

## 1 Volume XIV Issue I Version I

2 Ajibola<sup>1</sup> and Oyewale<sup>2</sup>3 <sup>1</sup> Federal University of Agriculture, Abeokuta, Ogun State

4 Received: 10 December 2013 Accepted: 5 January 2014 Published: 15 January 2014

5

6 **Abstract**

7 The effect of acute *T.brucei* infection on some ECG repolarisation indices like QT dispersion  
8 (QTD), heart rate corrected QT dispersion (QTCD), T wave voltage expressed as T/R, Mean  
9 electrical axis (MEA), Heart rate (HR) and plasma potassium concentration was evaluated in  
10 dogs. Ten dogs inoculated with 1 ml of Phosphate buffered saline diluted blood containing  
11 1x10<sup>6</sup> of the federe strain of the parasite had their ECG recorded on weekly basis for three  
12 weeks. Plasma potassium concentration was assayed in each dog before the  
13 electrocardiogram. Supraventricular arrhythmia, ventricular premature contraction, ventricular  
14 tachycardia and various degrees of Atrioventricular blocks were recorded from the eighth day  
15 of infection. *T. brucei* infected dogs had elevated heart rate during the period of infection in  
16 all the six leads studied. At various times during the infection, QT and QTC of the infected  
17 dogs were significantly lower than the uninfected ones in leads II and AVF.

18

19 **Index terms**— qtdispersion, arrhythmia, *t. brucei*, canine.20 **1 Effects of Trypanosoma Brucei on Some Electrocardiographic  
21 Repolarisation Indices of Dogs**

22 Ajibola, E.S ? , Oyewale, J.O ? , Oke B.O. ? & Rahman S.A. ? Summary-The effect of acute *T.brucei* infection  
23 on some ECG repolarisation indices like QT dispersion (QT D), heart rate corrected QT dispersion (QT CD), T  
24 wave voltage expressed as T/R, Mean electrical axis (MEA), Heart rate (HR) and plasma potassium concentration  
25 was evaluated in dogs.

26 Ten dogs inoculated with 1 ml of Phosphate buffered saline diluted blood containing 1x10<sup>6</sup> of the federe  
27 strain of the parasite had their ECG recorded on weekly basis for three weeks. Plasma potassium concentration  
28 was assayed in each dog before the electrocardiogram. Supraventricular arrhythmia, ventricular premature  
29 contraction, ventricular tachycardia and various degrees of Atrioventricular blocks were recorded from the eighth  
30 day of infection. *T. brucei* infected dogs had elevated heart rate during the period of infection in all the six  
31 leads studied. At various times during the infection, QT and QT C of the infected dogs were significantly lower  
32 than the uninfected ones in leads II and AVF. Although the T wave voltage was also increased in the infected  
33 dogs, the QT D QT CD , and the MEA were not affected by the infection. The QT D and the QT CD indices  
34 of arrhythmic dogs were however found to be significantly lower than in the non-arrhythmic dogs. The serum  
35 potassium concentration of the infected dogs was significantly lowered in the first two weeks of infection and then  
36 rose to the control level during the third week of infection. Serum potassium concentration in arrhythmic dogs  
37 was however not different from the non-arrhythmic ones. The increased heart rate and the shortened QT and  
38 QT C width seen during the course of the infection reflect the enhanced state of sympathetic activity and the  
39 propensity for arrhythmia in the infected dog.

40 This result has shown that ECG changes and arrhythmia seen in this study may not strictly reflect structural  
41 and functional cardiac involvement but changes in ANS functions coupled with perturbation in electrolyte and  
42 the metabolic statues of the infected dogs may have also been implicated. The usefulness of the QT D , QT  
43 CD , as a sole marker for the detection of cardiac abnormality is also limited because of the inherent technical  
44 problems associated with the measurement of QT.

## 4 ANIMALS, MATERIALS AND METHODS

---

### 45 2 Introduction

46 canine trypanosomiasis like canine babesiosis, chagas disease and malaria is characterized by myocarditis which  
47 often causes arrhythmia ( Dvir et al., 2004; Sprague, 1946; Zhang et al., 1999).

