

1 Modified Cast Dowel Core for Treatment of Mutilated Crowns 2 -Case Reports

3 Dr. Anand B.D.S, M.D.S¹, Dr. Devika Shetty² and Dr. Nandish Shetty³

4 ¹ Kanannur Dental College, Aj Institute of Dental Science, Yenepoya University

5 *Received: 11 December 2013 Accepted: 4 January 2014 Published: 15 January 2014*

6 **Abstract**

7 Dislodgement of crown is not uncommon in routine clinical practice. Inadequate support for
8 the core is the most common reason for such failures. With the advent of fibre posts and resin
9 cements, core build up has become more effective. But in certain conditions with severe deep
10 bite, supra-eruption and mutilation, cast metal dowel core offer greater advantage compared
11 to non-metallic posts and composite core. This paper presents two case reports in which
12 modified cast dowel cores were used to restore severely mutilated teeth one with a buccal
13 defect and other with severe deep bite and supra-eruption.

16 **Index terms**— modified dowel, crown dislodgement.

17 **1 Introduction**

18 Post endodontic restoration is a very important phase in root canal treatment. Recurrent caries and fractured
19 restorations in an endodontically treated tooth can lead to dislodgement of crowns, retreatment of which can be
20 a real challenge to a restorative dentist. Patients often turn up late for treatment due to lack of confidence in
21 the dentist and the procedure. In due time the remaining crown structure will be severely mutilated and weak.
22 Supraeruption and migration of adjacent teeth may also limit the treatment options. In some cases lack of inter
23 arch space and severe proclination may necessitate a modification of the core. In such extensive loss of coronal
24 structure a post is used to retain the core¹. This paper presents two different cases which were treated using
25 modified cast post and core designed to suite specific conditions. (A) A grooved cast post and core fabricated on
26 a severely mutilated tooth ,modified to avoid an iatrogenically created defect on the mid buccal finish line.(B)A
27 wrapped cast post and core modified on a grossly decayed canine with severe deep bite and supra-eruption.

28 **2 II.**

29 Case Report (1) A 45 year old female patient reported with a dislodged crown in relation to 46. On examination
30 it was found that 45, 47 and 48 were missing and 46 tooth structure was grossly destroyed with a perforation
31 on Author ? ? ? ?: Kanannur Dental College, Aj Institute of Dental Science, Yenepoya University. e-mail:
32 draksmds@gmail.com defect as well as to restore the crown. The remaining carious dentinal structure was removed
33 and post preparation was done with gates glidden bur and peso reamers. Primary post space preparation was done
34 in the distal canal while two short secondary post preparations were done in the mesial canals to provide support
35 to the core.

36 Auto polymerizing resin (DPI-India) was packed into the canal with a thin resin sprue after lubricating the
37 canal with petrolatum. When the resin was tough and doughy the pattern was inserted in and out of the canal
38 to ensure that it did not lock into any undercuts in the canal². After retrieving it from the canal, the resin core
39 was modified along the buccal aspect to form a groove which helped to avoid the iatrogenically created buccal
40 defect. The incorporation of a groove also helped to create a narrow occlusal table thereby reducing the occlusal
41 forces and greater retention for the crown. A narrow longitudinal groove was cut in side of the distal post to
42 create a cement escape channel. It is desirable to complete reduction and contouring in resin, because it is both
43 difficult and time consuming to shape the metal after the dowel core has been cast².

7 CONCLUSION

44 The resin post and core was then casted [fig. ??]. A small knob of the sprue was left attached to the casting
45 and a dental floss was tied to it to act as a safety line2. The cast post and core was tried and tooth preparation
46 was completed for 44 to receive a metal ceramic fixed partial denture in relation to 44, 45 and 46. Necessary
47 modifications were done to obtain parallelism. The buccal groove was well defined to avoid the defect so that
48 the final prosthesis can be contoured accordingly. Finally the occlusal preparation was completed and the dowel
49 was ready for cementation.

50 Glass ionomer cement (GC-Fugi) was mixed and inserted into the canal using a lentulospiral. The dowel core
51 was slowly inserted so that the excess cement may escape allowing it to seat completely (fig3). Impression was
52 made with polyvinyl Siloxane, one stage putty wash technique. (Aquasil, Dentsply) Metal ceramic fixed partial
53 denture was cemented with Ploy Carboxylate cement (Poly-F, Dentsply) (fig. ??).

54 3 P

55 4 Case Report (2)

56 A 55 year old female patient reported with dislodged crown in relation to 13. On examination it was found that 14,
57 15 and 44 were missing while 16, 43 and 45 were severely supra-erupted (fig ??). IOPA radiograph revealed that
58 13 was root canal treated. To correct the occlusal discrepancy 45 required extraction while 16 needed intentional
59 root canal treatment followed by crown lengthening procedures. Due to the severe deep bite caused by 43 on
60 13 a wrapped cast core covering the labial surface of the canine was planned. After the extraction of 45 and
61 intentional root canal treatment of 16, 13 was modified to receive the cast post and core (fig 6 ?? fig 7). As
62 discussed in case report (1), resin pattern using direct technique was used in this case also. Crown lengthening
63 was done on 16 and the tooth was prepared to receive a metal ceramic fixed partial denture (fig ??). A removable
64 partial denture was planned after healing of the lower ridge.

65 5 IV.

