

1 Dynamic Postural Balance in Patients with Temporomandibular 2 Disorders (TMD)

3 Flores Lara Alejandro¹ and Espinosa de Santillana Irene²

4 ¹ Benemrita Universidad AutAnoma de Puebla

5 *Received: 7 December 2013 Accepted: 31 December 2013 Published: 15 January 2014*

7 **Abstract**

8 Temporomandibular Disorders (TMD) is a set of painful conditions that involve the
9 masticatory muscles, Temporomandibular Joint (TMJ), and/or associated orofacial structures.
10 Some studies have established that patients with TMD present postural alterations. Objective:
11 To assess Dynamic Postural Balance (DPB) in patients with Temporomandibular Disorders
12 (TMD) compared to a control group at the Stomatology Clinic of the Autonomous University
13 of Puebla (BUAP). Materials and methods: Forty patients with TMD were tested, diagnosed
14 by a standardized researcher with DC/TMD; 75

16 **Index terms**— postural balance, temporomandibular disorders, balance.

17 **1 Introduction**

18 3% to 7% seek treatment for pain and dysfunction associated to TMD ???. Yuasa additionally reports that
19 approximately 75% of the population has at least one TMD sign and 33% has at least one symptom, but only
20 3.6% to 7% seeks treatment for severe TMD symptoms ???. In addition, TMD symptoms occur disproportionately
21 between sexes, with an increased incidence reported in women; the female-male ratio ranges between 2:1 and
22 8:1 ??-10. Most of the patients who present symptoms are between 20 and 50 years old ??1-12. On the
23 other hand, Postural Balance has been defined by Riemann et al 13 as the process of coordinating corrective
24 movement strategies and movements at the selected joints to remain in postural equilibrium. Dynamic Postural
25 Balance is the ability to maintain the center of gravity over the base of support while it moves or an external
26 disturbance is applied to the body. There are some studies in the bibliography which suggest a link between the
27 Temporomandibular Joint (TMJ)/dental occlusion and posture. Some authors have reported postural alterations
28 in subjects with TMD in comparison to healthy ones ??4. Other studies inform that patients with TMD have an
29 advanced cephalic position in contrast to subjects without TMD ??5. Changes in mandibular position induced
30 or not by TMD, may influence in the neck and posture muscles [16][17][18] and such subjects have a deviation
31 in the anterior or posterior pelvic line ??9. To emphasize this, it has been demonstrated that changes in the
32 mandibular position cause changes in the electromyographic activity of the masticatory muscles and neck muscles
33 (trapezius and sternocleidomastoid), which suggest that alterations in the mandibular position disturb the cervico-
34 craneal with TDM have a higher prevalence of cervical hyperlordosis ??1. Furthermore, it has been shown the
35 influence of the various mandibular positions in the postural balance, specifically, the myocentric mandibular
36 position has proved to improve postural balance ??2. Apparently, the Postural Balance has an association
37 with Temporomandibular Disorders and/or dental occlusion, so that the objective of the current study was to
38 establish the association between Temporomandibular Disorders and the Dynamic Postural Balance in patients
39 with any ailment in comparison with a control group from the Stomatology empormandibular Disorders (TMD)
40 is a collective term embracing all the problems relating to Temporomandibular Joint (TMJ), the masticatory
41 muscles, and/or associated orofacial structures as bones, ligaments, and cartilages ??-2. Over 25% of the adult
42 population presents symptoms of TMD, nevertheless, only a small percentage of affected individuals look for
43 treatment 3 . Other studies conducted in this same population have detected TMD symptoms from 16% to 59%
44 4 , but only T system 20 . Some studies have established that patients e-mails: alfloreslara90@hotmail.com, Forty

6 MATERIALS AND METHODS

45 patients with TMD were tested, diagnosed by a standardized researcher with DC/TMD; 75% female average aged
46 27.7±9.5 and 40 controls without TMD, paired by age and sex without significant differences in body mass index
47 (BMI) between groups ($p>.05$). To assess the Dynamic Postural Balance, the Biodex Stability System was used
48 (BSS) (Biodex Medical Systems, Shirley, NY, USA), which consists of a movable multiaxial balance platform that
49 provides up to 20° of surface tilt in a 360° range of motion. The prearranged level of instability of the platform
50 ranged between a slightly unstable surface, level of stability 8, to a very unstable surface, level of stability 2.
51 Three indices were obtained electronically based on the platform degree tilt: Anterior-Posterior Stability Index
52 (APSI), Medial-Lateral Stability Index (MLSI) and the Overall Stability Index (OSI). Additionally, the system
53 determined the percentages of time used in the four concentric balance zones: A, B, C and D as shown in Figure
54 1. Lower values in the Dynamic Postural Balance Indices represent better stability than the higher ones; in the
55 same way a greater permanence in the most peripheral zones reveals a poor balance.

