

1 A Comparative Study between IHC in Frozen Sections and 2 Formalin Fixed Sections and their Clinical Significance-A 3 Retrospective Study

4 Dr. Deepali Jain¹ and Dr. Minal Chaudhary²

5 ¹ Sharad Pawar Dental College, Sawangi (Dmimsu)

6 *Received: 13 December 2013 Accepted: 4 January 2014 Published: 15 January 2014*

7

8 **Abstract**

9 Aim and Objective: Comparison of IHC expression of P53 protein in frozen section versus
10 routine paraffin embedded section in OSCC. Materials and Methods: Patients diagnosed with
11 OSCC were selected from the Department Of Oral and Maxillofacial Surgery of Sharad Pawar
12 Dental College, Sawangi. During curative surgery tissue sections were obtained for frozen IHC
13 and paraffin embedded sections were obtained from routinely processed resected tissue which
14 were sent for histopathological diagnosis were also subjected to IHC for the purpose of the
15 study. The tissue when then assessed to determine the expression of p53 protein. Results:
16 Sharper and more extensive p53 protein expression was observed in frozen section as
17 compared to formalin fixed paraffin embedded sections. This is thought to be due to the
18 blockage of antigen sites by formalin. Conclusion: This study is of great significance to the
19 pathologist who routinely assess IHC and reports on frozen section as diagnostic tools to guide
20 the surgeon in order to determine the extent to which the resection should be carried out.

21

22 *Index terms—*

23 **1 A Comparative Study between IHC in Frozen Sections and 25 Formalin Fixed Sections and their Clinical Significance-A 26 Retrospective Study**

26 Abstract-Aim and Objective: Comparison of IHC expression of P53 protein in frozen section versus routine
27 paraffin embedded section in OSCC.

28 Materials and Methods: Patients diagnosed with OSCC were selected from the Department Of Oral and
29 Maxillofacial Surgery of Sharad Pawar Dental College, Sawangi. During curative surgery tissue sections were
30 obtained for frozen IHC and paraffin embedded sections were obtained from routinely processed resected tissue
31 which were sent for histopathological diagnosis were also subjected to IHC for the purpose of the study. The
32 tissue when then assessed to determine the expression of p53 protein.

33 Results: Sharper and more extensive p53 protein expression was observed in frozen section as compared to
34 formalin fixed paraffin embedded sections. This is thought to be due to the blockage of antigen sites by formalin.

35 Conclusion: This study is of great significance to the pathologist who routinely assess IHC and reports on
36 frozen section as diagnostic tools to guide the surgeon in order to determine the extent to which the resection
37 should be carried out. Hence, we can conclude that frozen section is more derivative in accordance with time
38 as compared to formalin fixed tissue for determining the expression and as an important investigation to modify
39 resection by using various tumor markers. In our study, we also considered conduction of IHC for margins during
40 surgical procedure in order to guide the surgeon whether the margins are positive or negative and if the resection

5 RESULTS

41 has to be extended or not. IHC here was conducted in a time period of 2 hours by polymer technique. Hence,
42 an important and more definitive diagnostic tool for immediate results.

43 2 I.

44 Introductionrozen sections are immediately obtained during surgical procedure. Whereas, the formalin fixed
45 sections are obtained during incisional biopsy which is taken in order to attain a definitive diagnosis and resected
46 specimens which are obtained as postsurgical procedure. These tissues are fixed in neutral buffered formalin for
47 24 hours and then embedded in paraffin wax for the preparation of blocks from which sections are prepared for
48 routine hematoxylin and eosin staining and also for IHC.

49 Immunohistochemistry is an indispensable tool for diagnostic as well as research purpose in human disease, and
50 is widely employed in establishing diagnosis. It can be conducted on frozen section and formalin fixed section.
51 It is a method for demonstrating the presence and location of proteins in tissue sections.

52 Though the procedure is less sensitive quantitatively than others, it enables the observation of processes in
53 the context of intact tissue. This is especially useful for assessing the progression and treatment of diseases such
54 as cancer.

