

¹ New Process Based on the Coupling of an Electrochemical Sensor ² and Bioanalytical Column for Determining Antioxidant Capacity

Abdelilah Chtaini¹

¹ Universit Sultan Moulay Slimane

Received: 16 December 2013 Accepted: 3 January 2014 Published: 15 January 2014

Abstract

7 **Abstract**
8 A new approach, for antioxidant capacity determination was proposed. It is based on the
9 using of the xanthine-xanthine oxidase system coupled with H₂O₂ electrochemical sensor. The
10 paper presents the preparation and characterization of the H₂O₂ amperometric sensor and its
11 utilization for antioxidant evaluation of some real samples (Garlic, tea and coffee). The
12 obtained results were found in good correlation with reality.

Index terms— voltammetry; antioxidant capacity; xanthine; xantine oxidase.

¹⁵ 1 Introduction

16 antioxidant can be defined as substances that inhibit the oxidation of the other molecules. Reactive oxygen species
17 (ROS), naturally generated during the metabolism, can damage biological structures such as proteins, lipids or
18 DNA. Normally, cells defend themselves against ROS damage with enzymes, but sometimes the natural defenses
19 are overwhelmed by an excessive generation of ROS and a situation of oxidative stress occurs. In this case, cellular
20 and extracellular macromolecules (proteins, lipids, and nucleic acids) can suffer oxidative damage, causing tissue
21 injury [1,2].

Antioxidant compounds in food are found to have a health protecting factor. Primary sources of naturally occurring antioxidants are whole grains, fruits and vegetables.

Garlic (*Allium sativum*) is an herb. It is best known as a flavoring for food [15]. But over the years, garlic has been used as a medicine to prevent or treat a wide range of diseases and conditions. The fresh clove or supplements made from the clove are used for medicine [16]. Garlic is used for many conditions related to the heart and blood system. These conditions include high blood pressure, high cholesterol, and coronary heart disease, heart attack, and "hardening of the arteries" (atherosclerosis) [17]. Some of these uses are supported by science. Garlic actually may be effective in slowing the development of atherosclerosis and seems to be able to modestly reduce blood pressure. Some people use garlic to prevent colon cancer, rectal cancer, stomach cancer, breast cancer, Author ? ? : Equipe d' Electrochimie Moléculaire et Matériaux Inorganiques, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques de Beni Mellal, Maroc. e-mail: a.chnaini@usms.ma prostate cancer, and lung cancer. It is also used to treat prostate cancer and bladder cancer. Garlic has been tried for treating an enlarged prostate (benign prostatic hyperplasia; BPH), diabetes, osteoarthritis, hayfever (allergic rhinitis), traveler's diarrhea, high blood pressure late in pregnancy (pre-eclampsia), cold and flu. It is also used for building the immune system, preventing tick bites, and preventing and treating bacterial and fungal infections. Other uses include treatment of fever, coughs, headache, stomach ache, sinus congestion, gout, rheumatism, hemorrhoids, asthma, bronchitis, shortness of breath, low blood pressure, low blood sugar, high blood sugar, and snakebites. It is also used for fighting stress and fatigue, and maintaining healthy liver function. Some people apply garlic oil to their skin to treat fungal infections, warts, and corns. There is some evidence supporting the topical use of garlic for fungal infections like ringworm, jock itch, and athlete's foot; but the effectiveness of garlic against warts and corns is still uncertain. There is a lot of variation among garlic products sold for medicinal purposes. The amount of allicin, the active ingredient and the source of garlic's distinctive odor, depends on the method of preparation. Allicin is unstable, and changes into a different chemical rather quickly. Some manufacturers take advantage of

9 B) CALIBRATION GRAPH

45 this by aging garlic to make it odorless. Unfortunately, this also reduces the amount of allicin and compromises
46 the effectiveness of the product. Some odorless garlic preparations and products may contain very little, if any,
47 allicin [18,19].

48 Several amperometric biosensors have already been proposed for antioxidant capacity evaluation
49 [3][4][5][6][7][8][9][10][11][12][13][14]. Most of them are based on the amperometric detection of H_2O_2 ,
50 resulting from the catalyzed dismutation of superoxide radicals (O_2^-) in presence of superoxide dismutase.