66 6 Discussion

67 Endodontically treated tooth should be properly restored to receive a crown. Dislodgement of the crown occurs
68 when they are not properly supported or the abutment is weak due to secondary caries. Any remnant caries
69 should be removed completely during the initial stages of root canal treatment. Radicular support is required
70 when the abutment is weak. The principles of crown preparation should be followed rather than depending on the
71 adhesiveness of the restorative cements2. Cements leach out in due time which may cause accumulation of plaque
72 and food debris between crown margins leading to secondary caries. Composite material is the most popular
73 core material. But it shrinks during polymerization, causing gap formation in the areas in which the adhesive
74 is weakest. It absorbs water after polymerization, causing it to swell3 and undergoes plastic deformation under
75 repeated loads4, 5. Its adhesion to dentine on the pulpal floor is generally not as strong or reliable as to coronal
76 dentine6. Fibre posts are a better choice as post material because its flexibility. A post that flexes together with
77 the tooth during function should result in better stress distribution and fewer fractures7. But a flexible post
78 allows movement of the core, resulting in increased microleakage under the crown. This is more important when
79 there is minimal remaining coronal tooth structure. Because the post is considerably thinner than the tooth,
80 it may be necessary that the post have a higher modulus of elasticity (greater stiffness) to compensate for the
81 smaller diameter8. A cast metal post and core was preferred for case(A) because it was a severely mutilated molar
82 and patient did not want to extract the tooth. In case(B) wrapped cast post and core was the only choice due to
83 the severe supra-eruption. Cast post and cores can be fabricated either by direct or indirect technique2. Direct
84 technique with resin pattern was used in both cases. One major advantage of using direct technique with resin
85 pattern is that the restorative dentist can modify the core to suite specific situations. Cast dowel cores are very
86 rarely done on molars, because they have divergent canals that require elaborate castings2. Post should be placed
87 in the largest straight canal. Rarely if ever is more than one post required in a molar8. Placement of a post also
88 may increase the chance of root fracture9. Post length should be more or equal to the crown length to reduce
89 fractures and minimum 4-5mm of gutta-percha should remain apically to maintain an adequate seal10, 11, and
90 12. Taking into consideration all the above factors, a modified cast dowel core was the right choice for these
91 patients.

92 V.

93 7 Conclusion

94 Cast post and cores modified for specific situations offer a definite and economical solution. In the anterior
95 region aesthetic core should be given when all ceramic crowns are planned. But in posteriors metal post and
96 cores are effective in giving support to severely mutilated crowns. The rigidity of the cast post and core is a
97 cause of concern because of possible fracture of roots if the post is not properly extended or if occlusal load is
98 heavy. While selecting cases for treatment of severely mutilated crowns all these factors should be taken into
99 consideration. ¹

Figure 1:

100 [Sorenson and Martinoff ()] 'Clinically Significant Factors in Dowel Design'. J A Sorenson , J T Martinoff . *J
101 Prosthet Dent* 1984. 52 p. .

102 [Oliva and Lowe ()] 'Dimensional stability of silver amalgam and composite used as corematerials'. R A Oliva ,
103 J A Lowe . *J Prosthet Dent* 1987. 57 p. .

104 [Sorenson and Martinoff ()] 'Endodontically Treated Teeth as Abutments'. J A Sorenson , J T Martinoff . *J
105 Prosthet Dent* 1985. 53 p. .

106 [Kovarik et al. ()] 'Fatigue life of three core materials under chewing conditions'. R E Kovarik , L C Breeding ,
107 W F Caughman . *J Prosthet Dent* 1992. 68 p. .

108 [Gateau and Mdailey ()] 'Fatigue testing & microscopic evaluation of post & core restorations under artificial
109 crowns'. P Gateau , Sabek Mdailey , B . *J Prosthet Dent* 1999. 82 p. .

110 [Heydecke et al. ()] 'Fracture Strength and Survival rate of endodontically treated maxillary incisors with
111 approximal cavities after restoration with different post and core systems: an in-vitro study'. G Heydecke ,
112 F Batz , J R Strub . *JDent* 2001. 29 p. .

113 [Herbert et al. ()] T Herbert , Sumiya Shillingburg , Lowell D Hobo , Richard Whitsett , Susan E Jacobi ,
114 Brackett . *Fundamentals of Fixed Prosthodontics*, 1996. (3rd edition: 194-209.6)

115 [Cornier et al. ()] 'In vitro comparison of the fracture resistance and failure mode of fibre, ceramic and
116 conventional post systems in various stages of restoration'. C J Cornier , D R Burns , P Moon . *J Prosthodont*
117 2001. 10 p. .

118 [Kijasamanmith K et al. ()] 'Micro-tensile bond strengths of bonding agents to pulpal floor dentine'. Kijasaman-
119 mith K , S Timpawat , C Harnirattisai , H H Messer . *Int Endod J* 2002. 35 p. .

120 [Richard et al. ()] 'Post placement and retention of endodontically treated teeth. A literature Review'. S Richard
121 , James W Schwartz , Robbins . *Journal of Endodontics* 2004. 30 (5) .

122 [Goodacre and Spolnik ()] 'Prosthetic Management of Endodontically treated teeth; a literature review.Part
123 1.Sucess and failure data,treatment Concepts'. C J Goodacre , K J Spolnik . *JProsthodont* 1994. 3 p. .

124 [Robbins JW guidelines for the restoration of endodontically treated teeth J AM Dent Assoc ()] 'Robbins JW
125 guidelines for the restoration of endodontically treated teeth'. *J AM Dent Assoc* 1990. 120 p. .