

1 Study of Pathological Variations of Solitary Thyroid Nodule

2 Abdullah Al Mamun¹

3 ¹ National Institute of ENT

4 Received: 10 December 2013 Accepted: 2 January 2014 Published: 15 January 2014

5

6 **Abstract**

7 from July 2011 to December 2012, where all patients were admitted through out patient
8 department. All patients were selected as per described criteria from the Department of
9 Otolaryngology Head-Neck Surgery, SSMCMH BSMMU. Diagnosed the cases by detail
10 history, clinical examination, investigations, analysed data presented by various tables,
11 figures. Results: In this study mean age of the patients of solitary thyroid nodule was
12 35.6±13.54 years and the highest frequency (38

13

14 **Index terms**— solitary thyroid nodule, papillary carcinoma, follicular carcinoma, medullary carcinoma.

15 **1 Introduction**

16 The solitary or isolated thyroid nodule may be defined as a discrete swelling in an otherwise impalpable gland.
17 It is usually a benign lesion. It is common in clinical practice. The swelling is often noticed accidentally by
18 the patient or drawn to her attention by a family member, neighbor, or a friend. The nodule may also be
19 encountered as an incidental finding when a patient is examined for some unrelated disease. About 70% discrete
20 thyroid swellings are clinically isolated. Thyroid nodules are common and are among 3-4% of the adult population
21 in the UK and USA. They are 3-4 times more frequent in women than men. A nodule may be adenoma, cyst,
22 multino-dular goiter, thyroiditis and thyroid cancer ???. The importance of solitary thyroid nodule lies in the
23 significant risk of malignancy compared with other(D D D D) J Year 2014

24 thyroid gland and its enlargement are known since the time of Hippocrates. Among the endocrine organs,
25 diseases of the thyroid gland are the most common. A good number of diseases affect the thyroid gland and
26 almost all of them presents with nodular thyroid swelling. Nodular goiter remains a problem of enormous
27 magnitude all over the world, although exact data on incidence and prevalence are unavailable. In our country
28 the national prevalence rate is 10-15%, which indicates, the whole country is endemic. The endemicity varies
29 from one place to another. The highest prevalence rate in Bangladesh is in the district of Rangpur and Jamalpur,
30 the range varies from 21-30%. Nodular thyroid disease is more prevalent than diffuse goitre. In a report from the
31 thyroid clinic, Bangabondhu Sheikh MujibMedical Univecity, Dhaka 32.67% of all thyroid patients had solitary
32 nodules ???. thyroid swelling. Many studies have been published on the risk of malignancy in patients with
33 thyroid nodules; these studies show that the risk of malignancy is low, approximately 5%, unless the patient
34 has an underlying risk factor, such as a history of external neck irradiation ???. If imaging investigations shows
35 the nodule to be truly solitary, then the likelihood of it being malignant increases to about 5-20% 4 , of which
36 papillary carcinoma comprises about 80%, follicular carcinoma 10% and medullary carcinoma 5% 5 , but in
37 another study it showed papillary carcinoma comprises about 60% and follicular carcinoma 18% 6 .

38 Screening of large numbers of patients previously unsuspected of having goiter suggests that the incidence of
39 the isolated thyroid nodule in the general population may be of the order of 4-7% 7 . A thyroid nodule larger
40 than 1 cm in diameter is usually palpable. However, the detection of a nodule by palpation also depends on its
41 location within the thyroid gland, on the structure of the patient's neck and on the experience of the examiner.

42 It has been estimated that palpable thyroid nodules are present in 4-7% of the population, but when examined
43 by ultrasound, as many as 50-70% of subjects with no history of thyroid disease have been found to have
44 incidentally discovered thyroid nodules, many of which are not palpable 8 . In addition, nodular thyroid disease
45 is more common in the elderly, a population subgroup, which is steadily increasing 9 .

3 DISCUSSION

46 Laboratory investigations other than FNAC have limited role in finding out the nature of thyroid swelling.
47 Isotope scan can demonstrate the functioning capacity of the nodule but cannot predict the histopathological
48 character 10 .

