

1 Effect of High Energy and High Protein Diets on Zinc and 2 Copper Metabolism in Goats

3 Abdel Baset Ahmed

4 Received: 14 December 2013 Accepted: 2 January 2014 Published: 15 January 2014

5

6 Abstract

7 The effect of different levels of energy and protein on the utilization of zinc and copper were
8 evaluated in four metabolic experiments. A total of nine growing castrated male balady kids
9 having nearly the same age (8-9 months) and body weight (15-18kg) were experimented on.
10 Kids were housed individually in metabolism cages in order to collect feces and urine. Four
11 experiments, 3 trials per each were done on the same animals, with about 10 days as a rest
12 period between one experiment and another, in which the animals were fed on control ration
13 during the interval. The nine kids were randomly divided into 3 groups (A, B and C), 3 kids
14 per each. The first group (A) was fed the control ration and used as control, while the other
15 two groups (B and C) were fed the tested rations which furnished 15

16

17 **Index terms**— energy, protein, zinc, copper, metabolism, goats.

18 1 Introduction

19 There is no doubt that considerable increase in animal production can be achieved with improved nutrition and
20 management practices under different production systems of management 1 . Efficient utilization of nutrients
21 depends on an adequate supply of energy, which of paramount importance in determining the productivity.
22 In goats, energy deficiency retards kids growth, delays puberty, reduces fertility 2 . With continued energy
23 deficiency, the animals show a concurrent reduction in resistance to infectious diseases and parasites. The problem
24 may be further complicated by deficiencies of protein, minerals and vitamins. Energy limitation may result
25 from inadequate feed intake. Low energy intake that result from either feed restriction or low diet component
26 digestibility prevent goats from meeting their requirements and from attaining their genetic potential. Goats are
27 more active and travel greater distances than sheep, which increases energy requirements, high water content of
28 forages may also become a limiting factor 3 . Protein deficiencies in the diet deplete stores in the blood, liver
29 and muscles and predispose animal to a variety of serious and even fatal aliments. The further protein deficiency
30 reduces rumen function and lower the efficiency of feed utilization 2 . Mineral requirements for animals is affected
31 by many aspects, such as nature and level of production, age, level and chemical form of elements, breed and
32 animal adaptation 4 . The bioavailability of trace-elements to animals can be affected by a variety of dietary
33 components, one of these components is protein 5 .

34 Copper deficiency is a serious problem for grazing ruminant in many countries of the world due to both low
35 concentration of the element in the forage as well as to elevated amount of molybdenum and sulfur which interfere
36 with copper utilization 6 . The present study was carried out to investigate the effect of different levels of energy
37 and protein on the metabolism of zinc and copper.

38 2 II.

39 3 Materials and Methods

40 4 a) Animals and housing

41 A total number of nine growing castrated male balady kids to be nearly of the same age (8-9 months) and
42 body weight (15-18 kg) were used in this study. Each kid was kept in an individual metabolic cage allowing the

11 EXPERIMENT I

43 collection of feces and urine separately. A weighed daily ration was offered to each animal in its respective feed
44 trough and tap water freely available.

45 5 b) Rations and Feeding

46 This study was carried out in four experiments, each experiment had 3 trials and each trial durated 30 days.
47 Before starting the experiments, the kids were fed a balanced ration (control ration) for three weeks in order
48 to accustom the animals on the ration and to assume the repletion of body mineral store. The control ration
49 was formulated to contain the recommended levels of digestible energy (DE) 2.94 Mcal/kg, crude protein (CP)
50 9.51%, zinc 63.55 ppm and copper 16.72 ppm according to the NRC3 for goats. The preliminary period was
51 extended for 21 days, while the collection period was extend for 8 days. During the collection period, the daily
52 fecal matter excreted and the daily amount of urine were separately collected, measured, sampled and prepared
53 for further chemical analysis. A G fixed weight of the ration was offered to each animal and the daily feed intake
54 was calculated. The experiments were carried on the same groups and separated by a rest period of 10 days,
55 during which the kids were fed on control ration. Nine test rations varying in their energy and protein levels were
56 fed to the kids during the metabolism study as shown in the design in Table 1. The nine kids were randomly
57 divided into 3 groups (A, B and C), 3 kids per each. The first group (A) was fed the control ration and used
58 as control, while the other two groups (B and C) were fed the tested rations which furnished 15% more or less
59 DE and CP than the control. The physical and chemical composition of the nine tested rations and energy
60 values (DE) were shown in Tables 3 and 4, while Table 2 shows the chemical composition and energy value of the
61 ingredients used in formulating of the experimental rations. The total amount of the daily fecal matter excreted
62 per animal was collected daily at 8.00am before feeding. The freshly collected fecal matter of each animal was
63 weighed, recorded, mixed thoroughly and then representative sample (10%) was taken and dried in hot air oven
64 at 60C for about 24h. The dried fecal samples from each animal were thoroughly mixed finely ground and stored
65 at room temperature for further chemical analysis.