55 In general, the information gained from IHC combined with microscopy literally provides a "big picture" that
56 can help make sense of data obtained using other methods. Immunohistochemical staining is accomplished with
57 antibodies that recognize the target protein.

58 Since antibodies are highly specific, the antibody will bind only to the protein of interest in the tissue section.
59 The antibody-antigen interaction is then visualized using either chromogenic detection, in which an enzyme
60 conjugated to the antibody cleaves a substrate to produce a colored precipitate at the location of the protein.

61 Mutation of the p53 tumor suppressor gene is the most frequent abnormality in various human tumors. More
62 than 95% of these alterations are missense mutations which are scattered in the central part of the gene. Although
63 all these mutations lead to the inactivation of the biological properties of the p53 protein, they also have dramatic
64 consequences in term of p53 stability. Mutant p53 protein, which takes on an abnormal conformation, is more
65 stable than the wild-type (half-life of several hours compared to 20 minutes for the wild type p53), accumulates
66 in the nucleus of neoplastic cells and thus becomes immunologically detectable. An important consequence of
67 this phenomenon is that positive immunostaining is indicative of abnormalities of the p53 gene and its product.

68 3 II.

69 4 Material and Methods

70 The study was carried out at Sharad Pawar Dental College, Sawangi, Wardha in the Department of Oral and
71 Maxillofacial Pathology. 30 samples were selected who had been diagnosed clinically and histologically with
72 OSCC. Patients consent was taken prior to the conduction of the study. The IHC procedure which was carried
73 out for the purpose of this study was Universal immuno enzyme technique These samples had been procured
74 during the curative surgical procedure for frozen section and later from resected specimen for paraffin embedded
75 sections. These samples were then subjected to IHC staining for p53 antibody.

76 For frozen sections the tissue sample obtained during the surgical procedure were samples frozen in the cryostat
77 machine after which tissue sections 2-3 micron meter thick were sectioned in the machine collected on silane coated
78 slides and fixed in pre-cooled acetone for a period of 10 minutes.

79 Which was followed by application of peroxidase block for a period of 20 minutes followed by washing in Tris
80 buffered solution (TBS) for 5minutes after which the application of p53 antibody (clone DO-7) after which it was
81 washed in TBS for 10 minutes.

82 The application of HRP labeled polymer antibody is done for a period of 30 minutes after which it was washed
83 in TBS for 10 minutes.

84 Finally, the application of DAB and hematoxylin is done for 30 minutes, after which is washed for 10 minutes
85 with TBS. Similar, procedure was carried out for IHC in paraffin embedded sections which was also collected on
86 silane coated slides.

87 The fixation here is done with Neutral buffered formalin for 24 hours. And the antigen retrieval is done for a
88 period of 30 minutes. The remaining procedure for these sections remains the same as the latter.

89 The complete procedure of IHC staining in frozen section requires a time period of approximately 2 hours.
90 III.

91 5 Results

92 25 out of 30 samples exhibited positive staining for frozen sections as well as paraffin embedded sections. More
93 sharper and extensive p53 protein expression was seen in frozen section as compared to formalin fixed paraffin
94 embedded sections.

95 However the cellular morphology is more definite in formalin fixed tissue. This is because of the loss of antigen
96 during tissue handling, fixation and processing.

97 Therefore, we can determine that frozen section is more derivative in accordance with time as compared to
98 formalin fixed tissues for determining the expression of p53 by IHC and as an important investigation to modify
99 resection by using various tumor markers.

100 It will also act as a guide to the surgeon in order to determine where to stop the resection which will also help
101 in preservation of important structures which otherwise might have been resected to rule out the possibility of
102 recurrence. Hence, ultimately be beneficial to the patient as well.

103 Volume XIV Issue II Version I Year ()

104 **6 Discussion**

105 It has been observed that patients suffering from OSCC have very low that is about 5 year survival rate of 50%.
106 No increase in the 5 year survival rate of patients with OSCC has been documented in the last 10 years. The
107 main cause of death from OSCC after surgery is either due to formation of second primary tumor or recurrence
108 of OSCC.

