

1 Estimation of Age for Sudanese Adults using 2 Orthopantomographs

3 Caroline Edward Ayad¹

4 ¹ College Of Medical Radiological Science, Sudan University Of Science And
5 Technology, P.o.Box 1908 ,Khartoum Sudan

6 *Received: 12 December 2013 Accepted: 3 January 2014 Published: 15 January 2014*

7

8 **Abstract**

9 Background: Radiology plays an important role in human age determination. Radiological
10 images are utilized in the process of age estimation.Objectives: The aim of this study was to
11 determine the usefulness of Orthopantomographs (OPGs) in the assessment of the Sudanese
12 adult age compared to chronological age.Materials and Methods: The study was obtained in
13 Mursi Medical Center from the period of January to August 2011. The OPGs of 99 Sudanese
14 individuals of both gender (49male and50 female) with known chronological age, ranging from
15 15 to 30 years, were selected .The pulp -root length ,root length, pulp/root ratio , total tooth
16 length ,crown length of the mandibular canine were measured in mm and the estimated age
17 was recorded using the mandibular canine measurements .Patients were classified into three
18 groups ,A was of age <20 years old ,B was of 20 to 27 and C was of age >27.Results: the
19 estimated age in A and C groups were well correlated with the chronological age in both
20 genders and no significant difference was detected, but in B group there is a significant
21 difference between the estimated and chronological age and between males and females
22 measurements.

23

24 **Index terms**— age estimation, sudanese, orthopantomography.

25 **1 Introduction**

26 PG is one of the imaging modalities that produce a complete view of both dental arches and their adjacent
27 structures with minimal geometric distortion and with minimal overlap of anatomic details from the contra lateral
28 side. ??Allan E, 2010] Age estimation, is necessary especially in a multicultural society [Nathalie Bosmansa, 2005],
29 different methods for dental age calculation were used including morphological and radiological techniques. The
30 morphology technique required extraction, which cannot be used in living individuals where it is not acceptable to
31 extract teeth for ethical reasons. In such circumstances, a radiographic approach, offers a relatively nondestructive
32 method and eliminates the need for extraction of teeth.[Ridhima ??harma and Anurag Srivastava,2010] The
33 dental pulp development and regressive changes can be related to chronological age. ?? Reppien K., Sejrsen B.,
34 Lynnern N.,2006] The size of the pulp decreases with age due to the deposition of the secondary dentin, and
35 this is a continuous process that occurs throughout life [Nanci A.,2008],dental pulp can be used as a parameter
36 to assess the age of an individual during later periods of life.

37 Kvaal et al. reported a new method for estimating the chronological age of adults based on the relationship
38 between age and the pulp size on periapical dental radiographs ??Kvaal SI,et al1995] as well as on orthopan-
39 tomographs (OPGs) for estimating the age of an individual. [Smans N.,2005] Therefore the Objectives of this
40 study are to assess the dental age for Sudanese population using OPG as one of the radiological methods as well
41 as to determine the usefulness of OPG in dental morphology assessment for the age compared to chronological
42 age using Kvaal's method and to evaluate the applicability of dental age in forensic sciences for Sudanese II.

6 DISCUSSION

43 2 Materials and Methods

44 The study was done at Mursi Medical Center during the period from March 2011 to August 2011. OPG machine
45 GENDEX was used by applying 47 Kv, 10 mAs. 99 subjects with known chronological ages between (15-30
46 years old), from panoramic x-ray department were involved in this study, the best presented mandible canine
47 on the orthopantomograph and suited for measurement were chosen. The subjects with impacted teeth, opaque
48 fillings, crowns, pathological processes in the apical bone visible on the radiograph and extracted canine and ages
49 more than 30 were not selected. Orthopantomograms showing badly positioned teeth or teeth with large areas
50 of enamel overlap between neighboring teeth were also excluded. The ethics and research committee approved
51 the study and consent was obtained from all patients prior to the examination. All subjects were examined in
52 sitting position; and in proper manner to ensure that the teeth and jaws are within the image. All foreign objects,
53 including dental appliances, spectacles and earrings were removed. The patient's head was positioned O correctly;
54 the patient rested the tongue against the palate to prevent a radiolucent band appearing above the maxillary
55 teeth. Dental panoramic tomography was carried out with intensifying screens to limit the radiation dose. The
56 Study chooses the mandible canine in both genders to apply the measurements. The variables were defined as:
57 P= the length of the pulp, T= the length of the root from cervical area to the apical end, C= the length of the
58 crown from the cervical area to the incisal edge, Total length of the tooth. The four variables were measured in
59 (mm) and the pulp/tooth area ratio of the canine was calculated. Age was calculated using the Indian formula
60 derived: (Age=64.413-(195.265 x PTR). where PTR is the pulp/tooth area ratio. The Indian specific equations
61 [Babshet M., et al 2010] were applied for Sudanese subjects and examined its use in age prediction; the suspected
62 age was compared to the known chronological age.