66 6 d) Urine samples

67 The daily urine excreted by the kids was collected at 8.00am and measured in graduated cylinder to record its
68 volume. The collected amount from each animal was then thoroughly mixed and two representative samples,
69 100ml each was taken and acidified with 2ml of concentrated hydrochloric acid, then kept in refrigerator at 4°C
70 for further chemical analysis.

71 7 e) Metabolism trials

72 In the simple form of the balance technique, the intake of the element under study is compared with the fecal
73 output from the animal's body and the difference is assumed to be absorbed by the animal (apparent absorption)
74 which may then be expressed as a percentage of the dietary intake or in g or mg/head/day.

75 8 Intake -fecal excretion

76 Apparent absorption = $\frac{\text{Intake} - (\text{fecal excretion} + \text{urinary excretion})}{\text{Intake}} \times 100$ Intake Intake -(fecal excretion + urinary excretion)
77 Apparent retention = $\frac{\text{Intake} - \text{fecal excretion}}{\text{Intake}} \times 100$ Intake (Ammerman et al) 6 f)
78 Minerals determination in feces and urine Duplicate samples of 1gm feces and 10ml of urine were ashed with
79 20ml acid mixture (2 parts concentrated nitric acid + 1 part concentrated perchloric acid) and then digested
80 on hot plate for 1.5-2h until the color become clear and volume reduced to the minimum. The ashed samples
81 were diluted with bidistilled water in clean dry tightly closed glass bottles 100ml capacity and then stored for
82 subsequent minerals determination. The zinc and copper in the prepared samples of fecal matter were measured
83 in ppm and of urine in mg/L by atomic absorption/flame emission spectrophotometer using an air-acetylene
84 flame and hallow cathode lamp after method described by Slavin 8 .

85 9 III.

86 10 Results and Discussion

87 The metabolic balances of zinc and copper in the four experiments are presented in Tables 5 and 6.

88 11 Experiment I

89 Kids group fed high protein showed slight increase in the amount of zinc intake and in the excreted zinc in both
90 feces and urine compared with control. The increased urinary Zn excretion by high protein diet was similar to
91 the findings of Greger and Snedeker 5 who reported that high protein diet increased urinary zinc excretion and
92 attributed that to a greater amount of histidine and cystine in the high protein ration. The apparent absorption
93 and retention of Zn were increased when dietary protein levels increased as reported by Gawthorne et al 9 .
94 Feeding high or low protein rations increased the amount of Cu intake, Cu excretion in feces and urine compared
95 to control. The apparent Cu absorption and retention percentages were decreased in kids group fed the NEHP
96 ration, while increased in group fed on NELP ration compared with control. The increase dietary crude protein

97 is responsible for the formation of insoluble copper sulfide during rumen fermentation resulting in lower solubility
98 and absorption of Cu 10,11 .

99 Experiment II High energy-high protein ration slightly increased the amount of Zn intake, fecal and urinary
100 Zn excretion than control one. The increase of fecal Zn excretion in kids fed HEHP ration may be due to high
101 Zn intake as reported by McDowell¹² who reported that the fecal endogenous Zn increases with the increased
102 Zn intake. The apparent Zn absorption was increased in HENP & HEHP rations, while the apparent retention
103 was decreased in kids group fed HENP. Feeding high energy ration decreased the amount of Cu intake, fecal and
104 urinary Cu excretion compared to control. The apparent absorption and retention of Cu were slightly increased
105 in kids group fed HENP ration.

106 **12 Experiment III**

107 Feeding the HELP ration was decreased the amount of Zn intake, zinc excreted in feces and urine compared to
108 control one. The apparent Zn absorption and retention were increased in group fed HELP ration, while decreased
109 in group fed LENP. The decrease in absorption percentage in low energy ration may be due to high zinc intake 13
110 . Feeding low energy ration increased the amount of Cu intake, fecal and urinary excretion compared to HELP
111 and control one. The apparent absorption and retention of Cu were decreased in kids group fed LENP ration.