49 Fine needle aspiration cytology (FNAC) is considered as the most reliable test for the diagnosis of thyroid
50 nodules 11 . Many investigators have tried to point out few ultrasonographic features in order to identify those
51 lesions, which are at a higher risk of malignancy, especially in non-palpable thyroid nodules 12 . Preoperative
52 assessment of thyroid nodules is generally performed by radio-nuclide scanning and fine needle aspiration (FNA).
53 FNA biopsy is described as the most preferred test that has improved selection of patients for thyroid surgery.
54 Several studies have concluded that the risk of thyroid cancer is less with multiple nodules than with solitary
55 nodules 13 , 14 but other studies have not found any difference in risk 15 . It is becoming increasingly clear that
56 high-resolution ultrasonography is better than physical examination9 or other imaging techniques 16 in detecting
57 thyroid nodules.

58 This study has been carried out to find out the relative frequency of pathological types, incidence of malignancy
59 in solitary thyroid nodule and its age & sex variation. This study also carried out to review the existing protocol
60 for the management of solitary thyroid nodules in our country and to assess the accuracy of the available diagnostic
61 modalities for appropriate selection of patients II.

62 2 Methods

63 3 Discussion

64 This cross sectional study was done in the department of Otolaryngology & Head-Neck surgery, Sir Salimullah
65 Medical College Mitford Hospital and BSMMU, Dhaka from July 2011 to December 2012. For this study, 100
66 patients of STN were studied by detailed history, clinical examination, thyroid hormone assay, ultrasonogram,
67 thyroid scan, FNAC and histopathological examinations.

68 In our study mean age of the patients of solitary thyroid nodule was 35.6 ± 13.54 years and the highest frequency
69 (38%) was within 21-30 years of age. Whereas in the study of Islam et al. 2009, showed the majority of the
70 patients were within 21-40 yrs of age. In a study17 they found the age range of their patients were 11-70 years of
71 age. The youngest patient in our study was a boy of 13 years with a papillary carcinoma and the oldest patients
72 was a man of 75 years with medullary carcinoma. The youngest patient and oldest patients of this study both
73 had been suffering from malignant thyroid disease, the extreme of ages show less incidence of thyroid disease but
74 has a more chance to be malignant.

75 In this series, out of 100 patients, male were 22 (22%) and female were 78 (78%). Male female ratio was 1:
76 3.54. In a study 17 solitary thyroid nodules were more common in female, where male female ratio was 1:2.2.
77 This female preponderance is reflected in all studies including the present. The cause of high male to female
78 ratio in this series can be explained by most of the patients are from nonendemic area 18 . Here we may recall
79 the findings of Kilpatrick et al. who found a female to male ratio of 4:1 in nonendemic area 19 . It is due to fact
80 that thyroid disorder is female prone owing to the presence of estrogen receptors in the thyroid tissue 6 . In this
81 study the commonest occupational group was house wife (68%).

82 All solitary nodules are not a single clinical entity. So it is very difficult to comments regarding the nature of
83 solitary nodule purely on the basis of clinical ground. But hoarseness of voice, hard irregular nodule, palpable
84 cervical lymph node, extreme of age, male sex are always suspicious for malignancy in solitary thyroid nodule
85 20 . Regarding presenting complaints we have found that all of the patients with neck swelling presents within
86 variable durations. Some patient also presented with other symptoms like cervical lymphadenopathy 13(13%)
87 cases, dysphagia 1(1%), dyspnoea 1(1%), hoarseness of voice 1(1%) case & no bone metastatic found. Among
88 18 malignant cases 10(55.56%) cases presented within 2 years but out of 82 benign cases only 14(17.07%) cases
89 presented within 2 years. It is well supported by others studies 21,22 .Where duration of swelling prior to the
90 presentation was from 6 months to 3 yrs 17 .Nodular goiter with large swelling may be associated with difficulty
91 in respiration or rarely in deglutition which is due to pressure on trachea or oesophagus 23 .

92 In this series we have seen that nodules were found more in right lobe than left. There is yet no reported
93 predilection for any specific site and no reason has been put forward for such a predilection. Similar findings
94 were noted by many authors 24,25 .We found 56 nodules in right lobe, 38 nodules in left lobe, 4 nodules in both
95 lobes and 2 nodules in the junctional region between isthmus and one lobe.