56 Once obtained the results, a database was developed with the SPSS v.19 statistical program, for the analysis
57 with descriptive statistics (mean, median, mode and standard deviation) and inferential statistics. The Dynamic
58 Postural Balance difference between groups was assessed by the Student's T-test, with statistical significance
59 $<.05$.

60 2 Results

61 Forty patients with TMD were tested, diagnosed by a standardized researcher with DC/TMD; 75% female
62 average aged 27.7±9.5 and 40 controls paired by age and sex without significant differences in BMI between
63 groups ($p>.05$).

64 As shown in Table ??, the three indices: OSI, APSI and MLSI revealed a slightly better balance in the cases,
65 compared to the control ones. Nevertheless, none of the above comparisons showed statistical significance.

66 3 Table 1 : Comparison by group of the Dynamic Postural 67 Balance Indices

68 The permanence time in the balance zones showed that the group cases remained more time in the optimum
69 balance zone (A) compared to the control group. None of the above comparisons showed statistical significance.

70 4 Discussion

71 The current study did not find association between the Temporomandibular Disorders and the Dynamic Postural
72 Balance.

73 Descriptively, the three balance indices: OSI, APSI and MLSI, as well as the permanence time in the optimum
74 balance zone (A) were lower in the TMD group, however, it did not show statistically significant differences
75 between groups.

76 Authors as Lee and Okeson 15 proved that patients with TMD show an advanced cephalic position, Zonnenberg
77 and Van Maanen 19 Clinic of the Autonomous University of Puebla (BUAP), Mexico..

78 5 II.

79 6 Materials and Methods

80 A prolective, case-control study was conducted at the Stomatology Clinic of the Autonomous University of Puebla.
81 Through convenience sampling method, in which 40 patients per group were selected.

82 Munhoz and colleagues 21 observed that patients with TMD have higher prevalence of cervical hyperlordosis,
83 all this leads to the hypothesis that TMD could affect Postural Balance.

84 Kittel and Bérzin 23 assessed through the Chattecx Balance System the stability and weight distribution in
85 orthostatic position of subjects with TMD and a control group. Those authors demonstrated that the TMD
86 group has greater symmetrical weight distribution than the control group, similar to the results of the current
87 study, however, Kittel and Bérzin found statistically significant differences between groups.

88 These results could be supported by the fact that subjects with present TMD reduced muscular activity
89 throughout maximum intercuspsation due to a protective effect to minimize Temporomandibular Joint movement,
90 this coupled to presence of pain in patients with TMD, also appears to has an effect in reduction of body sway
91 ??4. Perinetti 25, on the other hand, by the use of the Lizard statokinesigram, researched on the correlation
92 between TMD and postural alterations and did not find statistically significant differences in evaluating a group
93 of patients with TMD and a control group, as in the current study. It should be noted that one of the possible
94 explanations for the type of instrument could support the controversy in the results reported in the literature
95 used to determine the Postural Balance. The Biodex Stability System (Biodex Medical Systems, Shirley, NY,
96 USA), instrument used in this study, consists of a movable multiaxial circular platform with 360° range of motion,
97 with the potential of varying surface tilt, which makes the Postural Balance assessment to be carried out in a
98 fully dynamic position.

99 This instrument has demonstrated reliability and validity in previous studies ??6-27. On the other hand,
100 other studies have used different instruments to assess Postural Balance. These other instruments do not allow

101 dynamic multiaxial assessment of Postural Balance, as the Chattecx Balance System and others, these latter only
102 uses force plates combined with software to determine the center of gravity and based on this, measure the rate
103 of Postural Balance. Such diversity in the use of instruments could be the main cause of the controversial result
104 found in the literature.

105 The main strength of this study is based on the use of a valid and reliable instrument to establish the Postural
106 Balance Index; it is noteworthy that there is no bibliographical evidence that has assessed Dynamic Postural
107 Balance within concentric zones mentioned above. In the current study, it was observed that patients with TMD
108 presented higher percentages of optimal balance (95.6%) compared to the control subjects (93.6%), although no
109 significant differences were denoted. On the other hand, a weakness of this research lies in the absence of a prior
110 calculation of sample size, which could influence in the absent association between Temporomandibular Disorders
111 and Dynamic Postural Balance reported in the current study.