48 Arrhythmia and conduction block is caused by a decrease in resting membrane potential of the ischemic  
49 myocardial cells (Boyden, 1996).

50 T. brucei infection has been reported to cause gross and microscopic heart lesion starting from the eighth day  
51 of infection (Morrison et al., 1983).

52 Impulse initiation disorders like Ventricular tachycardia and ventricular premature contraction and impulse  
53 conduction disturbances like Atrioventricular ventricular block and bundle branch block often characterized T.  
54 brucei infection in dogs (Ndungu et al., 1991).

55 Arrhythmias, especially of Ventricular origin normally affects repolarisation indices like QT dispersion (QT D  
56 ), that is, the range of QT interval duration in all measurable ECG leads and corrected QT dispersion (QT CD  
57 ) which is the difference between the maximum and minimum heart rate corrected QT intervals.

58 The usefulness of these indices in canine cardiology and canine trypanosomiasis in particular has not been  
59 fully exploited. Previous ECG work done on experimental T. brucei infection in dogs did not explore the effects  
60 of this infection on changes in repolarisation indices, heart axis and plasma electrolyte profile (Ndungu et al.,  
61 1991).

62 In this study, electrocardiogram of T. brucei infected dogs will be monitored for changes in cardiac rate rhythms  
63 and repolarization indices. And the role of cardiac repolarisation indices as markers of cardiac mortality in canine  
64 trypanosomiasis highlighted. This work will apart from addressing the existing knowledge gap between African  
65 canine trypanosomiasis and chagas disease, its South American counterpart, it will also provide alternative cardiac  
66 indices needed to diagnose and monitor this disease and other related cardiac conditions.

### 67 3 II.

### 68 4 Animals, Materials and Methods

69 Ten dogs sourced locally from a local breeder in Abeokuta were used for the study. The dogs were between 3  
70 to 6months old and they weighed between 4?7kg. They were acclimatized for two weeks and screened against  
71 trypanosome species and other hemoparasites. All animals that participated in this study showed no evidence  
72 of Dirofilariasis or any other cardiac conditions and had received all routine vaccination. Dogs were kept in fly  
73 proof kennel, fed twice on commercial dog food (Jojo dog foods, Ikeja) and allowed asses to water ad libitum.  
74 This work was conducted in accordance to provisions of the ethical committee of College of Veterinary Medicine,  
75 Federal University of Agriculture, Abeokuta.

76 T. brucei (federe strain) got from Nigerian Veterinary Reseach Institute, Vom, was used for this study. The  
77 parasites were preserved by sub-pass aging in donor albino rats. And each dog serving as its own control  
78 was inoculated with 1 ml of phosphate buffered saline diluted blood containing  $1 \times 10^6$  of the parasites  
79 intraperitoneally.

80 A six-lead (I, II, III, AVR, AVL, AVF) body surface electrocardiogram of dogs placed on standard position  
81 was recorded serially before and on days 8, 16, and 24 post infections. The animals were not clipped and contact  
82 between skin and electrodes was improved by application of electrode gel. All recordings were made on one of the  
83 channels of a four channel universal student Oscillograph (Harvard apparatus, UK) by the same ECG technician.  
84 The paper speed was 25mm/sec and the pen sensitivity 10mm=1mV.

85 The QT interval and the preceding RR interval were measured and averaged in five consecutive P-QRS-T  
86 complexes in each lead. These intervals were measured manually to the nearest 0.5mm using calipers and ruler.

87 The QT interval measured from the beginning of Q to the end of T is defined as the return of T to the  
88 isoelectric line (Brooksby et al., 1999). The corrected QT (QTc) was derived with the Fridericia formula;  $QTc = QT/RR^{1/3}$  (Fridericia, 1920). QT dispersion (QT D ) and the heart rate corrected QT dispersion (QT CD )  
89 were calculated as the difference between the minimum and maximum value of QT and QTc (Dennis et al., 2002).

90 Mean electrical axis of the heart was determined using the lead graphing method (Edwards, 1993). T wave  
91 amplitude was evaluated as T/R ratio (Dvir et al., 2004).