112 **13 Experiment IV**

113 Kids fed the LEHP and LELP rations showed a slight increased in the amounts of Zn intake, Zn excreted in
114 both feces and urine compared to control. The apparent absorption and retention of Zn were decreased in kids
115 group fed the LEHP and LELP rations compared to control. On this respect, many authors reported that, the
116 apparent Zn absorption and retention were increased when dietary protein levels were increased 9. Kids fed on
117 LEHP ration recorded the highest amount of Cu intake and excretion in feces and urine compared to LELP and
118 control one. The apparent absorption and retention were decreased in kids group fed the LEHP compared to the
119 control one. These findings were in accordance with that found by Ward 10 and Ivans and Veira¹¹ who found
120 that the increase in dietary CP resulting in lower solubility and absorption of Cu in sheep. The summarized effect
121 of energy and protein levels revealed that feeding HENP ration increased the apparent absorption and retention
of Cu, while the ¹

Figure 1: T

122

13 EXPERIMENT IV

1

Experimental	Group	DE (Mcal/kg diet)	CP (%)	Ration
I	1 A	2.94	9.51	1 NENP*
	2 B	2.96	10.79	2 NEHP
	3 C	2.93	8.08	3 NELP
II	1 A	2.94	9.51	1 NENP
	2 B	3.39	9.54	4 HENP
	3 C	3.40	11.00	5 HEHP
III	1 A	2.94	9.51	1 NENP
	2 B	3.37	8.14	6 HELP
	3 C	2.53	9.59	7 LENP
IV	1 A	2.94	9.51	1 NENP
	2 B	2.58	10.80	8 LEHP
	3 C	2.51	8.06	9 LELP

[Note: *NE=normal energy, HE=High energy, LE=Low energy, NP=normal protein, HP=high protein, LP=low protein]

Figure 2: Table 1 :

2

Ingredient	DM	Chemical composition (%)						DE (Mcal/kg)		
		OM	CP	EE	CF	NFE	Ash	(ppm)	Cu	Zinc
Yellow corn	89.7	97.88	9.6	4.16	2.77	81.35	2.12	3.5	12.8	3.84
Soybean meal	91.3	93.09	47.0	5.47	7.44	33.18	6.91	22.8	42.9	3.88
CSM	92.5	95.40	27.0	6.40	24.5	37.50	4.60	19.9	62.2	2.65
Wheat bran	90.65	93.00	15.6	4.70	8.37	64.33	7.00	12.7	113.7	3.09
Wheat straw	90.0	86.70	3.5	1.66	38.0	43.54	13.30	3.2	5.6	1.94
Limestone	98.0	-	-	-	-	-	100	-	-	-
Common salt	98.0	-	-	-	-	-	98.00	-	-	-
Mineral mixture	98.0	-	-	-	-	-	98.00	10	40	-
AD3E	98.0	-	-	-	-	-	-	-	-	-

Figure 3: Table 2 :

3

Ingredients

Figure 4: Table 3 :

Rations	DM	experimental ratios								DE (Mcal/kg)	
		Chemical composition									
		OM	CP	EE	CF	NFE	Ash	(ppm)	Zinc		
1	90.14	91.41	9.51	3.22	17.92	60.76	8.59	16.72	63.55	2.94	
2	90.14	91.19	10.79	3.19	18.36	58.85	8.81	17.23	61.72	2.96	
3	90.07	91.48	8.08	3.11	18.33	61.96	8.52	15.79	59.07	2.93	
4	90.01	94.08	9.53	3.71	9.83	71.01	5.92	15.88	60.98	3.39	
5	90.03	93.79	11.00	3.70	9.98	69.11	6.21	16.57	61.47	3.40	
6	89.91	93.99	8.14	3.55	10.24	72.06	6.01	14.88	56.80	3.37	
7	90.27	88.91	9.59	2.76	25.77	50.79	11.09	17.68	67.26	2.53	
8	90.34	89.27	10.80	2.91	25.23	50.33	10.73	18.25	65.30	2.58	
9	90.25	89.11	8.06	2.74	25.98	52.33	10.89	16.86	63.97	2.51	
c) Fe- cal sam- ples											

Figure 5: Table 4 :

Item	Experiment I				Experiment II				Experiment III				Experiment IV			
	NENP	NEHP	NELP	NENP	HENP	HEHP	NENP	HELP	LENP	NENP	LEHP	LELP				
Zn in-take	29.26	30.08	29.55	31.84	30.47	32.38	32.7	30.61	35.63	34.42	35.53	35.61	Year 20	Volume	XIV Iss	I Versi
Fecal Zn	17.43	17.7	17.41	18.87	17.95	19.00	19.31	17.77	21.09	20.02	20.74	20.80	I	D D D I	G	(
Urinary Zn	3.00	3.05	2.96	2.94	2.97	3.18	2.84	2.76	3.03	2.90	2.98	2.94				
Absorbed Zn	11.83	12.37	12.14	12.97	12.52	13.38	13.57	13.02	14.54	14.40	14.79	14.81				
Zn Retained	8.83	9.32	9.18	10.03	9.55	10.20	10.73	10.26	11.51	11.5	11.81	11.87				
Zn (100)*	(101.17)	(101.61)	(100)	(100.86)	(101.45)	(100)	(102.46)	(98.34)	(100)	(99.50)	(99.4)					
Absorption	30.18	30.98	31.07	31.50	31.34	31.50	32.81	33.52	32.30	33.41	33.24	33.33				