96 Firm nodules are the commonest form of solitary thyroid nodule. In this series of solitary thyroid nodules
97 constituted 73% firm, 6% hard and 11% cystic. Malignancy was found more in firm nodule 13(72.22%). Islam
98 et al. 2009, found majority of the nodules were firm (72.03%), others were hard(16.95%) and cystic (11.02%).
99 Malignant lesion was more common in hard nodule (70%). Here hardness of nodule was due to malignancy
100 and inflammatory conditions. Among 6 hard nodules, 4 were diagnosed as malignancy and 2 were diagnosed
101 histopatho -logically as thyroiditis. So hardness is not conclusive but an important indication for malignancy.
102 Hardness and irregularity, due to calcification, may simulate carcinoma 6 .

103 Investigations are essential to establish preoperative physical, function status and cytopathological nature of
104 solitary nodule of thyroid 26 .

105 All patients of this study have done thyroid hormone profile and show value within normal limit. Isotopes
106 scanning of the thyroid gland were done to see the functional status of the nodule. We found most 96(96%) of

107 the nodules were cold & 4(4%) were warm nodule & no hot nodule found. In our study out of 96 cold nodular
108 goiters we found 18(18.75 %) malignant & no malignant case found from rest of 4 warm cases. In a study showed
109 that on thyroid scan out of 40 patients (80%) having cold nodule &10 patients (20%) had hot nodule 27 . Most
110 of the nodules were cold (66.10%) among them 25.6% cases were malignant, followed by warm (30.5%) and hot
111 (3.3%) 28 .

112 Fine needle aspiration cytology (FNAC) is a very important, highly sensitive and minimally invasive
113 preoperative diagnostic tool 23 . According to a study FNAC is a gold standard for preoperative assessment of
114 thyroid nodules. Early and accurate diagnosis reduces surgical intervention, morbidity and mortality 29 . In our
115 study of FNAC of STN we found colloid nodule 46%, thyroiditis 2%, colloid degeneration 6%, cellular follicular
116 lesion 30%, papillary carcinoma 13%, medullary carcinoma 1% & non conclusive 2%. On FNAC majority of STN
117 were benign with being more common¹⁷. FNAC cannot distinguish between follicular adenoma and follicular
118 carcinoma. In our study sensitivity & specificity of FNAC was 77.77% & 97% respectively. Where other study
119 showed sensitivity and specificity of FNAC was 90% and 100%, respectively 29 . Basharat R et al. 2011, showed
120 sensitivity & specificity of FNAC 80% & 97.7% respectively in her study. So FNAC is an important preoperative
121 diagnostic tool for STN.

122 Final diagnosis in this study was on the basis of histopathological reports record. Out of 100 cases, 54 cases
123 (54%) were proven as nodular goitre & 2 % were thyroiditis in non-neoplastic lesion & in neoplastic lesion we
124 found 26(26%) was benign (follicular adenoma) and 18(18%) cases were malignant. In our study among 18
125 malignant cases 15(83.33%) were papillary carcinoma, 2(11.11%) were follicular carcinoma and 1(5.55%) case
126 was medullary carcinoma. In a study 13.9% of patients of STN was found to be malignant 30 . A study showed
127 that 13.33% of STN were found to have malignant lesions & 86.67% were benign 31 . Papillary carcinoma was
128 the most common malignancy (50%) found in his study. Male patients with solitary thyroid nodule showed a
129 higher incidence of malignancy (17.65%) as compared to females (11.63%). In our study we found frequency
130 of malignancy in case of male was 27.3% & in case of female 15.4 %. Venkatachalam et al. 2012, found
131 the incidence of malignancy in their series in STN was 18%. Islam et al. 2009, in their study found 18.65%
132 of STN to be malignant & out of them 16 (72.72%) cases were papillary carcinoma, 4 (18.18%) cases were
133 follicular carcinoma and 2(9.1%) cases were medullary carcinoma. It showed a clear predominance of papillary
134 over follicular and medullary carcinoma. According to Watkinson (2000), frequency of papillary carcinoma is 80%
135 and follicular carcinoma is 10%. Some study showed that papillary carcinoma comprises about 60% of all thyroid
136 cancer 32 and follicular carcinoma comprises 18% of all malignant thyroid neoplasm 6 . So, papillary carcinoma
137 was more common among all thyroid malignancies in patients with solitary thyroid nodule. Ultrasonography is
138 used to establish physical characteristics of nodule like the size, echo-structure (solid or cystic), shape and number
139 of nodule(s), and extranodular thyroid tissue. In our study of ultrasonography we found 89(89%) nodules were
140 solid, 11(11%) were cystic. In our study, out of 89 solid nodule 72(80.89%) were benign & 17(19.10%) nodule
141 were malignant and out of 11 cystic nodule 10(90.9%) were benign & 1 (9.1%) was malignant. In our study,
142 most of the benign & malignant nodules were predominantly solid. Study showed the malignancy is significantly
143 ($p<0.001$) more in solid than cystic solitary thyroid nodule. Our study correspond with a study where he showed
144 of cystic thyroid lesions, 4% were simple cysts, 82% were degenerating benign adenomas or colloid nodules and
145 14% were malignant compared with 23% of solid lesions that were malignant 33 . Cathy Crenshaw Doheny also
146 mentioned In a web journal found that a solid thyroid nodule is more likely than a cystic nodule to be malignant
147 34 . More than 90% of all solid nodules, however, are benign. A study showed 9% incidence of malignancy in
148 solid nodules & no malignancy in cystic nodules 35 . Whereas other found incidence of carcin-oma in cystic lesion
149 <2% 36 .