51 In this work, electrochemical deposition of copper on paste carbon electrode is carried out to develop stable
52 recognition layers for the voltammetric detection of antioxidant capacity of domestic garlic, tea and coffee samples.

53 The antioxidant capacity was evaluated, by coupling an amperometric sensor for H_2O_2 detection, obtained
54 by modification of paste carbon graphite electrode with copper, with xanthine oxidase (XOD) immobilized at
55 silice -xanthine (XA) enzymatic system, as generator of O_2^- radicals. The advantages of this strategy consist
56 to:

57 ? It works at low applied potential, allowing a significant decrease of the risk of electrochemical interferences;

58 ? The antioxidant capacity evaluation, requiring the monitoring of H_2O_2 concentration in presence of
59 antioxidant sample as well as in its absence, will enhance global estimation of free radicals (O_2^-) or no radical
60 reactive species, (H_2O_2) (Reaction 1).

61 2 Reaction 1

62 II.

63 3 Experimental Section a) Apparatus

64 Electrochemical experiments were performed using a voltalab potentiostat (model PGSTAT 100, Eco Chemie B.
65 V., Utrecht, The Netherlands) driven by the general purpose electrochemical systems data processing software
66 (voltalab master 4 software).

67 All the electrochemical experiments were performed in a standard one-compartment threeelectrode cell. The
68 reference electrode was SCE and the counter electrode was platinum. All electrode potentials were referred to
69 this reference electrode. The working electrode was copper modified carbon paste electrode (Cu-CPE).

70 4 b) Reagents and Solutions

71 All chemicals were of the highest quality. Graphite powder (spectroscopic grade RWB, Ringsdorff-Werke GmbH,
72 Bonn-Bad Godesberg, Germany) was obtained from Aldrich and was used without further purification. $CuSO_4$
73 was obtained from Merck chemicals. Deionised water was used to prepare all solution.

74 5 c) Preparation of the Electrochemical Sensor

75 The carbon paste unmodified was prepared by adding paraffin oil to carbon powder and thoroughly hand -mixing
76 in a mortar and pestle. The resulting paste was packed into the electrode and the surface was smoothed. The
77 electrochemical sensor was developed by depositing the copper at fixed potential (0.1 V for 1 hour) onto the
78 carbon paste electrode surface.

79 6 d) Procedure

80 The device constructed for the measurement of the antioxidant capacity is given in Figure 1. The free radical
81 was generated in column following the reaction 1, a calibration curve; giving current density of H_2O_2 reduction
82 versus $[H_2O_2]$ is recorded. In the second test, the investigated antioxidant associated to xanthine solution,
83 were pouring in column and electrochemical response behaviour was recorded, the $[H_2O_2]$ no consumed was
84 evaluated from calibration curve already established.

85 7 Results and Discussion

86 8 a) Characterization of Prepared Electrode

87 The cyclic voltammograms (CVs) of the copper modified carbon paste electrode (Cu-CPE) and carbon paste
88 electrode (CPE) were recorded in the supporting electrolyte (phosphate buffer solution) (Fig. 2).

89 We can see that the shape of the cyclic voltammogram was modified in the presence of copper at CPE surface,
90 suggesting that the carbon paste electrode was effectively modified by copper. The surface structure of copper
91 modified carbon paste surface was observed using scanning electron microscopy (Fig. 3). The film layer of copper
92 was formed on the surface of carbon paste electrode; it was not disintegrated or detached from the surface when
93 immersed in the buffer solution.

94 9 b) Calibration Graph

95 The detection of H_2O_2 , generated in the silica column, was examined by square wave voltammetry, in the
96 electrochemical sensor. The electrode response was tested for different amounts of H_2O_2 , in the range from
97 1 μ L/100mL (buffer tampon solution) to 100 μ L/100mL (buffer tampon solution). Figure ?? shows some typical

98 square wave voltammetry curves recorded at Cu-CPE electrode. A calibration graph was then constructed
99 from the observed peak currents. The square wave voltammetric response was almost linear dependent on the
100 concentration of H₂O₂ (Fig. ??). The linear regression analysis gave: Figure ?? shows the garlic juice
101 calibration plots. As can be seen, the garlic oxidation current density increases with concentration. The addition
102 of garlic juice to xanthine solution caused a decrease in H₂O₂ reduction current signal (Fig. 7). We can
103 conclude that garlic inhibited the reductive effect of H₂O₂ .