109 It is here that the role of field cancerization comes into play. In many cases field cancerization cannot be
110 diagnosed by routine hematoxylin and eosin staining procedure. Hence, arises the need for more aggressive
111 treatment modalities and newer diagnostic tools. We advocate the identification and removal of cancer and field
112 on frozen section IHC as a routine treatment protocol for better prognosis.

113 IHC has frequently been considered a domain of research rather than for treatment and routine diagnostic
114 procedure. There is an urgent need to change this line of thinking and integrate frozen IHC as a routine diagnostic
115 tool for better assessment of margins and fields which will lead to better treatment and improved survival rate
116 in patients with OSCC. Frozen IHC thus can be an important diagnostic, prognostic as well as research tool.

117 Removal of modified radical neck dissection protocol and repair requires a time period of about 5 to 6 hours.

118 Frozen section IHC which is an important diagnostic tool can be incorporated as a routinely used procedure
119 during the course of surgery.

120 This could help in better management of margins which remain undetected otherwise but show positivity with
121 molecular markers. Hence, the management of such condition on priority basis during surgical intervention could
122 lead to better prognosis in patients with OSCC and will negate the need for recurrent surgeries.

123 V.

124 **7 Conclusion**

125 We conclude that frozen section IHC, is a viable technique which can be carried out during the course of surgical
126 intervention and the result equals if not exceeds the results that are seen by conventional IHC procedure having
127 equally significant prognostic value.

128 Also, though technique sensitive it is an easy procedure to conduct and does not require special training and
129 can be conducted by technician who is able to perform routine IHC.

130 This procedure requires a time period of only 2 hours as compared to conventional IHC that requires
131 approximately 26 hours.

132 Also, most of the antibodies that can be used for conventional IHC can be used for frozen IHC as well. There
133 are certain misconceptions about frozen IHC such as it is difficult to conduct being time consuming and requires
1 special training. ¹

Figure 1: F

134

¹© 2014 Global Journals Inc. (US)

7 CONCLUSION

135 [Zr Shi et al. ()] 'A comparison of three immunoperoxidase techniques for antigen detection in colorectal
136 carcinoma tissues'. Zr Shi , Y S Itzkowitz , Kim . *J. Histochem. Cytochem* 1988. 36 p. .

137 [Giorno ()] 'A comparison of two immunoperoxidase staining methods based on the avidin-biotin interaction'. R
138 Giorno . *Diagn Immunol* 1984. 2 (3) p. .

139 [Oros et al. (1996)] 'Demonstration of rat CAR bacillus using a labelled streptavidin biotin (LSAB) method'. J
140 Oros , S Matsushita , J L Rodriguez , F Rodriguez , A Fernandez . *J Vet Med Sci* 1996 Dec. 58 (12) p. .

141 [Javois (ed.)] *Immunocytochemical Methods and Protocols*, Lorette C Javois (ed.) (Totowa, New Jersey) Humana
142 Press. (2nd Edition)

143 [Nagle et al. (1983)] 'Immunohistochemical demonstration of keratins in human ovarian neoplasms. A compari-
144 son of methods'. R B Nagle , V A Clark , K M McDaniel , J R Davis . *J Histochem Cytochem* 1983 Aug. 31
145 (8) p. .

146 [Milde et al. ()] 'Immunohistochemical detection of 1,25-dihydroxyvitamin D3 receptors and estrogen receptors
147 by monoclonal antibodies: comparison of four immunoperoxidase methods'. P Milde , Merke , M R Ritz ,
148 Haussler , Ew Rauterberg . *J Histochem-Cytochem* 1989. 37 (11) p. .

149 [Ramos-Vara ()] 'Technical Aspects of Immunohistochemistry'. J A Ramos-Vara . *Vet Pathol* 2005. 2005. 42 p. .