112 V.

113 **7 Conclusion**

114 The Dynamic Postural Balance of patients with TMD; OSI, APSI, MLSI, as well as the permanence time in
115 optimum balance zone, is equal to the control ones. Bibliography

116 **8 Global Journal of**

117 Medical Research

Figure 1:

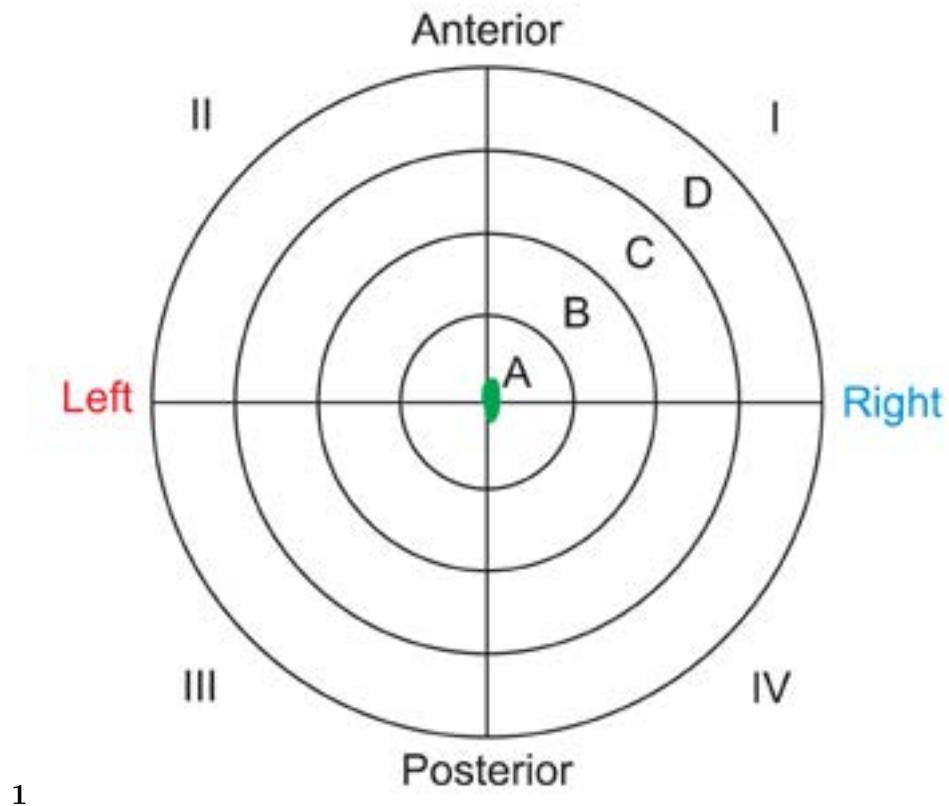


Figure 2: Fig. 1 :

2

[Note: * Student's T-testIV.]

Figure 3: Table 2 :

118 [Hagernan et al. ()] *Age and gender effects on postural control measures. Archives of physical medicine and*
119 *rehabilitation*, P A Hagernan , J M Leibowitz , D Bianke . 1995. 76 p. .

120 [Kittel and Bérzin ()] ‘Analysis of the postural stability in individuals with or without signs and symptoms of
121 temporomandibular disorder’. L Kittel , F Bérzin . *Brazilian oral research* 2008. 22 (4) p. .

122 [Zonnenberg and Van Maanen ()] *Body posture photographs as diagnostic aid for musculoskeletal disorders*
123 *related to temporomandibular disorders. The Journal of cranio-mandibular practice*, A J J Zonnenberg ,
124 C J Van Maanen . 1996. 14 p. .

125 [Salonen et al. ()] *Changes in head and cervical spine postures and EMG activities of masticatory muscles following*
126 *treatment with complete upper and partial lower denture. The Journal of cranio-mandibular practice*, M A
127 Salonen , A M Raustia , J A Huggare . 1994. 12 p. .

128 [Bracco et al. ()] ‘Effects of different jaw relations on postural stability in human subjects’. P Bracco , A
129 Deregibus , R Piscetta . *Neuroscience letters* 2004. 356 (3) p. .

130 [Carlsson ()] ‘Epidemiology and treatment need for temporomandibular disorders’. G E Carlsson . *Journal of*
131 *Orofacial Pain* 1999. 13 p. .

132 [Hinman ()] ‘Factors Affecting Reliability of the Biodex Balance System: A Summary of Four Studies’. M Hinman
133 . *Journal of sport rehabilitation* 2000. 9 (3) p. .

134 [Van Loon et al. ()] *Groningen temporomandibular joint prosthesis. Development and first clinical application.*
135 *International journal of oral and maxillofacial surgery*, J P Van Loon , L G De Bont , B Stegenga , F K
136 Spijkervet , G J Verkerke . 2002. 31 p. .