104 ii. Antioxidant Capacity of Tea

105 The developed system was also to the determination of the antioxidant capacity of tea. Figure 8 shows the
106 evolution of the oxidation current density of tea with concentration, the peak current have a linear relationship
107 with concentration. For constant concentration of H₂O₂ , the dependence of square wave voltammetric peak
108 current on the addition of tea in silica column was studied (Fig. 9). The reduction peak of H₂O₂ decreases in
109 presence of tea.

110 **10 iii. Antioxidant Capacity of Coffee**

111 The working procedure consisted in adding xanthine and coffee to a column containing xanthine oxidase
112 immobilized onto silica. The presence of coffee will induce a decrease of H₂O₂ concentration, resulting in
113 a decrease of the H₂O₂ electrochemical sensor (currentdensity). Figure 10 shows evolution of the H₂O₂
114 reduction current density with concentration of coffee. ()

115 The corresponding antioxidant capacity values, was calculated using the relation:

116 Where I_{H2O2} , is the current density due to H₂O₂ reduction and $I_{H2O2antioxidant}$ sample represent the
117 current density due to antioxidant sample addition. The results are summarized in Table ??.

118 **11 Table. 1**

119 IV.

120 **12 Conclusion**

121 A bioanalytical system for the evaluation of the antioxidant capacity has been developed. The main advantage
122 of the new approach is based on coupling the production of radicals, generated by the xanthine/xanthine oxidase
123 enzymatic system, with the electrochemical sensor, for H₂O₂ detection. The immobilization of xanthine
124 oxidase (XOD) on the silica increased the sensitivity of the system in comparison with those where the XOD
125 remained in solution. The results obtained show that the proposed system is fast, sensitive and better suited
than conventional methods. ¹

1

Figure 1: Figure 1 :

126

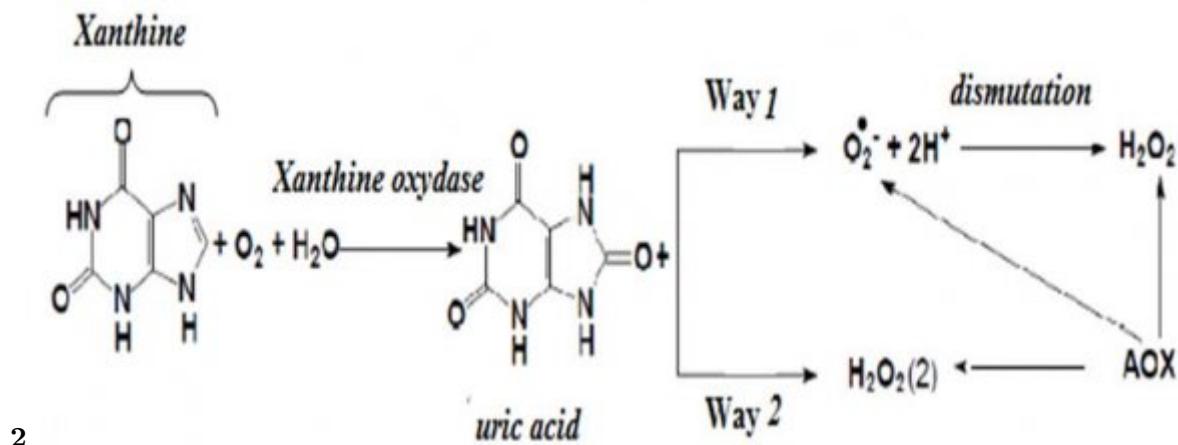


Figure 2: Figure 2 :