63 III.

64 3 Statistical Analysis

65 The data were analyzed by using SPSS, version 16.0. The data are expressed using mean, standard deviations
66 and percentages and p value at 0.05 to test the degree of significances.

67 IV.

68 4 Results

69 The 99 Sudanese subjects studied consist of 50 (50.5%) female and 49(49.5%) male. The total sample is divided
70 into three groups ?? , (P) stands for the length pulp, (T) for the length of the root from cervical area to the
71 apical end, (C) for the length of the crown from the cervical area to the incisal edge, Total length of the tooth.
72 And (PTR) is the pulp/tooth area ratio

73 5 Number of Subjects are 47 for both gender (Age <= 20 or 74 age > 26 years),(P) stands for the length of the pulp, (T)for 75 the length of the root from cervical area to the apical end, 76 (C)for the length of the crown from the cervical area to the 77 incisal edge, Total length of the tooth. And (PTR) is the 78 pulp/tooth area

79 6 Discussion

80 Age estimation plays an important role in forensic medicine and dentistry. ??Maber M,2006] Radiology plays an
81 indispensable role in human age determination. Radiological age estimation in adults would be challenging as
82 the development of dentition is completed.

83 In adulthood, teeth undergo time-related changes representing biological aging, and many studies have shown
84 that several features of aging can be used for age determination ??Paewinsky E.2005] including volume of pulp
85 cavity and the third molar development as well as the morphology of the teeth.

86 The main objective of this study was to assess the dental age using OPG as a routine method used in dentistry.
87 The study used five variables including: The pulp -root length, root length, pulp/root ratio, total tooth length,
88 crown length of the mandibular canine in both genders using mean values and standard deviation.

89 The sample was divided into 3 groups, group A was of ages <20, [??able 1,2] shows that the mean age and
90 standard deviation were found to be For PRL (P) and TRL (T), CIL(C) it was found to be 14.6 ± 2.9 , 17.7 ± 2.7 ,
91 $10.9 \pm .9$, and the total length of the mandible canine was found to be 28.3 ± 3.9 where the PTR ratio was found
92 to be 82.3 ± 6.4 .

93 The Indian equation mentioned by [Babshet M. 2010] was applied using the PTR to calculate the subjects
94 suspected age, the mean age and standard deviation were found to be 15.9 ± 1.24 , 16.0 ± 1.30 for Chronological
95 age and estimated age respectively. The correlation between the chronological and estimated age of this group
96 was found to be 0.000 at p-value of 0.005. ??Table3] Results of Group B (Age > 19 and age < 27) were found to

97 be: for PRL (P), TRL (T), CIL(C), were found to be 18.4 ± 3.5 , 15.5 ± 3.1 and 11.2 ± 8 and the total length were
98 found to be 26.7 ± 3.1 and the PTRratio was 118.9 ± 8.1 .