92 The heart rate was determined by counting the number of cycles (RR interval) in six seconds and multiplying  
93 by ten.

94 Lead II ECG traces obtained from infected and control dogs were analyzed for arrhythmia. The ECG tracings  
95 were evaluated for arrhythmia by a panel of cardiologist who were not part of the study.

96 All data were expressed as Mean  $\pm$  Standard deviation. Differences within parameters during the course of  
97 the disease were evaluated by ANOVA for repeated measures. Statistical significance between the pre-infection  
98 control and a value at a particular time point after the infection was determined by paired t-test with bonferroni  
99 correction.

100 The arrhythmia group was compared with the non-arrhythmia group using the t-test for independent sample.  
101 P < 0.05 was considered significant. All statistical tests were done using SPSS version 16.

---

103 **5 III.**

104 **6 Results**

105 A total of 240 electrocardiograms were obtained from ten dogs. The QT and the QTc parameters were measurable  
106 in all six leads in one hundred and thirty six of the two hundred and forty electrocardiograms.

107 A total of 36 out of 40 lead II electrocardiograms were analyzed for arrhythmia. Four ECG were discarded due  
108 to its artefactual content. Twenty electrocardiograms representing 55.5% showed various forms of arrhythmias  
109 starting from the 8 th day of infection. Each of the affected electrocardiograms showed at least one form of  
110 arrhythmia. Ventricular premature contractions (VPC), ventricular tachycardia (VT), polymorphic ventricular  
111 tachycardia (PVT), bundle branch block (LBBB), Atrioventricular blocks (AVB), notched R wave, ST wave  
112 slurring (STS), ST wave depression (STD) and sinoventricular rhythm were shown by the dogs at different times  
113 during the study( Figure ??-5).

114 As shown in table 1, the heart rate, T/R voltage and the plasma potassium were significantly affected by the  
115 infection but the mean QT D , QT CD , and the MEA, were not affected by the disease progression. Although the  
116 mean serum potassium concentration of the infected dogs on the 8 th and 16 th day of infection was significantly  
117 lower than in uninfected dogs, the plasma potassium concentration on the 24 th day of infection was significantly  
118 higher than on the 8 th day (P?0.01) and on the 16 th day (P?0.01).

119 When the indices in table 1 were compared between arrhythmic and non-arrhythmic dogs, it was revealed in  
120 table 2, that T/R voltage was taller in arrhythmic dogs but the QT CD and QT D were wider in dogs without  
121 arrhythmia.

122 As shown in table 3, *T. brucei* infection caused a reduction in QT and QTc indices. At days 8, 16, and  
123 24 post-infection, QT was significantly reduced compared to control value. The QTc was however significantly  
124 shortened only on days 8 and 24 post-infection.

125 **7 IV.**

126 **8 Discussion**

127 The exhibition of various forms of arrhythmia like Ventricular premature contraction, Ventricular tachycardia,  
128 Atrioventricular conduction blocks and Supraventricular arrhythmia in the *T. brucei* infected dogs is consistent  
129 with other infections like babesiosis, malaria, and chagas disease (Dvir et al., 2004; Sprague, 1946; Barr et al.,  
130 1992). Myocarditis, a common feature of canine trypanosomiasis has been reported by some

131 **9 Global Journal of**

132 workers to provide a suitable substrate for arrhythmia (Boyden, 1996). These arrhythmias are often triggered  
133 by enhanced heterogeneity of ventricular repolarisation (Merx et al., 1977; Ahnve and Vallin 1982; Kuo et al.,  
134 1983).

135 Although several workers have reported the association of QT interval prolongation with lethal form of  
136 ventricular arrhythmia (ref), the reduced QT and QTc width seen in this study have also been reported to  
137 be potentially pro-arrhythmic.

138 On the surface electrocardiogram, heterogeneity of ventricular repolarisation often manifest as increased QT  
139 D , and QT CD (Higham et al., 1992; Day et al., 1990; De-Bruyne et al., 1998). Although the QT D and QT CD  
140 were not affected by disease progression, non arrhythmic dogs have a more dispersed QT D and QT CD. This is  
141 at variance with Dennis et al., 2002, who reported that QT CD index of arrhythmic animals was insignificantly  
142 higher than those without arrhythmia. The extent and location of myocardial are related to the generation of  
143 ventricular arrhythmia (Lown et al., 1969; Kuo et al., 1985; Kutz et al., 1994).