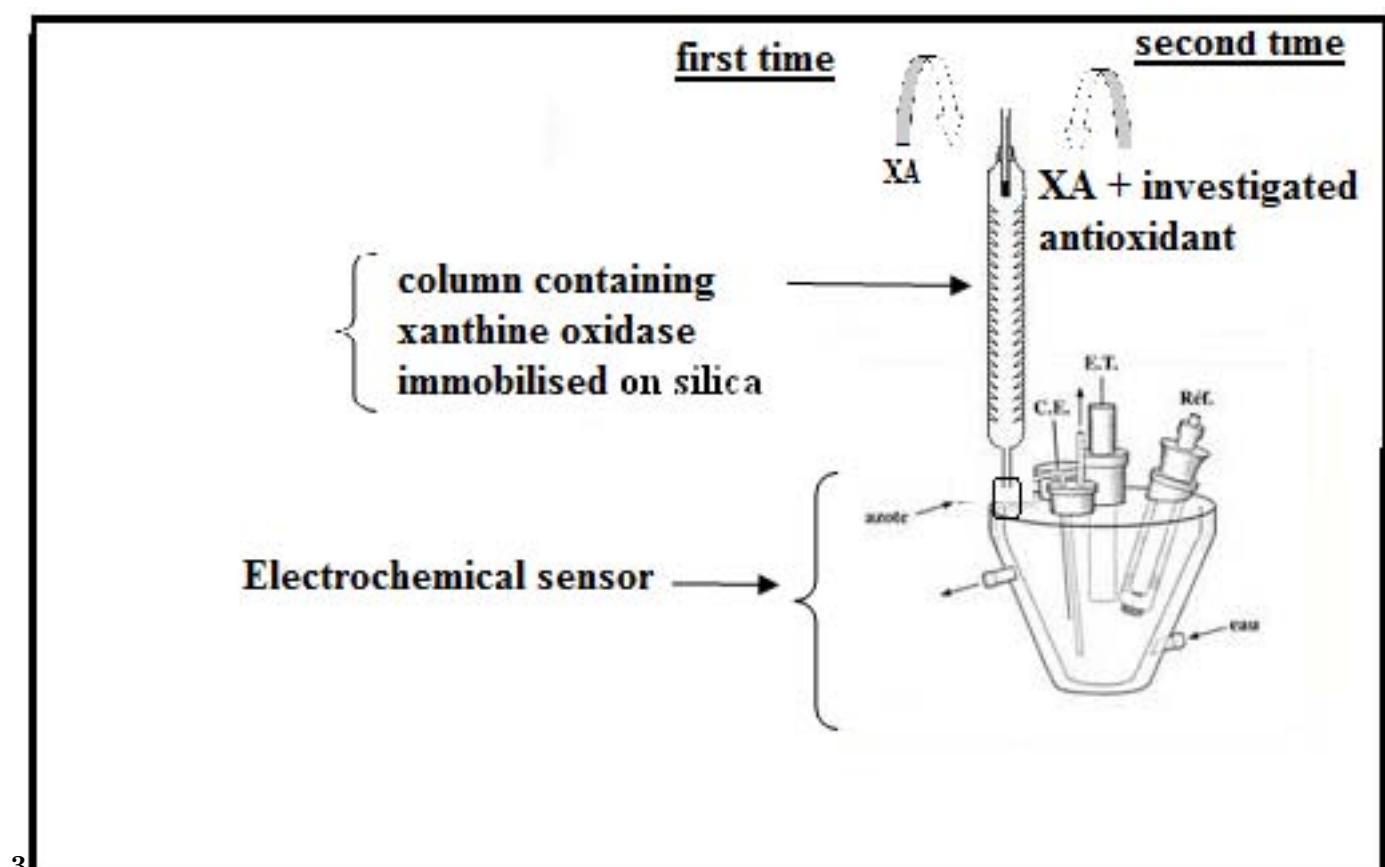


Figure 3: Figure 3 :