99 The mean age and standard deviation were found to be 22.9 ± 1 . Results of Group C (Age > 26) the results
100 shows that the mean PRL-Pwas 19.4 ± 0.8 and TRL -T was 12.5 ± 1.124 and CILC was 10.7 ± 0.6 where the total
101 length was found to be 23.2 ± 1.3 , and PTR ratio was 155.7 ± 9.9 .the mean age and standard deviation were found
102 to be 30.3 ± 1.7 , 30.4 ± 1.9 for Chronological age and estimated age respectively, The result showed that there were
103 significant relationships detected when calculating the estimated age in group (A and C) with the chronological
104 age in both genders, but there is a significant difference between the estimated and chronological age in group
105 (B).[Table7, 8,9] On similar grounds, a study was carried out to examine the application of the pulp/tooth area
106 ratio by digital periapical images of upper and lower canines as an indicator of age. It was concluded that canines
107 can serve to predict the age of an individual [Cameriere et al, 2007] Results of the Groups A and C (Age ≤ 20
108 or age > 26 years) showed a significant relation between the chronological age and estimated age [tables 10,11,12]
109 The relation between the chronological age and PTR Ratio was studied, it was increased by 0.19 ± 0.02 ,R2 was
110 0.98 this ;because of that with advancing age, secondary dentine is deposited along the wall of the dental pulp
111 chamber, leading to a reduction in the size of the pulp cavity. ?? Prapanpoch S,1994] this ratio is good indicator
112 for ages less than 20 and more than 26 it consigned with the estimated age gained by the Indian equation but
113 in ages of twenties the exact age was not estimated significantly when using PTR ratio. [Figures ??,2].The
114 relation between the chronological age and Total Length was also been evaluated, it was found that the total
115 tooth (canine) length was decreased by increasing the age, and TRL was also decreased with age as it appears in
116 [Figures ??,4 To conclude ;this study is an attempt to assess the age using OPG in Sudanese population in both
117 gender using mandibuler canine for PTR, the result suggested that The Indian formula for mandibular canine
118 measurements can be applied to estimate the dental age for Sudanese significantly with the chronological age in
119 ages less than 20and more than 27 in both male and female, but in the ages between 20 to 27 there is a significant
120 difference between chronological and estimated age as well as between males and females measurements.

121 Also it gives a scope for future studies on larger sample size, and measuring the molars and premolars as an
age indicator. ¹

Figure 1: Fig. 1 :Fig. 2 :Fig. 3 :Fig. 4 :

122

6 DISCUSSION

4

A-B-C)

[Note: Number of Subjects are 52 for both gender (Age > 19 and age < 27) The ages are measured in years and the variables measurements are taken in (mm) Tab le 5 : The average mean and STDV of the variables collected from both genders]

Figure 2: Table 4 :

6

	Number	Correlation	Significant
Chronological &	52	.955	.182
Estimated age			
Number of Subjects are 52, (Age > 19 and age < 27), P-value is significant at 0.000			
c) Results Of Group C (Age > 26)			

Figure 3: Table 6 :

7

	Gender	Number	Mean	Std. Deviation
Chronological age	Male	14	30.229	1.6790
	Female	5	30.320	1.8130
Estimated age	Male	14	30.736	2.0167
	Female	5	29.620	1.3424
PRL(P)	Male	14	19.29	.726
	Female	5	19.60	1.140

Figure 4: Table 7 :

8

	Chronological age	Estimated age	PRL (P)	TRL (T)	CIL (C)	Total length	PTR ratio
Number	19	19	19	19	19	19	19
Mean	30.253	30.442	19.37	12.47	10.68	23.16	155.7316
Std. Deviation	1.6638	1.8954	.831	1.124	.582	1.259	9.93518
Number of Subjects are (Age > 26)							

Figure 5: Table 8 :

9

Chronological & Estimated age Number of Subjects are 19 (Age > 26) P-value is significant at 0.000
d) Results of the Groups A and C (Age <= 20 or age > 26 years)

	Number	Correlation	Significant
Chronological & Estimated age	19	.894	.000

Figure 6: Table 9 :

10

TRL (T)	Male	14	12.29	1.069
	Female	5	13.00	1.225

Figure 7: Table 10 :

Table 11 : Chronological age Estimated age PRL
(
P)
TRL CIL Total length PTR ratio
(T) (C)

Number	47	47	47	47	47	
Mean	21.717	21.843	16.53	15.57	10.83	26.21
Std. Deviation	7.2456	7.326	3.322	3.393	.789	3.989

Number of Subjects are 47 (Age <= 20 or age > 26/ years), the measurements are taken in (mm) for the various parameters