137 [Huggare and Raustia ()] ‘Head posture and cervicovertebral and craniofacial morphology in patients with
138 crano-mandibular dysfunction’. J A Huggare , A M Raustia . *Cranio: the journal of craniomandibular*
139 *practice* 1992. 10 p. .

140 [Wilkes ()] *Internal derangements of the temporomandibular joint. Pathological variations. Archives of*
141 *otolaryngology-head & neck surgery*, C H Wilkes . 1989. 115 p. .

142 [De Leeuw ()] *Orofacial Pain: Guidelines for classification, assessment, and management*, R De Leeuw . 2008.
143 Chicago: Quintessence Publ. Co. (4th ed)

144 [Grace et al. ()] ‘Postural balance in young adults: the role of visual, vestibular and somatosensory systems’. M
145 Grace , P Alpert , C Cross , M Louis , S Kowalski . *Journal of the American Association of Nurse Practitioners*
146 2012. 24 (6) p. .

147 [Horak et al. ()] ‘Postural perturbations: new insights for treatment of balance disorders’. F B Horak , S M
148 Henry , A Shumway-Cook . *Physical Therapy* 1997. 77 p. .

149 [Daly et al. ()] ‘Postural response of the head to bite opening in adult males’. P Daly , C B Preston , W G Evans
150 . *American journal of orthodontics* 1982. 82 p. .

151 [Solberg et al. ()] ‘Prevalence of mandibular dysfunction in young adults’. W K Solberg , M W Woo , J B Houston
152 . *Journal of the American Dental Association* 1979. 98 p. .

153 [Yuasa et al. ()] ‘Primary treatment of temporomandibular disorders: The Japanese Society for the temporo-
154 mandibular joint evidence-based clinical practice guidelines’. H Yuasa , K Kino , E Kubota , K Kakudo , M
155 Sugisaki , A Nishiyama . *The Japanese Dental Science Review* 2013. 49 (3) p. .

156 [Munhoz et al. ()] ‘Radiographic evaluation of cervical spine of subjects with temporomandibular joint internal
157 disorder’. W Munhoz , M Pasqual , J Tesseroli . *Brazilian oral research* 2004. 18 (4) p. .

158 [Riemann et al. ()] ‘Relationship between clinical and forceplate measures of postural stability’. B L Riemann ,
159 K M Guskiewicz , E W Shields . *Journal of sport rehabilitation* 1999. 8 (2) p. .

160 [Cachupe et al. ()] *Reliability of Biodex Balance System Measures. Measurement in physical education and*
161 *exercise science*, W Cachupe , B Shifflett , L Kahanov , E Wughalter . 2001. 5 p. .

162 [Scrivani et al. ()] ‘Temporomandibular disorders’. S Scrivani , D Keith , L Kaban . *The New England Journal*
163 *of Medicine* 2008. 359 p. .

164 [Warren and Fried ()] ‘Temporomandibular disorders and hormones in women’. M P Warren , J L Fried . *Cells*
165 *Tissues Organs* 2001. 169 p. .

166 [Sessle et al. ()] *Temporomandibular Disorders and Related Pain Conditions*, B J Sessle , P Bryant , R Dionne .
167 1995. Seattle: IASP.

168 [Perinetti ()] *Temporomandibular disorders do not correlate with detectable alterations in body posture. The*
169 *journal of contemporary dental practice*, G Perinetti . 2007. 8 p. .

170 [Martins-Junior et al. ()] ‘Temporomandibular disorders: A report of 124 patients’. R L Martins-Junior , A J
171 Palma , E J Marquardt , T M Gondin , Kerber . *The Journal of Contemporary Dental Practice* 2010. (11) p.
172 .

173 [Chandu et al. ()] 'The effect of an interocclusal appliance on bite force and masseter electromyography in
174 asymptomatic subjects and patients with temporomandibular pain and dysfunction'. A Chandu , T I Suvinen
175 , P C Reade , G L Borromeo . *Journal of oral rehabilitation* 2004. 31 p. .

176 [Ceneviz et al. ()] 'The Immediate Effect of Changing Mandibular Position on the EMG Activity of the Masseter,
177 Temporalis, Sternocleidomastoid, and Trapezius Muscles'. C Ceneviz , R Noshir , A Forgione , M J Sands ,
178 E Abdallah , S Lobo , S Mavroudi . *The Journal of cranio-mandibular practice* 2006. 24 (4) p. .

179 [Lee et al. ()] 'The relationship between forward head posture and temporomandibular disorders'. W Y Lee , J
180 P Okeson , J Lindroth . *Journal of orofacial pain* 1995. 9 p. .