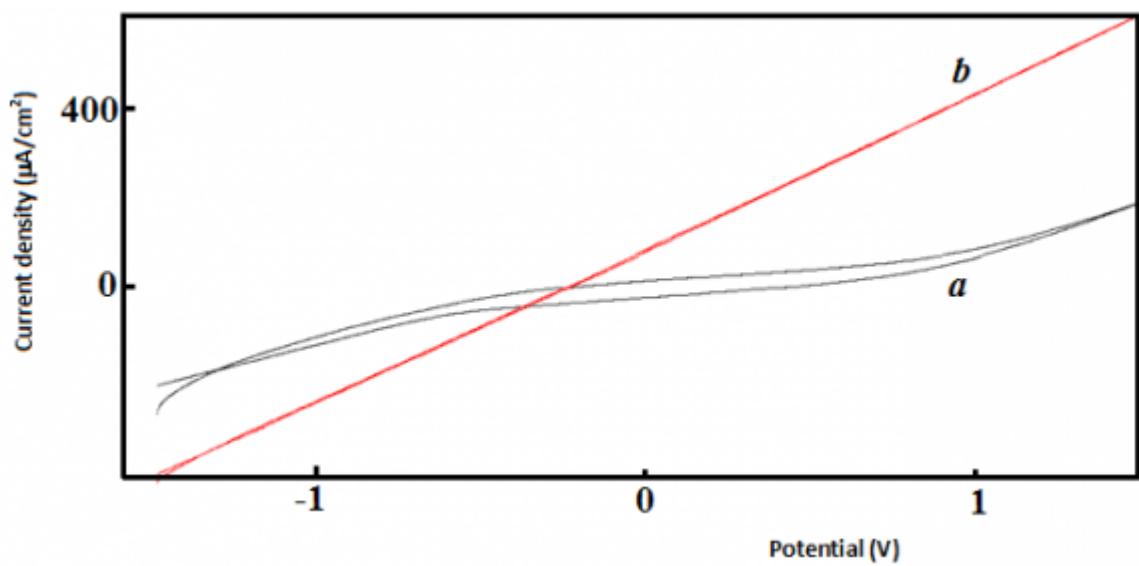
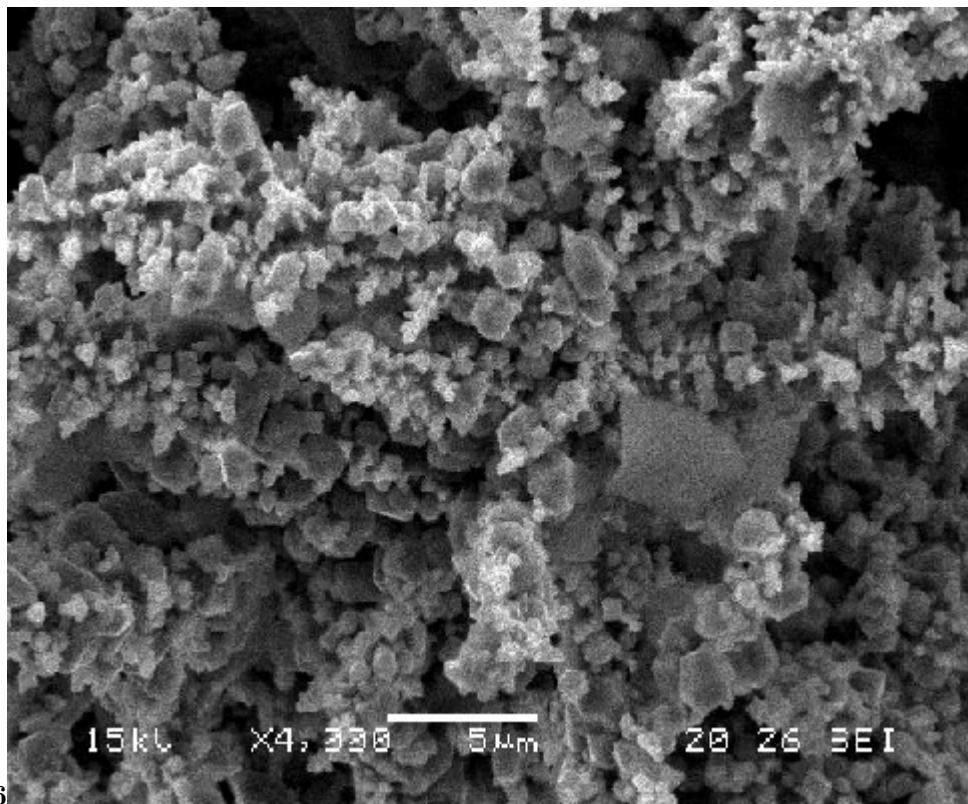



Figure 4:

456

Figure 5: Figure 4 :Figure 5 :Figure 6 :

