

1 Effect of Sisal Foil Wrapped Milk Containers on Quality
2 Parameters of Camel Milk Marketed in Borana Zone, Southern
3 Ethiopia

4 Tamiru Amanu

5 *Received: 6 December 2013 Accepted: 2 January 2014 Published: 15 January 2014*

6

7 **Abstract**

8 The study was designed to evaluate effectiveness of Sisal foil wrapped milk containers on
9 enhancing shelf life of the camel milk that was transported long distance in Borana zone.
10 Hence, the primary lactodensity meter test indicated the specific gravity of camel milk ranged
11 from 1.020-1.022 at 20°C lactodensity meter. At farm gate samples were negative for alcohol
12 test that insured its freshness. All the samples in wrapped containers stayed negative for both
13 alcohol and cloton- boiling test at the terminal market, whereas, the rest were positive for
14 alcohol test. Resazurin test revealed that the entire samples didn't show any significant
15 variation in color change during the first 10min. After one hour of incubation, however,
16 sample in new plastic container exposed to sun light was totally changed to pink followed by
17 in local most exposed container that was changed to whitish pink only after 3hours of
18 incubation. The sample in new plastic container that was most exposed to sun light cultured
19 highest microbial load (6 x 10⁵) followed by sample in local most exposed container (4 x 10⁵)
20 where as none of the sample in wrapped containers harbored significant load (4 x 10⁵). The
21 result of the study enabled us to conclude that wrapping the container has a paramount
22 importance in maintaining the quality of milk transported long distance exposed to sun light.
23 Hence, all the participants responsible for milk quality monitoring and enhancement have to
24 be strengthened and scale up this technology.

25

26 **Index terms**— camel milk, marketed milk, milk container, milk quality, sisal foil and borana.

27 **1 Introduction**

28 Milk is a marvel of nature and a very nutritious biological fluid which is produced by lactating animals to feed their
29 offspring naturally. However, milk and milk products are indispensable components of the food chain of human
30 being throughout the world. In most part of the world cattle milk is consumed much than other milk sources
31 like Goats, camel, buffalo and sheep. Recently, because of its outstanding performance in the arid and semi-arid
32 areas of south-east lowlands of Ethiopia where browse and water availability are limited, pastoralists rely mainly
33 on camels for their livelihood (Bekele et al 2002). In these areas, camels are mainly kept for milk production and
34 produce milk for a longer period of time even during the dry season when milk from cattle is scarce. In most
35 pastoralists, camel milk is always consumed either fresh or in varying degrees of sourness of raw state without
36 heat treatment and thus can pose a health hazard to the consumer.

37 Though it is dependent on genetics and environmental factors, camel milk is composed of much of water and
38 other chemicals different in their composition. One of the parameters in camel milk quality is the accepted level
39 of composition of these chemicals like the fatty acid, protein and lactose content, the pH level of the milk, and its
40 test and texture. The milk quality can be affected at different levels starting from the physiology of the animals
41 to be milked, and event of milking, collecting, transporting, processing and distribution of milk. The study area
42 is characterized by lack of refrigeration facilities during milking and transportation. For instance the report of

7 MICROBIAL COUNT

43 YONAD Business Promotion and Consultancy Service (2009) revealed that utilizing plastic containers for camel
44 milk transportation from central Borana to Kenya border is the primary causes for milk quality deterioration since
45 milk is highly perishable product. Therefore, having a due attention to total quality aspects of milk production
46 and consumption; quality detection and safety precautions became of paramount importance. Thus, it was
47 necessitated to develop refrigerating technology from locally available materials like wrapping milk containers
48 by the foil that was obtained from the plant species so called sisal. Hence, this study was designed to evaluate
49 the effectiveness of Sisal foil wrapped milk container that was soaked in water on reducing microbial growth and
50 increased shelf life of the camel milk, transported long distance exposed to sunlight in Borana pastoral area. G
51 initial site, is located at about 50km North of Yabello town on the high way to Addis Ababa whereas Moyale
52 town, the terminal site, is situated at 200km South of Yabello town at the border of Ethio-Kenya. Thus, the
53 focus of the study was milk transported over 250 km distance from the above location to Moyale town.