150 As this study had been carried out over a limited period of time with a limited number of patients, it could not
151 have been large enough to be of reasonable precision. All the facts and figures mentioned here may considerably
152 vary from those of large series covering wide range of time, but still then, as the cases of this study were collected
153 from tertiary level hospitals in our country, this study had some credentials in reflecting the facts regarding
154 distribution and type of malignancy in solitary thyroid nodules.

155 4 V. Conclusion

156 We have observed worldwide malignancy in STN ranging from 16-30% 37 . We found in our series containing
157 18% malignancy in solitary thyroid nodule. So significant percentage of malignancy in STN is very important
158 though it is a small nodular lesion. As small lesion of STN sometimes is overlooked so it is an important message
159 to our fellows and practitioners to get appropriate medical attention for early diagnosis & proper management
160 to reduce the morbidity and mortality.

4 V. CONCLUSION

Abstract-Objective: To find out the incidence of malignancy in patient with solitary thyroid nodule.

Methods: This cross-sectional study was carried out with 100 solitary thyroid nodular patients who admitted in Otolaryngology & Head-Neck Surgery Department of Sir Salimullah Medical College Mitford Hospital (SSMCMH) & Bangabondhu Sheikh Mujib Medical University (BSMMU), Dhaka, from July 2011 to December 2012, where all patients were admitted through out patient department. All patients were selected as per described criteria from the Department of Otolaryngology & Head-Neck Surgery, SSMCMH & BSMMU. Diagnosed the cases by detail history, clinical examination, investigations, analysed data presented by various tables, figures.

showed

the malignancy is significantly ($p<0.001$) more in solid than cystic solitary thyroid nodule. Final diagnosis in this study was on the basis of histopathological reports record. Out of 100 cases, 54 cases (54%) were proven as nodular goitre & 2 % were thyroiditis in non-neoplastic lesion & in neoplastic lesion we found 26(26%) was benign (follicular adenoma) and 18(18%) cases were malignant. In our study among 18 malignant cases 15 (83.33%) were papillary carcinoma,

[Note: Results: In this study mean age of the patients of solitary thyroid nodule was 35.6 ± 13.54 years and the highest frequency (38%) was within 21-30 years of age with female predominance (78%). Thyroid swelling was the common presentation in all 9100% cases, some patients also presented with other symptoms like cervical lymphadenopathy 13(13%) cases, dysphagia 1(1%), dyspnoea 1(1%), hoarseness of voice 1(1%) case & no bone metastatic found. . In this series of solitary thyroid nodules constituted 73% firm, 6% hard and 11% cystic. Malignancy was found more in firm nodule 13(72.22%). Isotopes scanning of the thyroid gland were done to see the functional status of the nodule. We found most 96(96%) of the nodules were cold & 4(4%) were warm nodule & no hot nodule found. In our study out of 96 cold nodular goiters we found 18(18.75 %) malignant & no malignant case found from rest of 4 warm cases. In our study, out of 89 solid nodule 72(80.89%) were benign & 17(19.10%) nodule were malignant and out of 11 cystic nodule 10(90.9%) were benign & 1 (9.1%) was malignant. In this study, most of the benign & malignant nodules were predominantly solid. Study]