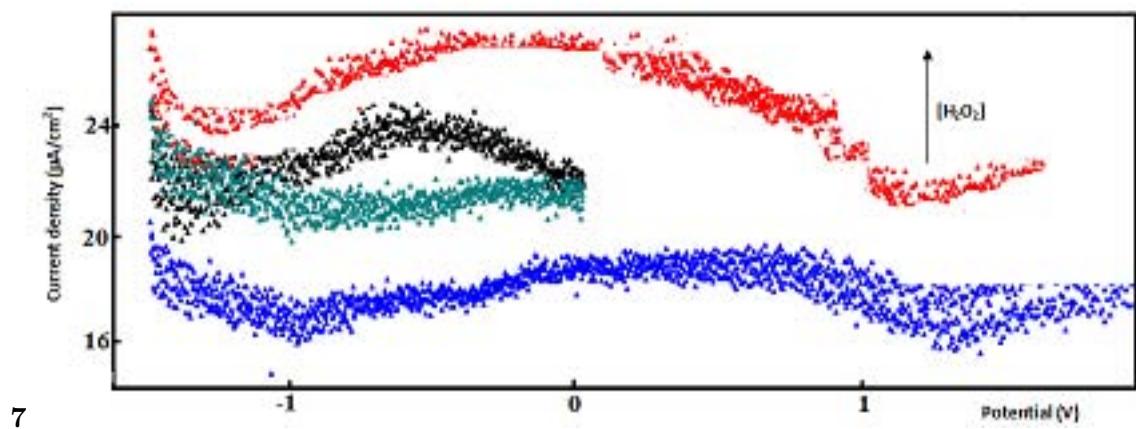


Figure 6: Figure 7 :

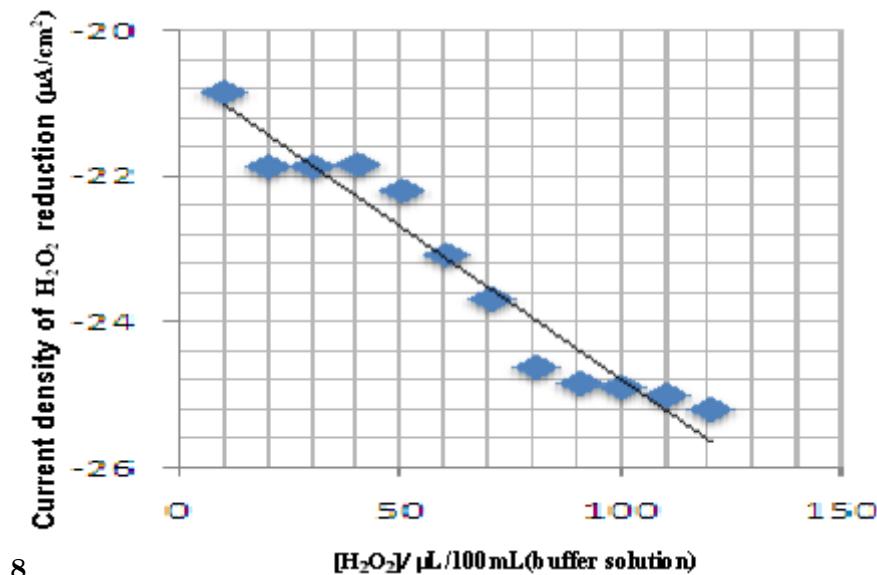


Figure 7: Figure 8 :

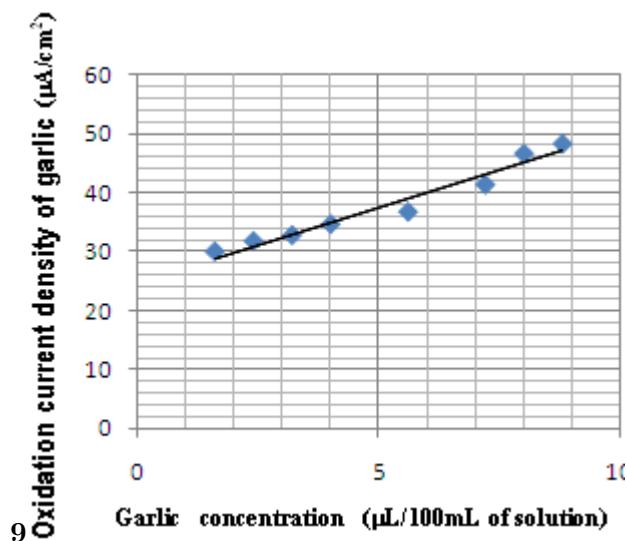


Figure 8: Figure 9 :