54 2 II.

55 3 MATERIAL AND METHODS

56 4 b) Methods of sample collection and laboratory analysis

57 Samples of camel milk were taken, transported and analyzed following standard procedure ??Richardson, 1985).
58 Fresh morning camel milk samples were collected at farm level (Olla). Pastoralists were preinformed to prepare,
59 as possible as, clean unadulterated milk. All the milk samples collected from the pastoralists were tested for
60 primary quality tests which included Specific gravity, Organoliptic test (smell, color and appearance of the milk),
61 and Alcohol test). Those which were negative for the tests were considered as good quality milk and mixed to
62 make homogenous milk before transferring to treatment containers for the initial quality test that was designed as:
63 T1= 4 Local Milk Containers (currently under utilization by the community) T2= 4 Unwrapped New Plastic Milk
64 Container T3= 4 Wrapped New Plastic Milk Container Except for the four local ones, those were fumigated and
65 handled according to the community's indigenous knowledge; the remaining containers (wrapped and unwrapped
66 new plastic containers) were sterilized using hot water. Variations in terms of where the containers had been
67 placed on the vehicle were controlled as much as possible. Therefore, care was taken on how the milk containers
68 were placed on the vehicle and deliberate efforts were made to ensure the containers were placed systematically
69 every time in a repeatable way so that some received more air movement and sun light and others less. Thus, the
70 above treatments were sub-divided as it was labeled below with regard to their placement pattern on the vehicle
71 to conduct quality test at the terminal point?: NMEC (Most Exposed Container) ? NLEC (New Less Exposed
72 Containers) ? LMEC (Local Most Exposed Container) ? LLEC (Local Less Exposed Container) ? WMEC(
73 Wrapped Most Exposed Container) ? WLEC (Wrapped Less Exposed Container)

74 Mixed and homogenized 1liter of milk sample was transferred to each of the container. Thermometer reading
75 was taken from each container before transportation. Half of the containers (2 from each treatment) were kept on
76 the upper layer of the entire container properly arranged and loaded to the car used for human transportation,
77 in a way it was freely exposed to the sunlight. Whereas the remaining half from each treatment were loaded at
78 the bottom of the layer of the container loaded on the car to prevent direct exposure to sun light and strong
79 wind pressure. 100ml of samples representing the respective treatment was collected in well sealed bottles for
80 utilizing as a control and kept under the refrigerator temperature in Ice box to be utilized as a control. The
81 sample was immediately taken to the laboratory station of Yabello Pastoral and Dryland Agriculture Research
82 Center. c) Terminal market (Moyale) milk quality At the terminal point where the milk is sold Plat form tests
83 (Organoleptic, Alcohol and Clot on boiling) for each treatment sample was performed and temperature reading
84 was also taken. For Further quality test, 100ml sample of milk from each treatment was collected and kept under
85 refrigerator temperature in Ice box and brought to aforementioned laboratory station. d) Laboratory analysis i.

86 5 Titratable acidity

87 The titratable acidity of all the samples (From the farm and terminal market) was determined by the quantity of a
88 standard alkaline solution (0.1 N NaOH) which is required to neutralize the milk in the presence of phenophitaline.
89 ii.

90 6 The resazurin test

91 Resazurin solution was prepared as per the standard procedure of one ml of the solution was placed in sterile
92 test tubes then 10ml of the milk samples were added to each test tube. The samples were incubated at 37°C and
93 result was recorded at 10min., 1hr.and 3hrs interval. iii.

94 7 Microbial count

95 Aerobic plate count was done within 12 hr of arrival of the samples at the laboratory. Enumeration of total
96 aerobicmesophilic bacteria was done after plating 1 ml of the 10-5 dilution of the samples onto Standard Plate
97 Count Agar. The agar plates were incubated aerobically at 35oC for 48 hr with replications. After incubation
98 colony was count by counter and result was expressed as colony forming unit per one ml of milk (cfu/ml).