144 Since histopathology was not part of this work, the extent of myocardial damage could not be ascertained.  
145 The markedly elevated plasma potassium level on the 24 th day of infection however is an indication of possible  
146 myocardial damage (Janse and Witt 1989).

147 This study similarly to the findings of Barbabosa-Pliego et al (2009), in *T. cruzi* infection of dogs reported a  
148 significantly elevated T/R at a later stage of the infection. When compared with the reference range, the value  
149 of T/R either before or after infection was higher than the reference value of T/R?0.25 (Dvir et al., 2004). The  
150 increased amplitude of the T wave in this study may be due to hyperkalemia which was noticed at the later  
151 part of the infection (El-Sheriff and Turitto 2011). High amplitude T-waves have been linked to hyperkalemia of  
152 myocardial infarction (Feldman and Ettinger 1977).

153 In agreement with Ndungu et al (1991), *T. brucei* infected dogs in this study showed tachycardia.

154 The reduced QT and QTc width exhibited by the infected dogs could result from shortened action potential  
155 duration and this could consequently increase the heart rate of the infected dogs. Some workers have reported  
156 the role of increase cardiac sympathetic activity in myocardial infarction (Esler and Kaye 2000). In *T. cruzi*  
157 infection, rarefaction of the cardiac parasympathetic nerves has been reported ??Olivieria, 1985). The increased  
158 cardiac sympathetic discharge often seen in myocardial infarction (Jardine et al., 2005) could be the reason for  
159 the tachycardia observed in this study.

160 The Atrioventricular and intramyocardial blocks observed in this study has been previously reported in *T.*  
161 *brucei* and *T. cruzi* infections of dogs (Ndungu et al., 1991; Anselmi et al., 1967).

162 T. brucei infection as seen in this study does not affect the heart's chamber size and axis. Although the MEA  
163 of dogs used in this study did not fall within the reference range of 40 °-100 ° as reported by some authors for  
164 the specie ??Tilley and Larry, 2001;Martin, 2005), they tend to fall within those of humans which have been  
165 reported to be between -30 °-90 ° (Fouchet and Gateff 1968). This probably reflected the breed peculiarity  
166 of the Nigerian dogs. The arrhythmia observed in some dogs may therefore not necessarily reflect a primary  
167 structural myocardial damage but may be a result of metabolic disturbances which often characterize canine  
168 trypanosomiasis. Our observation is thus in agreement with Fouchet and Gateff (1968) who earlier reported that  
169 axis deviation is not a common finding in African human Trypanosomiasis.

170 Although the QT interval was read manually in the present study, the repeatability index of the values  
171 obtained was high and the values of the QT D and QT CD reported here agrees with those that have been  
172 reported previously for normal dogs and those with cardiac conditions (Dennis et al., 2002).

173 For now, because of the inherent technical problems and the inconsistency associated with measurement of  
174 QT index, restraint should be exercised in its use as a marker of cardiac mortality in canine trypanosomiasis.

175 **10 Volume XIV Issue I Version**



3

Figure 1: Table 3 :