Figure 6: Table 5 :

6

Item	Experiment I			Experiment II			Experiment III			Experiment		
	NENP	NEHP	NELP	NENP	HENP	HEHP	NENP	HELP	LENP	NENP	LEHP	LE
Cu intake	8.54	9.32	8.77	9.29	8.81	9.70	9.54	8.92	10.37	10.05	10.99	10.4
Fecal Cu	4.24	4.74	4.28	4.66	4.36	4.90	4.73	4.40	5.18	4.99	5.70	5.10
Urinary Cu	0.65	0.79	0.68	0.88	0.79	0.86	0.82	0.83	0.87	0.95	1.09	0.94
Absorbed	4.30	4.58	4.49	4.63	4.45	4.80	4.81	4.52	5.19	5.06	5.29	5.24
Cu	3.65	3.79	3.81	3.75	3.66	3.94	3.99	3.69	4.30	4.11	4.20	4.3
Retained	50.35	49.14	51.20	49.84	50.51	49.48	50.42	50.67	50.05	50.35	48.13	50.0
Cu	(100)*	(97.6)	(101.69)	(100)	(101.34)	(99.28)	(100)	(100.50)	(99.27)	(100)	(95.59)	(100)
Absorption	42.74	40.66	43.44	40.36	41.54	40.62	41.82	41.37	41.47	40.8	38.22	41.4
%	(100)*	(95.13)	101.64)	(100)	(102.92)	(100.64)	(100)	(98.92)	(99.16)	(100)	(93.68)	(100)
Retention												
%												

Absorbed = intake -fecal Retained = intake -(fecal + urinary)

[Note: *]

Figure 7: Table 6 :

123 [Slavin ()] *Atomic Absorption Spectroscopy. Inter-science Publ*, W Slavin . 1968. New York. 25 p. .

124 [Ammerman et al. ()] *Bioavailability of nutrients for animals (amino acids, minerals and vitamins)*, C Ammerman
125 , D H Baker , A J Lewis . 1995. San Diego, New York, Boston, London: Academic Press.

126 [Greger and Snedeker ()] 'Effect of dietary protein and phosphorus levels on the utilization of zinc, copper and
127 manganese by adult males'. J L Greger , S M Snedeker . *J.Nutrition* 1980. 110 p. .

128 [Ivan and Veria ()] 'Effect of dietary protein on the solubilities of manganese, copper, zinc and iron in the rumen
129 and abomasums of sheep'. M Ivan , D M Veria . *Can J. Anim. Sci* 1981. 61 p. .

130 [Singh and Sengar ()] 'Investigation on milk and meat potentialities of Indian goats'. S N Singh , O P S Sengar
131 . *Raja Balwaant Singh College* 1970. (Final Report Project)

132 [Mcdowell ()] L R Mcdowell . *Minerals in animal and human nutrition*, (INC, New York) 1992. Academic Press.

133 [Ward ()] 'Molybdenum toxicity and hypocuprosis in ruminants. A review'. G M Ward . *J. Anim. Sci* 1987. 46
134 p. .

135 [Nutrient requirements of goats angora, dairy and meat goats in temprete and tropical countries NRC ()]
136 'Nutrient requirements of goats angora, dairy and meat goats in temprete and tropical countries'. *NRC* 1981.
137 National Academy Press.

138 [Challa and Braithwaite ()] 'Phosphorus and calcium metabolism in growing calves with special emphasis on
139 phosphorus homestasis'. J Challa , G D Braithwaite . *J. Agric. Sci. Camb* 1988. 110 p. .

140 [Timon and Hanrhan ()] 'Small ruminant production in the developing countries'. V M Timon , J P Hanrhan .
141 *Proc. Of an expert consultation*, (Of an expert consultationSofia, Bulgaria, FAO, Rome) 1986.

142 [Mcdowell and Conrad ()] 'Trace mineral nutrition in Latin America'. L R Medowell , H J Conrad . *World Animal
143 Review. J. of Animal Production* 1977. 24 p. .

144 [Gawthrone et al. ()] *Trace-elements metabolism in man and animals*, J M Gawthrone , J M Howell , C L White
145 . 1981. Berlin, New York: Springer-Verlag.

146 [Miller ()] 'Zinc nutrition in cattle'. W J Miller . *Review. J. Dairy Science* 1970. 53 p. .