99 8 Data analysis

100 Descriptive statistics was utilized to compute the required data of the treatments, and the independent t-test
101 was also employed to analyze the data of the treatment along the seasons of the area. The quality test for camel
102 milk collected from producers (Olla) and after it reached a terminal market (Moyale) during both seasons of the
103 area were conducted as presented in Table 1 and Table 2, respectively. The smell of milk both during the dry
104 and wet seasons was smoky since all the pastoralists in the study area have been smoking their milk containers
105 for various purposes (Table ??). For instance, smoking milk containers has been reported to exert anti-microbial
106 properties and prolong the shelf life of milk (Ashenafi 1996). It was clearly observed from the physical derbies
107 in the milk that pastoralists produce their milk under none hygienic environment. According to Abdurrahman
108 (1995), poor management and unhygienic milking practices prevalent in the traditional husbandry systems, which
109 include tying the teats with soft barks to prevent the calf from suckling, tick infestations and cauterization of the
110 udder and skin, are few of the factors responsible for contamination of milk. There was specific gravity variation
111 of camel milk during the dry and wet seasons of the study area probably due to moisture content difference
112 along the seasons ($p < 0.01$). In this study it was observed that the specific gravity during the dry season
113 ranged from 1.020-1.022 at 20°C calibrated lactodensity meter (Table ??). However, it ranged from 0.995-1.002
114 at 20°C calibrated lactodensity meter. At initial point (Olla) all the samples collected were negative for alcohol
115 test that was evidence for no or very low production of acid at farm level which indicates the absorption of the
116 environmental temperature. Similarly, there was also variation in temperature of milk in unwrapped containers
117 those were labeled as NC and LC, during the two seasons of the study area. That might be due to the fact
118 that environmental temperature of wet season was cooler than dry season, particularly in the morning while we
119 collected the sample. The relatively lesser temperature rise for wrapped container that was labeled as WNC
120 during wet season was principally because of the cooling nature of wrapping.

121 9 III.

122 10 Results and Discussion

123 The rise in temperature was relatively lower for wrapped containers and during the wet season as well (Table ??).
124 It was possible to observe that the samples with higher temperature were positive for alcohol and clot-on-boiling
125 test (Table 1 and Table 2). This result is in line with the report of O'Connor (1995) which states that temperature
126 is the most determining factor for milk fermentation and hence quality deterioration.

127 Table1 : Primary quality tests of camel milk at producers (Olla) during dry and wet seasons of Borana zone
128 1 Indicates the environmental temperature of the study area (At initial point)

129 11 G

130 Test for various Organoleptic and temperature measurement of milk at the terminal market (Moyale town)
131 revealed that there was some similarity and discrepancy for wrapping and not wrapping the containers. The
132 discrepancy also held for the seasons of the study site as summarized in Table 2. All the wrapped and soaked
133 containers stayed negative for both alcohol and clot on boiling test at the terminal milk market during both
134 seasons (Table 2). At the terminal market soaked containers relatively stayed cool than unsoaked containers.
135 The exposed milk containers had significantly higher temperature than less exposed containers ($p < 0.01$).

136 12 G

137 Milk of other treatments with unwrapped and unsoaked containers was remained positive for alcohol and clot-
138 on-boiling test. That might due to the development of lactic acid from milk fermentation because of exposure
139 the containers to sun light. The result was proved according to the report of O'Connor (1995) which states that
140 alcohol test is an alternative method of measuring the acid accumulation of milk since it is more sensitive for
141 acid than clot-on-boiling test.

142 b) Laboratory sample analysis result i.

143 13 Titratable acidity

144 The acidity value of samples from terminal site (Moyale town) during both seasons was evaluated at N° (0.1
145 NaOH) as summarized in Table 3. The lactic acid secretion of milk in the wrapped containers was relatively
146 lower than unwrapped during both seasons of the study site. On the other hand, the containers with no wrapping
147 stimulated the milk to produce extra lactic acid which strongly deteriorates the quality parameters. The secretion
148 of lactic acid during the wet season was significantly lower than the dry season ($p < 0.01$). The same was true for
149 less exposed containers than the most exposed ones. The results were in line with the report of T. Ahmed and
150 R. Kanwal (2004) which states that when camel milk is left to stand and heated moderately, the acidity rapidly
151 increases due to the presence of lactic acid producing bacteria.