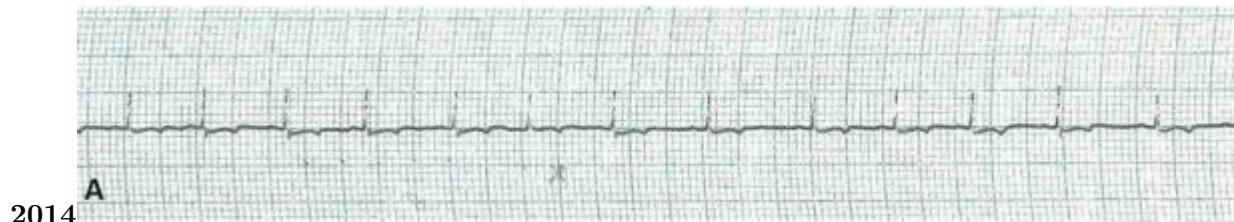



Figure 2: Figure A :) 2014 G

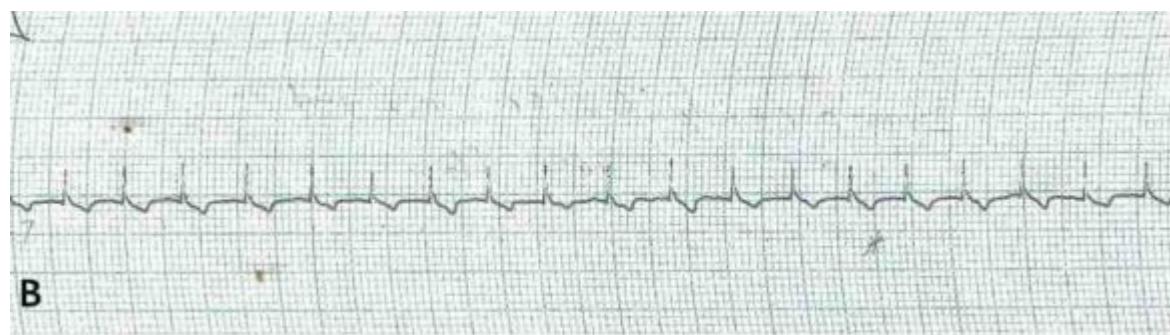



Figure 3:

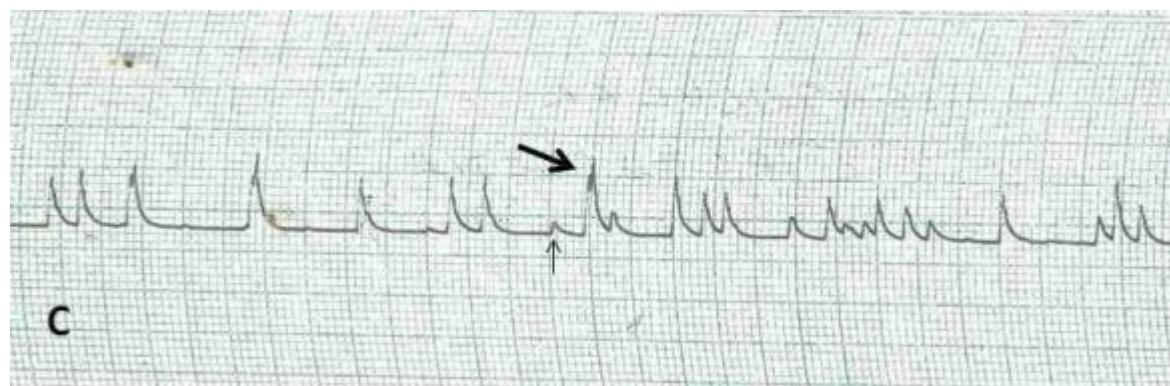



Figure 4:

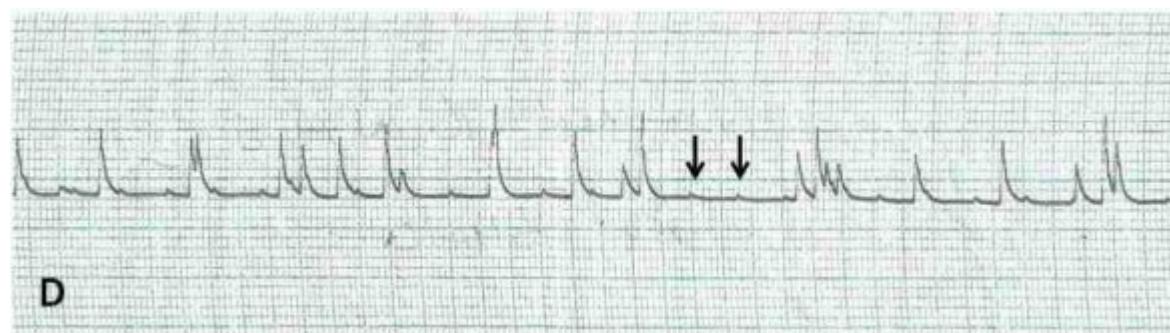



Figure 5:

1

© 2014 Global Journals Inc. (US)

[Note: © 2014 Global Journals Inc. (US)]

Figure 6: Table 1 :

2

Figure 7: Table 2 :



177 [ American Journal of Tropical Medicine and Hygeine] , *American Journal of Tropical Medicine and Hygeine* 8  
178 (3) p. .