Figure 1:

4 V. CONCLUSION

5

Site	Frequency	Percentage
Right lobe	56	56.0
Left lobe	38	38.0
Both lobe	04	04.0
Isthmus with adjacent lobe	02	02.0
Total	100	100.0

[Note: © 2014 Global Journals Inc. (US)]

Figure 5: Table 5 :

6

Duration of nodule development	Histopathological findings	developed	Total	P value
< 1 yr	Benign n (%)	Malignant n (%)		
	10(12.19)	06(33.33)	16(16)	
1-2 yrs 2-5 yrs	14(17.07) 34(41.46)	10(55.56) 02(11.11)	24(24) 36(36)	0.01 S
> 5 yrs	24(29.26)	00(00)	24(24)	
Total	82(100)	18(100)	100(100)	

[Note: ?2 = 11.14, Values in parentheses are percentages]

Figure 6: Table 6 :

3

Histopathological findings	Total	Male	Female	P value
Malignant	18(18)	06(27.3)	12(15.4)	
Benign	82(82)	16(72.7)	66(84.6)	0.21
Total	100(100)	22(100)	78(100)	

X 2 -0.94 Values in parentheses are percentages

Figure 7: Table 3 :

7

Histopathological study	Thyroid scan
Benign	Cold 78(81.25)
Malignant	Warm 18(18.75)
Total	00(00) 4(100)

Values in parentheses are percentage

Figure 8: Table 7 :

8

	Consistency Histopathological findings		Total	? 2 (P value)
	Benign n(%)	Malignant n(%)		
Soft	08(9.75)	00(00)	08(08)	0.81(0.37 ns)
Cystic	10(12.19)	01(5.55)	11(11)	0.16(0.34 ns)
Firm	62(75.61)	13(72.22)	75(75)	0.04(0.99 ns)
Hard	02(2.43)	04(22.22)	06(06)	8.26(0.009 S)
Total	82(100)	18(100)	100(100)	
Chi-square test				

Figure 9: Table 8 :

9

	Diagnosis	Number	Percentage
Non neoplastic	Colloid nodule	46	46
	Thyroiditis	02	02
	Colloid degeneration	6	6
	Cellular Follicular lesion	30	30
Neoplastic	Papillary carcinoma	13	13
	Medullary carcinoma	01	01
Suspicious		02	02
Total		100	100

Figure 10: Table 9 :

10

	Diagnosis	Number	Percentage
Non neoplastic	Nodular goiter	54	54
	Thyroiditis	02	02
Neoplastic	Benign	26	26
		15	15
	Malignant	02	02
		01	01
Total		100	100

Figure 11: Table 10 :

4 V. CONCLUSION

11

FNAC findings	Total	Final histopathological findings		P value
		Benign	Malignant	
Malignant cell	84(84)	80(97.56)	04(22.22)	
Absent Malignant cell	16(16)	02(2.43)	14(88.88)	<0.001
present				S
Total	100(100)	82(100)	18(100)	

[Note: ?2 = 56.85, Values in parentheses are percentages.]

Figure 12: Table 11 :

12

Histopathological findings	Frequency	Percent
Benign	82	82.0
Malignant	18	18.0
Total	100	100.0

Figure 13: Table 12 :

13

Type of malignancy	No of cases	Percent
Papillary carcinoma	15	83.33
Follicular carcinoma	02	11.11
Medullary carcinoma	01	5.55
Total	18	100

Figure 14: Table 13 :

14

Histopathological findings	USG findings	Total	P value
Malignant Benign	Cystic 01(09.1) 10(90.9)	Solid 17(19.10) 72(80.89)	18(18) 82(82)
Total	11(100)	89(100)	100(100)

?2 = 23.92, Values in parentheses are percentages
IV.

Figure 15: Table 14 :

161 [London (18/1-5/18/22)] , London . 18/1-5/18/22.

162 [Sattar et al. ()] , M A Sattar , M M Alam , A Haider . 2003.

163 [Venkatachalapathy et al. ()] 'A prospective study of clinical, sonological & pathological evaluation of thyroid
164 nodule'. T S Venkatachalapathy , P N Sreeramulu , S Prathima , K Kumar . *J Biosci Tech* 2012. 3 (1) p. .