152 ii.

153 14 Resazurin test

154 The dye reduction value of the whole representative sample with three time interval was only analyzed for dry
155 season due to chemical constraint the researcher faced to repeat during the wet season of the study area. The
156 milk samples didn't show any significant variation in color change during the first 10min whereas after an hour
157 the new plastic container that was exposed to sun light was totally changed to pink (Table 4). After 1hr the
158 samples in unwrapped new containers as well as in local containers there were color change which is an indication
159 of becoming poor in quality. Even after 3hrs incubation the samples in wrapped containers remained unchanged.
160 In the contrary the dye was totally reduced in the sample from new plastic container that was exposed to sun
161 light that showed bad quality milk. While, the local containers that was most exposed to sun light was changed
162 to whitish pink after 3hr of incubation. Whereas the local containers were in better position than new plastic
163 containers this might be due to the fact that the containers were well smoked. Compounds released from smoking
164 wooden trees namely Olea africana (Egeresa) and Balanites galbala during smoking of the containers may be
165 responsible for the longer shelf life of camel milk (Eyassu, 2007).

166 iii.

167 15 Total microbial load

168 The average microbial count for the samples of camel milk under different containers of the treatments was
169 undertaken for dry season of study area despite not done for the wet season due to the laboratory equipment
170 damage during that season. The researchers did not differentiated the micro-organisms were economically
171 important or not than counting the load. The result showed that the milk samples kept in new plastic containers
172 those were most exposed to sun light had the highest microbial load (6×10^5) followed by the local containers
173 those were most exposed (4×10^5). Whereas wrapped containers had a positive effect on Volume XIV Issue I
174 Version I Year ()

175 16 2014

176 G maintaining good quality of milk during transportation. The microbial load difference might be associated
177 with post harvest handling. For instance, at bulking and market centers, microbial contamination increased to
178 almost 100% cfu/ml for the camel milk being stored at high temperature on transit to other distant markets
179 from farm environment (Matofari J. W., et al, 2013). IV.

180 17 Conclusion and Recommendations

181 The result of the study enabled us to generally conclude that wrapping the containers has an importance in
182 maintaining the quality of milk transported long distance exposing to sun light. On the other hand wrapping
183 containers has a great contribution in minimizing microbial load and lactic acid production as of the fermentation.
184 Hence, the stakeholders responsible for milk quality monitoring and enhancement have to be strengthened for
185 scaling up this technology since it is found to be effective in maintaining the quality of milk involved in market
186 being transported long distance.

V. ¹ ²

Figure 1:

187

¹© 2014 Global Journals Inc. (US)

²© 2014 Global Journals Inc. (US) was observed ($p < 0.01$) for the milk in the wrapped and

Figure 2:) 2014 G

Figure 3: Figure 1 :

Figure 4: Figure 2 :

Figure 5: G

17 CONCLUSION AND RECOMMENDATIONS

2

Borana zone

[Note: 2 Indicates environmental temperature of the study area Volume XIV Issue I Version I © 2014 Global Journals Inc. (US)]

Figure 6: Table 2 :

3

Sample code	Dry Season		Wet Season	
	N° (0.1 NaOH)	Lactic acid	N° (0.1 NaOH)	Lactic acid
WMEC	2.30	0.230	2.28	0.228
WLEC	2.28	0.228	2.27	0.227
LMEC	2.38	0.238	2.35	0.235
LLEC	2.35	0.235	2.32	0.232
NMEC	2.40	0.240	2.36	0.236
NLEC	2.36	0.236	2.33	0.233
Control	2.25	0.225	2.25	0.225

WMEC: Wrapped container exposed to Sun light;

WLEC: Wrapped container less exposed to Sunlight;

LMEC: Local container exposed to sunlight; LLEC: Local container less exposed to sunlight; NMEC: New container exposed to sunlight; NLEC: New container less exposed to sunlight.