Table 12 : The correlation between the chronological and estimated age

Number	Correlation	Significant
Chronological & Estimated age	Number of Subjects are 47, Age <= 20 or age > 26 years	

ratio

© 2014 Global Journals I

Figure 8:

6 DISCUSSION

-
- 123 [Estrela et al.] , Carlos Estrela , José Valladares Neto , Mike Reis Bueno , Orlando Aguirre Guedes .
- 124 [Porto] , Olavo Cesar Lyra Porto .
- 125 [Solheim ()] *A nondestructive dental method for age estimation, T.forensic odontostomatol*, T S I Solheim . 1994.
- 126 12 p. .
- 127 [Maber et al. ()] ‘Accuracy of age estimation of radiographic methods using developing teeth’ M Maber , H M Liversidge , M P Hector . *Forensic Sci Int* 2006. 159 p. .
- 128
- 129 [Cameriere et al. ()] ‘Age estimation by Es pulp/tooth ratio in canines by peri-apical X-rays’ R Cameriere , L Ferrante , M G Belcastro , B Bonfiglioli , E Rastelli , M Cingolani . *J Forensic Sci* 2007. 52 p. .
- 130
- 131 [Kvaal et al. ()] ‘Age estimation of adults from dental radiographs’ S I Kvaal , K M Kolttveit , I O Thomsen , T Solheim . *Forensic Sci Int* 1995. 74 p. .
- 132
- 133 [Landa et al. (2009)] ‘Application of the method of Kvaal et al, to digital orthopantomograms’ M I Landa , P M Gara Mendi , M C Botella , I Aleman . *Int J legal Med* 2009 Mar 123. (2) p. .
- 134
- 135 [Reppien et al. ()] ‘Evaluation of post-mortem estimated dental age versus real age: A retrospective 21-year survey’ K Reppien , B Sejrsen , N Lynnerup . *Forensic Sci Int* 2006. 159 p. .
- 136
- 137 [Jesus Djalma Pécora Linear measurements of human permanent dental development stages using Cone-Beam Computed Tomography: a preliminary study’ *Dental Press J. Orthod* Maringá Sept./Oct. 2010. 15 (5) .
- 138
- 139
- 140 [Prapanpoch et al. ()] ‘Morphometric analysis of the dental pulp chamber as a method of age determination in humans’ S Prapanpoch , S B Dove , J A Cottone . *Am J Forensic Med Pathol* 1992. 13 p. .
- 141
- 142 [Babshet and Acharya (2010)] ‘Naikmasur VG Age estimation in Indians from pulp/tooth area ratio of mandibular canines’ M Babshet , A B Acharya . *Forensic Sci Int* 2010 Apr 15. 197 (1-3) p. 125.
- 143
- 144 [Farman (2010)] *Panoramic Radiology Seminars on Maxillofacial Imaging and Interpretation. First Edition*, Allan G Farman . November 2010. Berlin Heidelberg: Springer.
- 145
- 146 [Paewinsky et al. ()] ‘Quantification of secondary dentine formation from orthopantomograms—a contribution to forensic age estimation methods in adults’ E Paewinsky , H Pfeiffer , B Brinkmann . *Int J Legal Med* 2005.
- 147
- 148 119 p. .
- 149 [Sharma and Srivastava ()] ‘Radiographic evaluation of dental age of adults using Kvaal’s method’ Ridhima Sharma , Anurag Srivastava . *J Forensic Dent Sci* 2010.
- 150
- 151 [Ed ()] *Tencate’s Oral Histology, Development, Structure and Function*, Nanci A Ed . 2008. Elsevier Publishers.
- 152 p. 225.
- 153 [Bosmansa et al. ()] ‘The application of Kvaal’s dental age calculation technique on panoramic dental radiographs’ Nathalie Bosmansa , Peirs Annb , Medhat Alya , Guy Willemsa . *Forensic Science International* 2005. 153 p. .
- 154
- 155
- 156 [Smans et al. ()] ‘The application of Kvaal’s dental age calculation technique on panoramic dental radiographs’ N Smans , Ann P Aly , M Willems , G . *Forensic Sci Int* 2005. 153 p. .
- 157