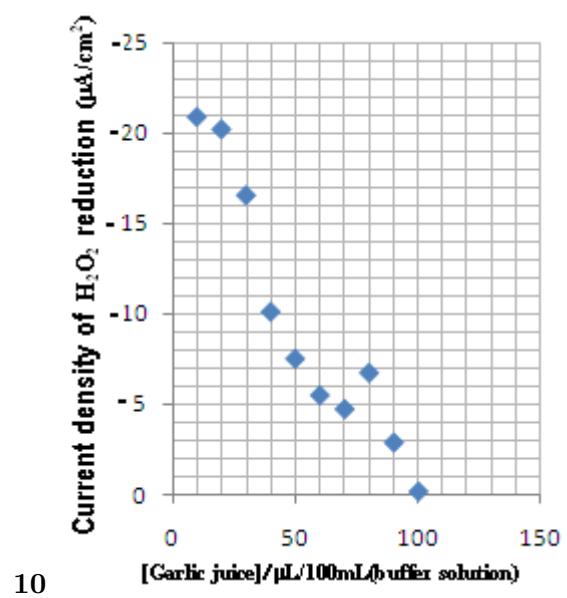


Figure 9: Figure 10 :

127 [Haliwell and Aruoma ()] , B Haliwell , O I Aruoma . *FEBS Letters* 1991. 281 (1-2) p. .

128 [Mesaros et al. ()] , S Mesaros , Z Vankova , A Mesarosova , P Tomcik , S Grufeld . *Bioelectrochem. Bioenergy*
129 1998. 46 p. .

130 [Campanella et al. ()] , L Campanella , G Favero , L Persi , M Tomassetti . *Anal. Lett* 1999. 32 p. .

131 [Lisdat et al. ()] , F Lisdat , B Ge , R Rezeka , E Kozniewska . *Fresenius. J. Anal. Chem* 1999. 365 p. .

132 [Tiam et al. ()] , Y Tiam , T Okajima , F Kitamura , T Ohsaka . *J. Korean Electrochem. Soc* 2002. 5 p. .

133 [Ignatov et al. ()] , S Ignatov , D Shishniashvili , B Ge , F Scheller , F Lisdat . *Biosens. Bioelectron* 2002. 17 p. .

134 [Campanella et al. ()] , L Campanella , A Bonnani , G Favero , M Tomassetti . *Bioanal. Chem* 2003. 375 p. .

135 [Beissenhirtz et al. ()] , M Beissenhirtz , F Scheller , F Lisdat , *Electroanal* . 2003. 15 p. .

136 [Campanella et al. ()] , L Campanella , A Bonnani , E Finotti , M Tomassetti . *Biosens. Bioelectron* 2004. 19 p.
137 .

138 [Di et al. ()] , J Di , S Bi , M Zhang . *Biosens. Bioelectron* 2004. 19 p. .

139 [E ()] , E . *Anal. Bioanal. Chem* 2005. 383 p. .

140 [Mello and Kubota ()] , L Mello , L Kubota . *Talanta* 2007. 72 p. .

141 [Bonnani et al. ()] , A Bonnani , L Campanella , T Gatta , E Gregoria , M Tomassetti . *Food Chem* 2007. 102
142 p. .

143 [Mousa and Mousa ()] , A S Mousa , S A Mousa . *Nutrition Resaerch* 2007. 27 p. .

144 [Aguilera et al. ()] , P Aguilera , M E Cardenas , A O Plata , D L Aparicio , D Barrera , M E Rojo . *Phytomedecine*
145 2010. 17 p. .

146 [Cervantes et al. ()] , M I Cervantes , P M Balderas , J J Banos , M O Ibarra , B F Rojas , O N Campos , M E
147 Rojo , M R Tachiquin , A O Plata . *Food chemistry* 2013. 140 p. .

148 [Nodo et al. ()] , Y Nodo , C Asado , C Sasaki , S Hashimoto , Y Nakamuro . *Biochemical Engineering Journal*
149 2013. 73 p. .

150 [Sami et al. ()] , G Sami , Hanan M Alsabri , Nouri B El-Basir , Rmeli , B Salah . *Journal of Chemical and*
151 *Pharmaceutical Research* Mohamed, Aemen A. Allaf, Abdulmottaleb A. Zetrini, Asma A. Salem, Sofian S.
152 Mohamed, Abdul Gbaj and Mokhtar M. El-Baseir (ed.) 2013. 5 (1) p. .

153 [Halliwell and Gutteridge ()] B Halliwell , J Gutteridge . *Free Radicals in Biology and Medicine*, (New York
154 USA) 2007. Oxford University Press.