Figure 7: Table 3 :

4

Sample Code	10min.	1hr. 3hr.
WME	Light purple	Light purple
WLE	Light purple	Light purple
LME	Light purple	Purple pink
LLE	Light purple	Light purple
NME	Light purple	Pink
NLE	Light purple	Slightly Purple
Control	Light purple	Light purple

Figure 8: Table 4 :

5

Sample Code Colony Forming Unit

	(CFU/ml of milk)
WME	2.0×10^4
WLE	2.0×10^4
LME	4.0×10^5
LLE	3.0×10^4
NME	6.0×10^5
NLE	1.5×10^5
Control	1.0×10^4

Figure 9: Table 5 :

17 CONCLUSION AND RECOMMENDATIONS

188 .1 Acknowledgements

189 The first author would like to acknowledge Global Livestock Collaborative Research Support Program-Pastoral
190 Risk Management (GL-CRSP PARIMA) Project for their financial support and the staff members of the respective
191 organization namely Dr. Solomon Desta and Getachew Gebru for their honest and constructive feedback on the
192 progress of the experiment, and revision of the final write-up. I wish to sincerely thank Mr. Esayas Assefa,
193 the worker of Ethiopian Meat and Dairy Technology Institute, for his invaluable technical support during milk
194 quality testing. The first author is also grateful to Yabello Pastoral and Dryland Agriculture Research Center
195 for its other logistic facilitation and the staff member of the respective center, namely Dr. Bedane Adane and
196 Mr. Tilahun Nugusie, for their cooperation during sample collection and laboratory analysis.

197 [Matofari et al. ()] *Analysis of microbial quality and safety of camel (Camelus dromedarius) milk chain and*
198 *implications in Kenya*, J W * Matofari , P L Shalo , M Younan , J N Nanua , A Adongo , Qabale , B N
199 Misiko . 2013. Kenya. Food Science Department, Egerton University

200 [Ahmed ()] *Biochemical Characteristics of Lactic Acid Producing Bacteria and Preparation of Camel Milk Cheese*
201 *using starter Culture*, T Ahmed , R . 2004. Islamabad, Pakistan. Department of Biological Sciences, Quaidi-
202 Azam University

203 [Kassa ()] 'Camel Husbandry Practices in Eastern Ethiopia: The Case of Jijiga and Shinile Zones'. Tezera G
204 Kassa , B . *Nomadic Peoples* 2002. 2002. 6.

205 [Ashenafi ()] 'Effect of container smoking and incubation temperature on the microbiological and some biochem-
206 ical qualities of fermenting Ergo, traditional Ethiopian sour milk'. M Ashenafi . *International Dairy Journal*
207 1996. 6 p. .

208 [Felleke ()] *FAO Prevention of Food Losses Programme: Milk and Dairy Products, Post-harvest Losses and Food*
209 *Safety in Sub-Saharan Africa and the Near East. A Review of the Small Scale Dairy Sector -Ethiopia*, G
210 Felleke . 2003.

211 [Seifu ()] *Handling, preservation and utilization of camel milk and camel milk products in Shinile and Jijiga*
212 *Zones*, Eyassu Seifu . 2007. eastern Ethiopia.

213 [Bekele and Baars ()] 'Milk production performance of the one humped camel (Camelus dromedarius) under
214 pastoral management in semi-arid eastern Ethiopia'. T Bekele , Zeleke M Baars , RM T . *Livestock Production*
215 *Science* 2002. 76 p. .

216 [Abdurrahman and Sh ()] 'The detection of sub clinical mastitis in the camel (Camelus bactrianus) using somatic
217 cell count and California mastitis tests'. O A Abdurrahman , Sh . *Veterinary Research Communication* 1995.
218 20 p. .

219 [Value Chain Analysis of Milk and Milk Products in Borana Pastoralist Area. Commissioned By: Care-Ethiopia ()]
220 *Value Chain Analysis of Milk and Milk Products in Borana Pastoralist Area. Commissioned By: Care-*
221 *Ethiopia*, 2009. (Regional Resilience Enhancement against Drought Project)