179 [ Physiological Review] , *Physiological Review* 69 p. .

180 [ American Heart Journal] , *American Heart Journal* 110 p. .

181 [Oliveira ()] *A natural model of intrinsic heart nervous system denervation: Chagas cardiomyopathy*, Jsm Oliveira  
182 . 1985.

183 [Zhang et al.] *Apoptosis in a canine model of acute chagasic myocarditis*, J Zhang , Z A Andrade , Z X Yu , S  
184 G Andrade , K Takeda , M Sadirqursky , V J Ferrans .

185 [Barbabosa-Pliego et al. ()] A Barbabosa-Pliego , H M Diaz-Albiter , L Ochoagarcia , E Aparicio-Burgos , S  
186 M Lopez-Heydeck , V Velasquez-Ordóñez , R C Fajardo-Munoz , S Diaz-Gonzalez , M Barbosa-Mireles , C  
187 Guzman-Bracho , J G Estrada-Franco , N J Garg , Vazquez-Chagoyan . *Trypanosoma cruzi circulating in*  
188 *the Southern region of the State of Mexico (Zumpahuacum) Are Pathogenic: A Dog model*, 1991.

189 [Ndungu et al. ()] 'Cardiac damage in dogs infected with T.brucei ; Clinical and Electrocardiographic features'.  
190 J M Ndungu , N A McEwan , F W Jennings , M Murray . *Journal of Small Animal Practice* 1991. 32 (11) p.  
191 .

192 [Boyden ()] 'Cellular electro physiologic basis of cardiac arrhythmias'. P A Boyden . *American Journal of  
193 Cardiology* 1996. 78 p. .

194 [Kuo et al. ()] 'Characteristics and possible mechanisms of ventricular arrhythmias dependent on the dispersion  
195 of action potential durations'. C S Kuo , K Munakata , C P Reddy , B Surawitz . *Circulation* 1983. 67 p. .

196 [Fouchet and Gateff ()] 'Development of cardiovascular involvement in African Trypanosomiasis due to Try-  
197 panosome gambiense'. M Fouchet , C Gateff . *Medecine Tropicale* 1968. 28 p. .

198 [Kurtz et al. ()] 'Dispersion and delay of electrical restitution in the globally ischemic heart'. R W Kurtz , X L  
199 Ren , M R Franz . *European heart Journal* 1994. 15 p. .

200 [Anselmi et al. ()] 'Disturbances in the AV conduction system in Chagas myocarditis in the dog'. A Anselmi , O  
201 Gurdie , J A Suarez , G Anselmi . *Circulation* 1967. 20 p. .

202 [Higham et al. ()] 'Does QT dispersion reflects dispersion of ventricular recovery'. P D Higham , C J Hilton , J  
203 D Aitcheson , S S Furniss , J P Bourke , R W Campbell . *Circulation* 1922. 86 p. 3921.

204 [Edwards ()] *ECG Manual for the Veterinary Technician*, N J Edwards . 1993. Philadelphia. (1 ST edition W.B  
205 Saunders)

206 [Barr et al. ()] 'Electrocardiographic and echocardiographic features of trypanosomiasis in dogs inoculated with  
207 North American isolate of Trypanosoma cruzi isolate'. S C Barr , R A Holmes , T R Klei . *American Journal  
208 of Veterinary Research* 1992. 53 (4) p. .

209 [Dvir et al. ()] 'Electrocardiographic changes and cardiac pathology in canine babesiosis'. E Dvir , R G Lobetti  
210 , L S Jacobson , J Pearson , P J Becker . *Journal of Veterinary Cardiology* 2004. 6 (1) p. .