165 [Ashraf and Matin ()] 'A Review of thyroid diseases in Bangladesh'. S A Ashraf , Asm Matin . *Journal of BCPS*
166 1996. 2 (1) p. .

167 [Rains and Charles ()] *Bailey and Love's short practice of surgery, twenty third ed*, Ajh Rains , V M Charles .
168 2004. London, ELBS. p. .

169 [Belfiore et al. ()] 'Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and
170 multinodularity'. A Belfiore , La Rosa , GL , La Porta , GA . *Am J Med* 1992. 93 p. .

171 [Dohney (2012)] *Clear answers for common*, C C Dohney . <http://www.wiseGEEKThyroidnodule.com>
172 2012. 10 August,2012.

173 [Clinicopathological study of solitary cold thyroid nodule Bangladesh JOTolaryngol] 'Clinicopathological study
174 of solitary cold thyroid nodule'. *Bangladesh JOTolaryngol* 9 (1/2) p. .

175 [Basharat et al. ()] 'Comparison of Fine Needle Aspiration Cytology and Thyroid Scan in Solitary Thyroid
176 Nodule'. R Basharat , M Hussain , S Saeed , T Hamid . 10.4061/2011/754041. *Research Pathology Research*
177 International 2011. SAGE-Hindawi Access. 2011 p. 9.

178 [Gupta et al. ()] 'Correlation of fine needle aspiration cytology with histopathology in the diagnosis of solitary
179 thyroid nodule'. M Gupta , S Gupta , V Gupta . *J Thyroid Res* 2010. 2010. p. 379051.

180 [Cunningham et al. ()] 'Cystic Thyroid NodulesThe Dilemma of Malignant Lesions'. Jerome J Cunningham , L
181 Md; Ernest , Mazzaferri , Md . *Arch Intern Med* 1990. 150 (7) p. .

182 [De Los] Edith T De Los , Santos . MD; *Sedigheh Keyhani*, (Rofagha, MD)

183 [Ergete and Abebe ()] 'Discordance rate between thyroid FNAC &histopathology diagnosis'. W Ergete , D Abebe
184 . *Ethiopian J Health Dev* 2002. 16 p. 227.

185 [Thomas and Mccaffrey ()] 'Evaluation of thyroid nodule'. V Thomas , Mccaffrey . *Cancer Control* 2000. 7 p. .

186 [Raza et al. ()] 'FNAC in management of solitary thyroid nodule'. S Raza , H Raza , Z Zahid . *Professional Med*
187 J 2006. 13 p. 596.

188 [Islam et al. ()] 'Frequency & pattern of malignancy in solitary thyroid nodule'. R Islam , Afm Ekramuddaula ,
189 M S Alam , M S Kabir , D Hossain , M Alauddin . *Bangladesh J of Otorhinolaryngology* 2009. 15 (1) p. .

190 [Dudley and Pories ()] *General Principles, Breast and Extracranial endocrines in Rob and Smith's Operative*
191 *Surgery*, H Dudley , W J Pories . 1986. London. Butterworth Scientific. p. . (4th edn)

192 [Belfiore et al. ()] 'High frequency of cancer in cold thyroid nodules occurring at young age'. A Belfiore , D
193 Giuffrida , La Rosa , GL . *Acta Endocrinol. (Copenh)* 1968. 121 p. .

194 [Stark et al. ()] *High-resolution ultrasonography and computed tomography of thyroid lesions in patients with*
195 *hyperparathyroidism*, D D Stark , O H Clark , Gaw Gooding , A A Moss . 1983. p. 94.

196 [Cole ()] 'Incidence of carcinoma of the thyroid in nodular goiter'. W H Cole . *Semin Surg Oncol* 1991. 7 p. .

197 [Management of thyroid carcinoma Bangladesh J of otorhinolaryngology ()] 'Management of thyroid carci-
198 noma'. *Bangladesh J of otorhinolaryngology* 2003. 9 (1/2) p. . (Ala Uddin M & Joarder AH)

199 [Brown ()] 'Pathology of the cold nodule'. C L Brown . *Clin Endocrinol Metab* 1981. 10 p. .

