Y Pal , Chakravarty Rn , Datta Bn , Mei-Ita R Sakhija V , Mandal Ak , Sommers Sc . *Am J Kidney Dis* 1984. 4 p. .

158 [Athappan et al. ()] 'Acute renal failure in snake envenomation: a large prospective study'. G Athappan , M V Balaji , U Navaneethan , P Thirumalikolundusubramanian . *Saudi J Kidney Dis Transpl* 2008. 19 (3) p. .

159 [Dasilva Oa et al. ()] 'Bilateral cortical necrosis and calcification of the kidney following snake bite: a case report'. Dasilva Oa , Lopez M , Godoy P . *Clin JVephrol* 1979. 11 p. .

160 [Da and Davidson N Mcd ()] 'Bites by the puff adder (Bitis arietans) in Nigeria and value of antivenom'. Warrell Da , Ormerod D Davidson N Mcd . *BrMedJ* 1975. 4 p. .

161 [Mahmood et al.] *Clinical course and outcome of snake envenomation at a hospital in Karachi*, K Mahmood , I H Naqvi , A Talib , S Salkeen , B Abbasi , T Akhter , N Iftikhar . Singapore.

162 [Kalantri et al. ()] 'Clinical predictors of in-hospital mortality in patients with snake bite: a retrospective study from a rural hospital in central India'. S Kalantri , A Singh , R Joshi , S Malamba , C Ho , J Ezoua , M Morgan . *Trop Med Int Health* 2006. 11 (1) p. .

163 [Sitprija V and Boonpucknavig V ()] 'Extracapillary proliferative glomerulonephritis in Russell's viper bite'. Sitprija V , Boonpucknavig V . *Br Med J* 1980. 2 p. 1417.

164 [Verma et al. ()] 'Incidence of renal involvement following snake bite poisoning in Jammu'. Verma , Sl , Wadhwa Gupta V , Manhas Mb , Bassi As , Sd , M Sharma , Sudan Ss . *Proc XII Ann Conf Indian Soc Nephrol* 1982. p. 4.

165 [Dasilva Oa et al. ()] 'Intensive care unit treatment of acute renal failure following snake bite'. Dasilva Oa , Lopez M , Godoy P . *Am J Trop Med Hyg* 1979. 28 p. .

166 [Mf and Mello Rf ()] 'Intermediate nephron nephrosis from snake poisoning in man. Histopathological study'. Amorim Mf , Mello Rf . *Am J Pathol* 1954. 1978. 30 (11) p. . (Jpn)

167 [Sant Sm et al. ()] 'Lesions produced by Echis carianus venom in experimental animals'. Tembe Sant Sm , Vs , Purandare Salgaonkar Ds , Nm . *J Postgrad Med* 1974. 20 p. .

168 [Shastry Jcm et al. ()] 'Renal failure following snake bite'. Shastry Jcm , Carman Date A , Johny Rh , Kv . *Am J Trop Med Hyg* 1977. 26 p. .

169 [Sarangi A et al. ()] 'Renal involvement in viper snake bite'. Patnaik Sarangi A , Das Bc , Gc , Tripathy N , G Misit , Swain Ak , Das Gk ; Mittal , Kinare By , Acharya Sg , Vn . *Indian J Med Res* 1980. 1986. 83 (5) p. . (Indian J Med Res)

170 [Mt and Rajaratnam K ()] 'Renal papillary necrosis in ophitoxemia (abstract)'. Mathew Mt , Rajaratnam K . *J Assoc Physicians India* 1987. 35 p. 20.

171 [Sitpri et al. (ed.) ()] Sitpri , Ia V , Boonpucknavig V . *Snake venoms and nephrotoxicity*, Lee Cy (ed.) (Berlin) 1979. Springer-Verlag. p. . (Snake Venoms)

172 [Hs and Sakhija V ()] 'Snake bites and acute renal failure'. Kohli Hs , Sakhija V . *Saudi J Kidney Dis Transpl* 2003. 14 (2) p. .

173 [Kanjanabuch T and Sitprija V ()] 'Snakebite nephrotoxicity in Asia'. Kanjanabuch T , Sitprija V . *Semin Nephrol* 2008. 28 (4) p. .