211 [Feldman and Ettinger ()] 'Electrocardiographic changes associated with electrolyte disturbances. Veterinary  
212 Clinics of North America'. E C Feldman , S J Ettinger . *Small Animal Practice* 1977. 7 p. .

213 [El-Sheriff and Turitto ()] 'Electrolyte disorders and Arrhythmogenesis'. N El-Sheriff , G Turitto . *Cardiology  
214 Journal* 2011. 18 (3) p. .

215 [Janse and Witt ()] *Electrophysiological Mechanisms of Ventricular Arrhythmias resulting from myocardial  
216 Ischemia and Infarction*, M Janse , A Witt . 1989.

217 [Jardine et al. ()] 'Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep  
218 model'. D L Jardine , C J Charles , R K Ashton , S I Bennett , M Whitehead , C M Frampton , M G Nicholls  
219 . *Journal of Physiology* 2005. 565 p. .

220 [Ahnve and Vallin ()] 'Influence of heart rate and inhibition of autonomic tone on the QT interval'. S Ahnve , H  
221 Vallin . *Circulation* 1982. 65 p. .

222 [Dennis et al. ()] 'Investigation of QT-interval dispersion in the electrocardiogram of 81 dogs'. S G Dennis , N J  
223 Summerfield , A Boswood . *Veterinary Records* 2002. 151 p. .

224 [Tilley and Godwin ()] *Manual of canine and feline cardiology*, L P Tilley , J K Godwin . 2001. Philadelphia,  
225 London: WB Saunders Company. (Third edition)

226 [Esler and Kaye ()] 'Measurement of Sympathetic Nervous system activity in heart failure: The role of  
227 Norepinephrine kinetics'. M Esler , D Kaye . *Heart Failure Review* 2000. 5 p. .

228 [Kuo et al. ()] 'Mechanism of Ventricular arrhythmias caused by increased dispersion of repolarisation'. C S Kuo  
229 , C P Reddy , K Munakata , B Surawicz . *European heart Journal* 1985. 6 p. .

230 [Lown et al. ()] 'Pathogenesis, prevention, and treatment of arrhythmias in myocardial infarction'. B Lown , B  
231 D Kosowsky , M D Klein . *Circulation* 1969. 39 (40) p. . (Suppl)

232 [Day et al. ()] 'QT dispersion: an indication of arrhythmia risk in patients with long QT intervals'. C P Day , J  
233 M Mccomb , R W Campbell . *British Heart Journal* 1990. 63 p. .

234 [De-Bruyne et al. ()] 'QTc dispersion predicts cardiac mortality in the elderly (The Rotterdam Study)'. M C  
235 De-Bruyne , A W Hoes , J A Kors . *Circulation* 1998. 97 p. .

236 [Martin ()] 'Small Animal ECGs, an Introductory Guide'. M Martin . *Blackwell Science. Ltd. UK* 2005.

237 [Fridericia ()] 'The duration of systole in the electrocardiogram of normal subjects and patient with heart disease'.  
238 L C Fridericia . *Acta Medica Scandinavica* 1920. 53 p. .

239 [Sprague ()] 'The effect of malaria on the heart'. H B Sprague . *American Heart Journal* 1946. 31 p. .

240 [Morrison et al. ()] 'The pathogenesis of experimentally induced Trypano-soma brucei infection in dogs: Tissue  
241 and organ damage'. W I Morrison , M Murray , P D Sayer , J M Preston . *American Journal of Pathology*  
242 1983. 102.

243 [Brooksby et al. ()] 'The relationship between QT intervals and mortality in ambulant patients with chronic  
244 heart failure: The United Kingdom heart failure and evaluation and assessment of risk trial'. P Brooksby ,  
245 P D Batin , S J Nolan , S J Lindsay , R Andrews , W Baig , A D Flapan , R J Prescott , J M Neilson , A  
246 Cowley , K A Fox . *European heart Journal* 1999. 20 p. .

247 [Merx et al. ()] 'The role of local disparity in conduction and recovery time on ventricular vulnerability to  
248 fibrillation'. W Merx , M S Yoon , I Han . *American Heart Journal* 1977. 94 p. .