200 [Kang et al. ()] 'Prevalence, clinical and ultrasonographic characteristics of thyroid incidentalomas'. H W Kang
201 , H No , J H Chung , Y K Min , M S Lee , M K Lee , J H Yang , K W Kim . *Thyroid* 2004. 14 p. .

202 [Chandanwale ()] 'Research article: Clinicopathological correlation of thyroid nodules'. S Chandanwale . *Int J*
203 *Pharm Biomed Sci* 2012. 3 (3) p. .

204 [Cady et al. ()] 'Risk factor analysis in differentiated thyroid cancer'. B Cady , C E Sedgewick , W A Meissner .
205 *AMJ. Surg* 1979. 136 p. .

206 [Papini et al. ()] 'Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-
207 doppler features'. E Papini , R Guglielmi , A Bianchini , A Crescenzi , S Taccagna , F Nardi , C Panuzzi , R
208 Rinaldi , V Toscano , C Pacella . *Journal of Clinical Endocrinology and Metabolism* 2002. 87 p. .

209 [Harmo and Clark ()] 'Significance of lymph node metastasis in differentiated thyroid cancer'. J Harmo , O H
210 Clark . *Cancer* 1979. 10 (6) p. .

211 [Tarrar et al. ()] 'Solitary thyroid nodule'. A M Tarrar , O U Khan , M S Walah , A Waqas , S Ilyas , A Raza .
212 *Professional Med J* 2010. 17 (4) p. .

213 [Khairy ()] 'Solitary thyroid nodule:the risk of cancer & the extent of surgical therapy'. G A Khairy . *East african*
214 *medical journal* 2004. 81 (9) p. .

4 V. CONCLUSION

215 [Wienke et al. ()] 'Sonographic features of benign thyroid nodules: interobserver reliability and overlap with
216 malignancy'. J R Wienke , W K Chong , J R Fielding , K H Zou , C A Mittelstaedt . *J Ultrasound Med* 2003.
217 22 p. .

218 [Gharib et al. ()] 'Suppressive therapy with levothyroxine for solitary thyroid nodules: a double blind controlled
219 clinical study'. H Gharib , E M James , J W Charboneau , J M Naessens , K P Offord , C A Gorman . *N
220 Engl J Med* 1987. 317 p. .

221 [Vander et al. ()] 'The significance of nontoxic thyroid nodules: final report of a 15-year study of the incidence
222 of thyroid malignancy'. J B Vander , E A Gaston , T R Dawber . *Ann. Intern. Med* 1968. 69 p. .

223 [Messaris et al. ()] 'The single thyroid nodule and carcinoma'. G Messaris , K Kyriakov , P Vasilopoulos , C
224 Tountas . *Br J Surg* 1974. p. 943.

225 [Shaheen (ed.) ()] *The thyroid gland*, O H Shaheen . Kerr AG ed. Scott-Brown's oto laryngology. 6th Ed (ed.)
226 1997. 5.

227 [Krukowski ()] *The thyroid gland and thyroglossal tract, Baily & Love's short practice of surgery*, Z H Krukowski
228 . 2004. p. . (24th ed. London. Hodder education)

229 [Solbiati et al. ()] 'The thyroid gland with low uptake lesions: evaluation by ultrasound'. L Solbiati , L Volterrani
230 , G Rizzatto . *Radiology* 1985. 155 p. .

231 [Abdullah ()] 'Thyroid cancer: The Kuala Lumpur experience'. M Abdullah . *ANZ J Surg* 2002. 72 p. .

232 [Inder and David ()] *Thyroid function test and there alteration by drugs. The thyroid nodules clinical nuclear
233 medicine*, J C Inder , H S David . 1997. 2 p. .

234 [Lyshchik et al. ()] 'Thyroid gland tumor diagnosis at US Elastography'. A Lyshchik , T Higashi , R Asato , S
235 Tanaka , J Ito , J J Mai , C Pellot-Barakat , M F Insana , A B Brill , T Saga , M Hiraoka , K L Togashi .
236 *Radiology* 2005. 237 p. .

237 [Watkinson et al. ()] *Tumors of the thyroid and parathyroid gland. Stell and Maran's Head Neck Surgery*, J C
238 Watkinson , M N Gaze , J A Wilson . 2000. Butterworth Heinemann. p. . (4th edn.)